首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
假根羽藻主要捕光叶绿素a/b-蛋白复合体的特性(英文)   总被引:1,自引:0,他引:1  
应用阴离子交换和凝胶过滤层析技术,从假根羽藻(Bryopsis corticulans Setch. )类囊体膜中直接分离、纯化获得了主要叶绿素a/b-蛋白复合体(LHCⅡ)。经蔗糖密度梯度超速离心获得了该色素蛋白复合体的单体和三聚体。反相液相色谱的色素分析结果显示,假根羽藻LHCⅡ的色素组成含有叶绿素a、叶绿素b、新黄质、紫黄质和管藻素等。其单体的电子跃迁能谱与三聚体的相似。园二色光谱分析显示,在LHCⅡ脱辅基蛋白质上分别存在着很强的叶绿素a偶极子之间和叶绿素b偶极子之间的分子内相互作用,然而这些偶极子之间的分子间的相互作用在三聚体中得到明显增强。在能量传递方面,LHCⅡ单体有着与三聚体相似的从叶绿素b到叶绿素a以及从管藻素到叶绿素a的高效传能能力。实验结果表明,假根羽藻中LHCⅡ单体具有像三聚体那样可以高效发挥吸能和传能生理功能的色素组成形式。因此,这些单体可能是假根羽藻类囊体膜上具有功能作用的LHCⅡ的结构形式。  相似文献   

2.
应用阴离子交换和凝胶过滤层析技术,从假根羽藻(Bryopsis corticulans Setch.)类囊体膜中直接分离、纯化获得了主要叶绿素a/b-蛋白复合体(LHCⅡ).经蔗糖密度梯度超速离心获得了该色素蛋白复合体的单体和三聚体.反相液相色谱的色素分析结果显示,假根羽藻LHCⅡ的色素组成含有叶绿素a、叶绿素b、新黄质、紫黄质和管藻素等.其单体的电子跃迁能谱与三聚体的相似.园二色光谱分析显示,在LHCⅡ脱辅基蛋白质上分别存在着很强的叶绿素a偶极子之间和叶绿素b偶极子之间的分子内相互作用,然而这些偶极子之间的分子间的相互作用在三聚体中得到明显增强.在能量传递方面,LHCⅡ单体有着与三聚体相似的从叶绿素b到叶绿素a以及从管藻素到叶绿素a的高效传能能力.实验结果表明,假根羽藻中LHCⅡ单体具有像三聚体那样可以高效发挥吸能和传能生理功能的色素组成形式.因此,这些单体可能是假根羽藻类囊体膜上具有功能作用的LHCⅡ的结构形式.  相似文献   

3.
4.
Laboratory for Plant Ecological Studies, Faculty of Science,Kyoto University, Kyoto 606, Japan P700-Chl a-protein complexes(CP1 and CP1*), Chl-protein complexes of PS II core (CPa-1 andCPa-2), light-harvesting Chi a/A-protein complexes (LHCPo andLHCPm) and CP29 of spinach thylakoids were resolved by SDS-polyacrylamide-gelelectrophoresis (PAGE) under non-denaturing conditions. TheLHCP oligomer purified by electrophoresis, had 29.5- and 27-kDapolypeptides. CP1, CP29 and two LHCPs (LHCP-1 and LHCP-2) ofspinach thylakoids were separated by a lithium dodecylsulfate(LDS) PAGE system with high resolution. The two LHCPs showedthe same absorption spectrum on the gel. When LHCP oligomerwas reelectrophoresed by this system it also gave LHCP-1, andLHCP-2. LHCP-1 had both 29.5- and 27- kDa polypeptides, butLHCP-2 had only 29.5 kDa polypeptide. Both polypeptides seemedto bind Chi. The heterogeneity of LHCP was also observed withbean thylakoids. (Received August 5, 1987; Accepted September 17, 1987)  相似文献   

5.
Six chlorophyll (Chl)-protein complexes associated with photosystemI (CPla), and the PS I reaction center complex (CPl) were isolatedfrom the thylakoid membranes of the green alga, Bryopsis maxima,by SDS-polyacrylamide gel electrophoresis. CPla had four polypeptides(22, 24, 25, 26 kDa) in addition to the 67 kDa polypeptide ofCPl. These complexes may thus possibly be a combination of CPland antenna complexes for PS I. Six CPla showed almost the sameoptical properties, with absorption maxima at 650 and 677 nmand contained carotene and a small amount of xanthophylls. TheChl a/b ratios of these CPla were about 2, while that of CPlwas 14. CPla showed a fluorescence emission maximum at 695 nm;its excitation spectrum had peaks at 438, 470 and 540 nm, correspondingto the absorption maxima of Chl a, Chl b, xanthophylls, respectively.An antenna complex free of CPl has been detected in some plantsbut was not found in the present alga. 1Present address: Department of Botany, The University of Adelaide,Adelaide, S.A. 5001, Australia (Received April 17, 1986; Accepted June 26, 1986)  相似文献   

6.
Several, new, water-soluble pigments have been detected in thematured thalli of the green alga, Bryopsis maxima. Among thepigments, a major red one has been purified and characterized.The red pigment has absorption maxima at 237, 268, 331, 450,485 and 520 nm and a shoulder at 570 nm. Its fluorescence emissionspectrum has maxima at 659 and 730 nm. The pigment has minuscharge at the pH above 3.0 and is soluble in water and polarorganic solvents but not in nonpolar solvents. Its molecularweight was estimated to be 1,490. The infrared, N.m.r. and massspectra suggest that the pigment has an open tetra pyrrole structure. 5Present address: Department of Biochemistry, Nippon MedicalSchool, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113, Japan. (Received July 2, 1987; Accepted August 26, 1987)  相似文献   

7.
The effects were examined of 5-aminolevulinic acid (ALA) onthe accumulation of Chl and apoproteins of light-harvestingChl a/b-protein complex of photosystem II (LHCII) in cucumbercotyledons under intermittent light. A supply of ALA preferentiallyincreased the accumulation of Chl a during intermittent illumination.However, when cotyledons were pretreated with a brief exposureto light or benzyladenine (BA), the stimulatory effect of ALAon the increase in the level of Chl b was greater than thatin the level of Chl a, resulting in decreased ratios of Chla/b. Time-course experiments with preilluminated cotyledonsrevealed that LHCII apoproteins accumulated rapidly within thefirst 30 min of intermittent illumination with a decline duringsubsequent incubation in darkness. A supply of ALA did not affectthe accumulation of LHCII apoproteins during the intermittentlight period, but it efficiently inhibited the decline in theirlevels during the subsequent darkness. After exposure to a singlepulse of light of BA-treated cotyledons, the prompt increasein levels of LHCII apoproteins was not accompanied by the formationof Ch b, which began to accumulate later. The pattern of changesin levels of LHCII apoproteins was quite similar to that inlevels of Chl a. These results suggest that LHCII apoproteinsare first stabilized by binding with Chl a and that an increasedsupply of Chl a and the accumulation of LHCII apoproteins areprerequisites for the formation of Chl b. 1Present address: Department of Chemistry, Faculty of Scienceand Technology, Meijo University, Aichi, 468 Japan.  相似文献   

8.
SDS-solubilized thylakoid membranes of Bryopsis maxima showeda similar pattern to those of higher plants in SDS-poIyacrylamidegel electrophoresis. Absorption spectra and pigment compositionof both CP1 and CPa bands were similar to those of higher plantsand other algae. Five bands containing chlorophyll (Chl) b weredivided into three categories; a group of major light-harvestingChl a/b-protein complexes (LHCP 1, LHCP 2 and LHCP 3), a minorLHCP (LHCP 3') and a photosystem I complex (CP1a). LHCP 1, thehigh molecular form, showed the lowest Chl a/b ratio among theLHCPs, and contained only xanthophylls as carotenoids. LHCP2, LHCP 3 and LHCP 3' bands contained xanthophylls and carotene.Carotenoid composition of LHCP 3' was different from that ofthe major LHCPs. CP1a band contained a considerable amount ofsiphonaxanthin and siphonein. (Received May 24, 1985; Accepted December 13, 1985)  相似文献   

9.
Pyrenoid proteins and ribulose-1,5-bisphosphate carboxylase-oxygenase(RuBisCO) in the green alga Bryopsis maxima were purified tohigh degrees and their peptide compositions were studied bySDS-polyacrylamide gel electrophoresis. RuBisCO had a largesubunit of 50 kDa and a small one of 16 kDa. The apparent molecularweight of the purified RuBisCO was estimated as 460 kDa by gelfiltration. Pyrenoid proteins had two major polypeptides: 52kDa and 17 kDa. The peptide map of the 52 kDa pyrenoid polypeptidecoincided well with that of the large subunit of RuBisCO, stronglysuggesting that the major component of the pyrenoid of thisalga was RuBisCO. We attempted to survey the distribution ofRuBisCO in the chloroplasts. The results suggested that muchof the RuBisCO of Bryopsis maxima was localized in the pyrenoid.The pyrenoid also contained more than 10 minor polypeptidesnot found in the RuBisCO fraction. The minor polypeptides comprisedabout 15% of the total pyrenoid protein and differed from thepolypeptides of the thylakoid membranes and from those foundin the starch grains surrounding the pyrenoid. (Received February 3, 1984; Accepted July 21, 1984)  相似文献   

10.
NADP-glutamate dehydrogenase (EC 1.4.1.4 [EC] ; NADP-GDH) was purifiedto electrophoretic homogeneity from the multinuclear-unicellulargreen marine alga in Sipho-nales, Bryopsis maxima, and its propertieswere examined. Mr of the undenatured enzyme was 280 kDa, andthe enzyme is thought to be a hexamer of 46 kDa subunit protein.Optimum pHs for the reductive amination and oxidative deaminationwere 7.5 and 8.2-9.0 respectively. The enzyme displayed NADPH/NADH-specificactivities with a ratio of 18 :1. Apparent Km values for 2-oxoglutarate,ammonia, NADPH, glutamate and NADP+ were 3.0, 2.2, 0.03, 3.2and 0.01 mM respectively. The enzymochemical characteristicsof the GDH were studied and compared to those of other species.The B. maxima GDH was insensitive to 5 mM Ca2+ and to 1 mM EDTAin contrast to higher plant NAD-GDHs. Chemical modificationswith DTNB and pCMBS suggested that cysteine residues are essentialfor the enzymatic activity as in other species GDHs. The GDHwas not affected by 1 mM purine nucleotides, suggesting thatthe enzyme is not allosteric, in contrast to animal NAD(P)-GDHsand fungal NAD-GDHs. (Received August 12, 1996; Accepted January 7, 1997)  相似文献   

11.
Five soluble cytochromes were isolated and were partially purifiedfrom Bryopsis maxima: Cytochrome b-562 is slightly autoxidizable and has a midpointredox potential of +175 mV at pH 7.0. Its molecular weight isclose to 30,000 as estimated by dextran gel filtration. Cytochrome b-555 is autoxidizable and can be reduced by dithionitebut not by ascorbate. Cytochrome c-549 is a basic protein. It is slightly autoxidizableand reducible with either ascorbate or dithionite. Cytochrome c-549(LP) is autoxidizable and reducible with dithionitebut not with ascorbate. The reduced cytochrome combines withcarbon monoxide. Cytochrome c-553 is the f-type one, which was reported by Sugimuraet al. (1968). 1 This paper is dedicated to the memory of the late Prof. AtusiTakamiya at Toho University. (Received September 10, 1976; )  相似文献   

12.
A chlorophyll a/b protein complex has been isolated from a resolved native photosystem I complex by mildly dissociating sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The chlorophyll a/b protein contains a single polypeptide of molecular weight 20 kilodaltons, and has a chlorophyll a/b ratio of 3.5 to 4.0. The visible absorbance spectrum of the chlorophyll a/b protein complex showed a maximum at 667 nanometers in the red region and a 77 K fluorescence emission maximum at 681 nanometers. Alternatively, by treatment of the native photosystem I complex with lithium dodecyl sulfate and Triton, the chlorophyll a/b protein complex could be isolated by chromatography on Sephadex G-75. Immunological assays using antibodies to the P700-chlorophyll a-protein and the photosystem II light-harvesting chlorophyll a/b protein show no cross-reaction between the photosystem I chlorophyll a/b protein and the other two chlorophyll-containing protein complexes.  相似文献   

13.
Havaux M  Tardy F 《Plant physiology》1997,113(3):913-923
The chlorophyll-b-less chlorina-f2 barley mutant is deficient in the major as well as some minor light-harvesting chlorophyll-protein complexes of photosystem II (LHCII). Although the LHCII deficiency had relatively minor repercussions on the leaf photosynthetic performances, the responses of photosystem II (PSII) to elevated temperatures and to bright light were markedly modified. The chlorina-f2 mutation noticeably reduced the thermostability of PSII, with thermal denaturation of PSII starting at about 35[deg]C and 38.5[deg]C in chlorina-f2 and in the wild type, respectively. The increased susceptibility of PSII to heat stress in chlorina-f2 leaves was due to the weakness of its electron donor side, with moderate heat stress causing detachment of the 33-kD extrinsic PSII protein from the oxygen-evolving complex. Prolonged dark adaptation of chlorina-f2 leaves was also observed to inhibit the PSII donor side. However, weak illumination slowly reversed the dark-induced inhibition of PSII in chlorina-f2 and cancelled the difference in PSII thermostability observed between chlorina-f2 and wild-type leaves. The mutant was more sensitive to photoinhibition than the wild type, with strong light stress impairing the PSII donor side in chlorina-f2 but not in the wild type. This difference was not observed in anaerobiosis or in the presence of 3-(3,4-dichlorophenyl)- 1,1-dimethylurea, diuron. The acceptor side of PSII was only slightly affected by the mutation and/or the aforementioned stress conditions. Taken together, our results indicate that LHCII stabilize the PSII complexes and maintain the water-oxidizing system in a functional state under varying environmental conditions.  相似文献   

14.
From the membrane fragments of the green alga Bryopsis maxima,a cytochrome which resembles cytochrome f of higher plants wassolubilized with methyl ethyl ketone. The cytochrome was partlypurified by ammonium sulfate fractionation, followed by gelfiltration. Its properties were similar to those of the algalcytochrome f reported by Wood (26). The approximate molar ratioof cytochromes f, c-553 and chlorophyll in B. maxima was 1 :1 : 600–700. 1 In this communication, according to the recommendation byWood (26), cytochrome f is the membrane-bound c-component andcytochrome c-55 the soluble one. In some references cited, thesechloroplast cytochromes are called algal cytochrome f. (Received February 16, 1978; )  相似文献   

15.
16.
In Euglena gracillis var bacillaris, light exposure increases the level of mRNA encoding the light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCPII) approximately twofold. LHCPII mRNA levels increased in the dark upon either malate or ethanol addition. LHCPII mRNA is present but LHCPII is not synthesized in the bleached mutants W3BUL and W10BSmL, which lack protochlorophyll(ide) and most if not all of the chloroplast genome. Light exposure increased LHCPII mRNA levels in W3BUL but not in W10BSmL. Carbon availability and light acting through a nonchloroplast photoreceptor appear to regulate LHCPII mRNA levels. A chloroplast photoreceptor and/or a product produced by the chloroplast appear to regulate LHCPII mRNA translation.  相似文献   

17.
Ribulose 5-phosphate (Ru5P) kinase (ATP:D-ribulose 5-phosphate1-phosphotrans- ferase; EC 2.7.1.19 [EC] ), an enzyme in the reductivepentose phosphate cycle, was purified from the green alga Bryopsismaxima and its activity and peptide composition were studied.The specific activity of purified Ru5P kinase was 20 µmoleRuBP formed (mg protein)–1 min–1 corresponding toa 490-fold purification from the supernatant of chloroplasts.The Km values of Ru5P kinase for ATP and Ru5P were 69 µMand 330 µM, respectively. The molecular size of Ru5P kinase was estimated as 90 kDa bygel filtration and that of its polypeptide as 41 kDa by SDS-polyacrylamidegel electrophoresis. A small portion of the Ru5P kinase wasfound in a large molecular state (500 kDa) which was consideredto be an inactive form of the enzyme. Ru5P kinase activity has been reported in the pyrenoid of Eremosphaeraviridis as well as ribulose 1,5-bisphosphate carboxylase-oxygenase(RuBisCO) and ribose 5-phosphate isomerase activity (Holdsworth1971). In Bryopsis maxima, among the pyrenoid polypeptides otherthan that of RuBisCO, we found a polypeptide of 42 kDa, similarto that of Ru5P kinase in molecular size and ratio to RuBisCO.A peptide map of the 42 kDa pyrenoid polypeptide, however, showedthat it differed from that of Ru5P kinase. In conclusion, Ru5Pkinase may be not involved in the pyrenoid of this alga. (Received January 19, 1985; Accepted May 15, 1985)  相似文献   

18.
Although the polypeptides of core light-harvesting complexes (LH1) from many purple nonsulfur bacteria have been well characterized, little information is available on the polypeptides of LH1 from purple sulfur photosynthetic organisms. We present here the results of isolation and characterization of LH1 polypeptides from two purple sulfur bacteria, Thermochromatium (Tch.) tepidum and Allochromatium (Ach.) vinosum. Native LH1 complexes were extracted and purified in a reaction center (RC)-associated form with the Qy absorption at 914 nm and 889 nm for Tch. tepidum and Ach. vinosum, respectively. Three components were confirmed from reverse-phase HPLC for the LH1 apopolypeptides of Tch. tepidum. The beta-polypeptide was found to be methylated at N-terminus, and two alpha-polypeptides were identified with one of them being modified by a formyl group at the N-terminal methionine residue. Two alpha- and two beta-polypeptides were confirmed for the LH1 complex of Ach. vinosum, and their primary structures were precisely determined. Homologous and hybrid reconstitution abilities were examined using bacteriochlorophyll a and separated alpha- and beta-polypeptides. The beta-polypeptide from Tch. tepidum was capable of forming uniform structural subunit not only with the alpha-polypeptide of Tch. tepidum but also with the alpha-polypeptide from a nonsulfur bacterium Rhodospirillum rubrum. The alpha-polypeptide alone or beta-polypeptide alone appeared only to result in incomplete subunits in the reconstitution experiments.  相似文献   

19.
The green marine alga Bryopsis maxima showed a circadian rhythmin the rate of oxygen evolution in photosynthesis. The rhythmlasted several days in constant light and seemed to be endogenous.It disappeared during darkness and reappeared under naturalor artificial light-dark cycle, which shows that it is light-dependentand entrainable by an exogenous light-dark cycle. In the rhythm,the oxygen evolution rate at midnight was 50 to 70% of thatat noon, and the amplitude of the rhythm was larger at higherintensities of actinic light. The light-intensity dependencyof the rhythm showed that the rhythmic change in the activitieswas due to an alteration of the dark-reaction rate in photosynthesisand not due to a change of the light-reaction rate. 1 Present address: Radioisotope Research Institution for BasicMedicine, St. Marianna University School of Medicine, 2095 Sugao,Takatsu, Kawasaki 213, Japan. (Received June 29, 1977; )  相似文献   

20.
Tobin EM 《Plant physiology》1981,67(6):1078-1083
Translation products of poly(A) mRNA isolated from Lemna gibba L. G-3 include a major polypeptide of 32,000 daltons which is immunoprecipitated by antiserum to chlorophyll a/b-protein from Chlamydomonas. This 32,000 dalton polypeptide represents a precursor to the light-harvesting chlorophyll a/b-protein of molecular weight 28,000 found in the thylakoid membranes of Lemna gibba. The amount of this translatable mRNA decreases relative to other translatable mRNAs when green plants grown in continuous white light are placed in darkness. This decrease occurs rapidly. The most rapid decline occurs during the first day; after 4 days of darkness, only a low level of this mRNA can be detected by in vitro translation. When the plants are returned to white light there is an increase in the relative level of this mRNA which can be easily detected within two hours. The in vivo synthesis of this protein has been assayed under the different light conditions. The light effects on the in vivo synthesis of the chlorophyll a/b-protein reflect the light effects on the translatable mRNA for the polypeptide. The results indicate that light induced changes in the synthesis, processing, or degradation of chlorophyll a/b-protein mRNA could account for the light-induced changes observed in the effective synthesis rates for the chlorophyll a/b-protein in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号