首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tight skin (Tsk) mutation is a duplication of the mouse fibrillin 1 (Fbn1) gene that results in a larger (418 kD) than normal (350 kD) protein; Tsk/+ mice display increased connective tissue, bone overgrowth, and lung emphysema. Lung emphysema, bone overgrowth, and vascular complications are the distinctive traits of mice with reduced Fbn1 gene expression and of Marfan syndrome (MFS) patients with heterozygous fibrillin 1 mutations. Although Tsk/+ mice produce equal amounts of the 418- and 350-kD proteins, they exhibit a relatively mild phenotype without the vascular complications that are associated with MFS patients and fibrillin 1-deficient mice. We have used genetic crosses, cell culture assays and Tsk-specific antibodies to reconcile this discrepancy and gain new insights into microfibril assembly. Mice compound heterozygous for the Tsk mutation and hypomorphic Fbn1 alleles displayed both Tsk and MFS traits. Analyses of immunoreactive fibrillin 1 microfibrils using Tsk- and species-specific antibodies revealed that the mutant cell cultures elaborate a less abundant and morphologically different meshwork than control cells. Cocultures of Tsk/Tsk fibroblasts and human WISH cells that do not assemble fibrillin 1 microfibrils, demonstrated that Tsk fibrillin 1 copolymerizes with wild-type fibrillin 1. Additionally, copolymerization of Tsk fibrillin 1 with wild-type fibrillin 1 rescues the abnormal morphology of the Tsk/Tsk aggregates. Therefore, the studies suggest that bone and lung abnormalities of Tsk/+ mice are due to copolymerization of mutant and wild-type molecules into functionally deficient microfibrils. However, vascular complications are not present in these animals because the level of functional microfibrils does not drop below the critical threshold. Indirect in vitro evidence suggests that a potential mechanism for the dominant negative effects of incorporating Tsk fibrillin 1 into microfibrils is increased proteolytic susceptibility conferred by the duplicated Tsk region.  相似文献   

2.
A Novel Mutation of the Fibrillin Gene Causing Ectopia Lentis   总被引:1,自引:0,他引:1  
Ectopia lentis (EL), a dominantly inherited connective tissue disorder, has been genetically linked to the fibrillin gene on chromosome 15 (FBN1) in earlier studies. Here, we report the first EL mutation in the FBN1 gene confirming that EL is caused by mutations of this gene. So far, several mutations in the FBN1 gene have been reported in patients with Marfan syndrome (MFS). EL and MFS are clinically related but distinct conditions with typical manifestations in the ocular and skeletal systems, the fundamental difference between them being the absence of cardiovascular involvement in EL. We report a point mutation, cosegregating with the disease in the described family, that displays EL over four generations. The mutation changes a conserved glutamic acid residue in an EGF-like motif, which is the major structural component of the fibrillin and is repeated throughout the polypeptide. In vitro mutagenetic studies have demonstrated the necessity of an analogous glutamic acid residue for calcium binding in an EGF-like repeat of human factor IX. This provides a possible explanation for the role of this mutation in the disease pathogenesis.  相似文献   

3.
We describe here the identification of defined mutations in both alleles of the fibrillin gene (FBN1) in a compound-heterozygote Marfan syndrome (MFS) child who had a very severe form of MFS resulting in death from cardiac failure at the age of 4 mo. The nonconsanguineous parents were both affected with MFS. The father's heterozygous point mutation has earlier been reported to result in W217G substitution, the mother was here shown to carry a heterozygous point mutation resulting in G2627R substitution, and the child had inherited both these mutations. The mutant FBN1 alleles were demonstrated to be transcribed with equal efficiency compared with the normal alleles, but metabolic labeling of fibroblast cultures from the child and both parents showed reduced biosynthesis and secretion of profibrillin. Also, the respective amounts of fibrillin in cell-culture media and extracellular-matrix extracts were markedly diminished, particularly in the cell cultures from father and child. In addition, immunofluorescence analysis of the cell cultures of all three family members revealed a drastically reduced amount of microfibrils, and virtually no visible fibrils could be seen in the case of the compound-heterozygote child. These findings demonstrate incomplete dominance of fibrillin mutations and underline the fatal consequences of the complete absence of normal fibrillin molecules in the microfibrils.  相似文献   

4.
Fibrillins are microfibril-forming extracellular matrix macromolecules that modulate skeletal development. In humans, mutations in fibrillins result in long bone overgrowth as well as other distinct phenotypes. Whether fibrillins form independent microfibrillar networks or can co-polymerize, forming a single microfibril, is not known. However, this knowledge is required to determine whether phenotypes arise because of loss of singular or composite functions of fibrillins. Immunolocalization experiments using tissues and de novo matrices elaborated by cultured cells demonstrated that both fibrillins can be present in the same individual microfibril in certain tissues and that both fibrillins can co-polymerize in fibroblast cultures. These studies suggest that the molecular information directing fibrillin fibril formation may be similar in both fibrillins. Furthermore, these studies provide a molecular basis for compensation of one fibrillin by the other during fetal life. In postnatal tissues, fibrillin-2 antibodies demonstrated exuberant staining in only one location: peripheral nerves. This surprising finding implicates distinct functions for fibrillin-2 in peripheral nerves, because a unique feature in humans and in mice mutant for fibrillin-2 is joint contractures that resolve over time.  相似文献   

5.
Fibrillin-1 is a ubiquitous extracellular matrix molecule that sequesters latent growth factor complexes. A role for fibrillin-1 in specifying tissue microenvironments has not been elucidated, even though the concept that fibrillin-1 provides extracellular control of growth factor signaling is currently appreciated. Mutations in FBN1 are mainly responsible for the Marfan syndrome (MFS), recognized by its pleiotropic clinical features including tall stature and arachnodactyly, aortic dilatation and dissection, and ectopia lentis. Each of the many different mutations in FBN1 known to cause MFS must lead to similar clinical features through common mechanisms, proceeding principally through the activation of TGFβ signaling. Here we show that a novel FBN1 mutation in a family with Weill-Marchesani syndrome (WMS) causes thick skin, short stature, and brachydactyly when replicated in mice. WMS mice confirm that this mutation does not cause MFS. The mutation deletes three domains in fibrillin-1, abolishing a binding site utilized by ADAMTSLIKE-2, -3, -6, and papilin. Our results place these ADAMTSLIKE proteins in a molecular pathway involving fibrillin-1 and ADAMTS-10. Investigations of microfibril ultrastructure in WMS humans and mice demonstrate that modulation of the fibrillin microfibril scaffold can influence local tissue microenvironments and link fibrillin-1 function to skin homeostasis and the regulation of dermal collagen production. Hence, pathogenetic mechanisms caused by dysregulated WMS microenvironments diverge from Marfan pathogenetic mechanisms, which lead to broad activation of TGFβ signaling in multiple tissues. We conclude that local tissue-specific microenvironments, affected in WMS, are maintained by a fibrillin-1 microfibril scaffold, modulated by ADAMTSLIKE proteins in concert with ADAMTS enzymes.  相似文献   

6.
Significant progress has been made toward understanding the role of fgf8 in directing early embryonic patterning of the pharyngeal skeleton. Considerably less is known about the role this growth factor plays in the coordinated development, growth, and remodeling of the craniofacial skeleton beyond embryonic stages. To better understand the contributions of fgf8 in the formation of adult craniofacial architecture, we analyzed the skeletal anatomy of adult ace(ti282a)/fgf8 heterozygous zebrafish. Our results revealed distinct skeletal defects including facial asymmetries, aberrant craniofacial geometry, irregular patterns of cranial suturing, and ectopic bone formation. These defects are similar in presentation to several human craniofacial disorders (e.g., craniosynostosis, hemifacial microsomia), and may be related to increased levels of bone metabolism observed in ace(ti282a)/fgf8 heterozygotes. Moreover, skeletal defects observed in ace(ti282a)/fgf8 heterozygotes are consistent with expression patterns of fgf8 in the mature craniofacial skeleton. These data reveal previously unrecognized roles for fgf8 during skeletogenesis, and provide a basis for future investigations into the mechanisms that regulate craniofacial development beyond the embryo.  相似文献   

7.
8.
Background/Methods. Marfan syndrome (MFS) is a heritable connective tissue disorder usually caused by a mutation in the fibrillin 1 (FBN1) gene. Typical characteristics of MFS that have been described include dolichostenomelia, ectopia lentis and aortic root dilatation. However, there is great clinical variability in the expression of the syndrome’s manifestations, both between and within families. Here we discuss the clinical variability of MFS by describing a large fourgeneration Dutch family with MFS. Results. Nineteen individuals of one family with a single missense FBN1 mutation (c.7916A>G) were identified. The same mutation was found in one unrelated person. Clinical variability was extensive and not all mutation carriers fulfilled the diagnostic criteria for MFS. Some patients only expressed mild skeletal abnormalities, whereas aortic root dilation was present in eight patients, an acute type A aortic dissection was recorded in two other patients, and a mitral valve prolapse was present in eight patients. In some patients cardiac features were not present on initial screening, but did however develop over time. Conclusion. MFS is a clinically highly variable syndrome, which means a meticulous evaluation of suspected cases is crucial. Mutation carriers should be re-evaluated regularly as cardiovascular symptoms may develop over time. (Neth Heart J 2010;18:85–9.)  相似文献   

9.
10.
Investigation of hip pain in a patient bearing a hip prosthesis is a common indication in Nuclear Medicine departments daily practice. Indeed, morphological cross-sectional imaging devices, such as MDCT and MRI, are often hampered by metallic implants. If planar bone scintigraphy is acknowledged with a high sensitivity, nonetheless, this exam specificity is poor. Since Anger cameras twinned with spiral CT (SPECT/CT) have appeared in the clinical arena, this limited specificity is compensated by the CT threefold input, all at once attenuation correction, localizing and diagnostic tool. Bone SPECT/CT requires that the Nuclear Medicine physician upgrades his knowledge of bone and joint anatomy, CT patterns, but foremost, data merging from SPECT and CT. The aim of this article is to sketch out bone SPECT/CT role and patterning in miscellaneous complications following arthroplasty, explained by pathophysiological mechanisms.  相似文献   

11.
12.
Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromosome 15 (FBN1) were described at first in the heritable connective tissue disorder, Marfan syndrome (MFS). More recently, FBN1 has also been shown to harbor mutations related to a spectrum of conditions phenotypically related to MFS and many mutations will have to be accumulated before genotype/phenotype relationships emerge. To facilitate mutational analysis of the FBN1 gene, a software package along with a computerized database (currently listing 63 entries) have been created.  相似文献   

13.
Gap junctions in skeletal development and function   总被引:2,自引:0,他引:2  
Gap junctions play a critical role in the coordinated function and activity of nearly all of the skeletal cells. This is not surprising, given the elaborate orchestration of skeletal patterning, bone modeling and subsequent remodeling, as well as the mechanical stresses, strains and adaptive responses that the skeleton must accommodate. Much remains to be learned regarding the role of gap junctions and hemichannels in these processes. A common theme is that without connexins none of the cells of bone function properly. Thus, connexins play an important role in skeletal form and function.  相似文献   

14.
Fracture healing is a specialized post-natal repair process that recapitulates aspects of embryological skeletal development. While many of the molecular mechanisms that control cellular differentiation and growth during embryogenesis recur during fracture healing, these processes take place in a post-natal environment that is unique and distinct from those which exist during embryogenesis. This Prospect Article will highlight a number of central biological processes that are believed to be crucial in the embryonic differentiation and growth of skeletal tissues and review the functional role of these processes during fracture healing. Specific aspects of fracture healing that will be considered in relation to embryological development are: (1) the anatomic structure of the fracture callus as it evolves during healing; (2) the origins of stem cells and morphogenetic signals that facilitate the repair process; (3) the role of the biomechanical environment in controlling cellular differentiation during repair; (4) the role of three key groups of soluble factors, pro-inflammatory cytokines, the TGF-beta superfamily, and angiogenic factors, during repair; and (5) the relationship of the genetic components that control bone mass and remodeling to the mechanisms that control skeletal tissue repair in response to fracture.  相似文献   

15.
Marfan syndrome (MFS) is a dominant monogenic disease caused by mutations in fibrillin 1 (FBN1). Cardiovascular complications are the leading causes of mortality among MFS. In the present study, a whole-exome sequencing of MFS in the Chinese population was conducted to investigate the correlation between FBNI gene mutation and MFS. Forty-four low-frequency harmful loci were identified for the FBN1 gene in HGMD database. In addition, 38 loci were identified in the same database that have not been related to MFS before. A strict filtering and screening protocol revealed two patients of the studied group have double mutations in the FBN1 gene. The two patients harboring the double mutations expressed a prominent, highly pathological phenotype in the affected family. In addition to the FBN1 gene, we also found that 27 patients had mutations in the PKD1 gene, however these patients did not have kidney disease, and 16 of the 27 patients expressed aortic related complications. Genotype-phenotype analysis showed that patients with aortic complications are older in the family, aged between 20 and 40 years.  相似文献   

16.
Genetic linkage studies have linked congenital contractural arachnodactyly (CCA), a usually mild heritable connective-tissue disorder, to FBN2, the fibrillin gene on chromosome 5. Recently, FBN2 mutations in two patients with CCA have been described. Here we report an A-->T transversion at the -2 position of the consensus acceptor splice site, resulting in the missplicing of exon 34, a calcium-binding epidermal growth factor-like repeat in fibrillin-2 in a mother and daughter with CCA. Significantly, the mother exhibited a classic CCA phenotype with arachnodactyly, joint contractures, and abnormal pinnae, whereas her daughter exhibited a markedly more severe CCA phenotype, which included cardiovascular and gastrointestinal anomalies that led to death in infancy. Analysis of cloned fibroblasts showed that the mother is a somatic mosaic for the exon 34 missplicing mutation, whereas all the daughter''s cells harbored the mutation.  相似文献   

17.
18.
19.
Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production.  相似文献   

20.
Ascending aortic disease, ranging from mild aortic root enlargement to aneurysm and/or dissection, has been identified in 10 individuals of a kindred, none of whom had classical Marfan syndrome (MFS). Single-strand conformation analysis of the entire fibrillin-1 (FBN1) cDNA of an affected family member revealed a G-to-A transition at nucleotide 3379, predicting a Gly1127Ser substitution. The glycine in this position is highly conserved in EGF-like domains of FBN1 and other proteins. This mutation was present in 9 of 10 affected family members and in 1 young unaffected member but was not found in other unaffected members, in 168 chromosomes from normal controls, and in 188 chromosomes from other individuals with MFS or related phenotypes. FBN1 intragenic marker haplotypes ruled out the possibility that the other allele played a significant role in modulating the phenotype in this family. Pulse-chase studies revealed normal fibrillin synthesis but reduced fibrillin deposition into the extracellular matrix in cultured fibroblasts from a Gly1127Ser carrier. We postulate that the Gly1127Ser FBN1 mutation is responsible for reduced matrix deposition. We suggest that mutations such as this one may disrupt EGF-like domain folding less drastically than do substitutions of cysteine or of other amino acids important for calcium-binding that cause classical MFS. The Gly1127Ser mutation, therefore, produces a mild form of autosomal dominantly inherited weakness of elastic tissue, which predisposes to ascending aortic aneurysm and dissection later in life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号