首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Large-conductance Ca2+-activated K+ (BKCa) channels play a critical role in regulating the cellular excitability in response to change in blood flow. It has been demonstrated that vascular BKCa channel currents in both humans and rats are increased after exercise training. This up-regulation of the BKCa channel activity in arterial myocytes may represent a cellular compensatory mechanism of limiting vascular reactivity to exercise training. However, the underlying mechanisms are not fully understood. In the present study, we examined the single channel activities and kinetics of the BKCa channels in rat thoracic aorta smooth muscle cells. We showed that exercise training significantly increased the open probability (Po), decreased the mean closed time and increased the mean open time, and the sensitivity to Ca2+ and voltage without altering the unitary conductance and the K+ selectivity. Our results suggest a novel mechanism by which exercise training increases the K+ currents by changing the BKCa channel activities and kinetics.  相似文献   

2.
Excessive K+ efflux promotes central neuronal apoptosis; however, the type of potassium channel that mediates K+ efflux in response to different apoptosis-inducing stimuli is still unknown. It is hypothesized that the activation of large-conductance Ca2+-activated K+ channels (BKCa) mediates hypoxia/reoxygenation (H/R)- and ischemia/reperfusion (I/R)-induced neuronal apoptosis. Rat hippocampal neuronal cultures underwent apoptosis after reoxygenation, as assessed by morphologic observation, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and caspase-3 activation. Single-channel recordings revealed upregulation of BKCa channel activity 6 h after reoxygenation, which might be caused by elevated cytosolic Ca2+. The K+ ionophore valinomycin and the BKCa channel opener NS1619 induced neuronal apoptosis. Transfection of the BKCa channel α subunit into Chinese hamster ovary (CHO-K1) cells, which do not express endogenous K+ channels, or into neurons will induce cell apoptosis, indicating that the opening of the BKCa channel serves as a pivotal event in mediating cell apoptosis. The specific BKCa channel blockers charybdotoxin and iberiotoxin and the nonselective K+ channel blocker tetraethylammonium at concentrations more specific to the BKCa channel were neuroprotective. The A-type potassium channel blocker 4-aminopyridine and apamin, a small-conductance Ca2+-activated K+ channel blocker, were not protective. This result suggests the involvement of the BKCa channel in H/R-induced apoptosis. Similarly, specific BKCa channel blockers also showed neuroprotection in neurons subjected to oxygen-glucose deprivation/reoxygenation or animals subjected to forebrain ischemia–reperfusion. These results demonstrate that the over-activity of BKCa channels mediates hippocampal neuronal damage induced by H/R in vitro and I/R in vivo.  相似文献   

3.
Smirnov  S. V.  Tammaro  P.  Hutchings  S. R.  Smith  A. L. 《Neurophysiology》2003,35(3-4):234-247
Voltage-dependent K+ (KV) channels represent the most diverse group of K+ channels ubiquitously expressed in vascular smooth muscles. The KV channels, together with other types of K+ conductances, such as Ca2+-activated (BKCa), ATP-sensitive (KATP), and inward rectifier, play an important role in the control of the cell membrane potential and regulation of the vascular contractility. Comparison of the expression of different KV channel isoforms obtained from RT-PCR studies showed that virtually all KV genes could be detected in vascular smooth muscle cells (VSMC). Based on the analysis of both mRNA and protein expressions, it is likely that KV1.1, KV1.2, KV1.3, KV1.5, KV1.6, KV2.1, and KV3.1b channel isoforms are mainly responsible for the delayed rectifier current characterized electrophysiologically in most VSMC types studied to date. It has been recently demonstrated by our research group and by others that functional expression of multiple KV channel α-subunits is not homogeneous and varies in different vascular beds of small and large arteries. Growing evidence suggests that in some small arteries, e.g., cerebral arteries and arterioles, the KV channels are activated at more negative membrane voltages than BKCa, thus making a greater contribution to the control of vascular tone. Our data also suggest that in some blood vessels, such as the rat aorta and mouse small mesenteric arteries, the KV channel current (identified mainly as passed through KV2.1 channels), but not BKCa, is the predominant conductance activated even under conditions where intracellular Ca2+ concentration is increased up to 200 nM. In addition, our data indicate that the KV2.1 channel current could also contribute to the regulation of the induced rhythmic activity in the rat aorta in vitro acting as a negative feedback mechanism for membrane depolarization. We and other experimenters also demonstrated that functional expression of KV channels is a dynamic process, which is altered under normal physiological conditions (e.g., during the development of the vessels), and in various pathological states (e.g., pulmonary hypertension developing during chronic hypoxia). Recent findings also suggest that activation of KV channels can also play a role in vascular apoptosis (causing loss of intracellular K+ and subsequent cell shrinking, one of the essential prerequisites of cellular apoptosis). To summarize, the KV channels are essential for normal vascular function, and their expression and properties are altered under abnormal conditions. Therefore, understanding of the molecular identity of native KV channels and their functional significance and elucidation of the mechanisms, which govern and control the expression of the KV channels in the vasculature, represent an important and challenging task and could also lead to the development of useful therapeutic strategies for the treatment of cardiovascular diseases.  相似文献   

4.
Large-conductance Ca2+-dependent K+ (BKCa) channels are activated by intracellular Ca2+ and membrane depolarization in an allosteric manner. We investigated the pharmacological and biophysical characteristics of a BKCa-type K+ channel in androgen-dependent LNCaP (lymph node carcinoma of the prostate) cells with novel functional properties, here termed BKL. K+ selectivity, high conductance, activation by Mg2+ or NS1619, and inhibition by paxilline and penitrem A largely resembled the properties of recombinant BKCa channels. However, unlike conventional BKCa channels, BKL channels activated in the absence of free cytosolic Ca2+ at physiological membrane potentials; the half-maximal activation voltage was shifted by about −100 mV compared with BKCa channels. Half-maximal Ca2+-dependent activation was observed at 0.4 μM for BKL (at −20 mV) and at 4.1 μM for BKCa channels (at +50 mV). Heterologous expression of hSlo1 in LNCaP cells increased the BKL conductance. Expression of hSlo-β1 in LNCaP cells shifted voltage-dependent activation to values between that of BKL and BKCa channels and reduced the slope of the Popen (open probability)-voltage curve. We propose that LNCaP cells harbor a so far unknown type of BKCa subunit, which is responsible for the BKL phenotype in a dominant manner. BKL-like channels are also expressed in the human breast cancer cell line T47D. In addition, functional expression of BKL in LNCaP cells is regulated by serum-derived factors, however not by androgens.  相似文献   

5.
Large conductance calcium activated potassium channels (BKCa) are fundamental in the control of cellular excitability. Thus, compounds that activate BKCa channels could provide potential therapies in the treatment of pathologies of the cardiovascular and central nervous system. A series of novel N-arylbenzamide compounds, and the reference compound NS1619, were evaluated for BKCa channel opener properties in Human Embryonic Kidney (HEK293) cells expressing the human BKCa channel α-subunit alone or α + β1-subunit complex.Channel activity was determined using a non-radioactive Rb+ efflux assay to construct concentration effect curves for each compound. All N-arylbenzamide compounds and NS1619 evoked significant (p <0.05) concentration related increases in Rb+ efflux both in cells expressing α-subunit alone or α + β1-subunits. Co-expression of the β1-subunit modified the Rb+ efflux responses, relative to that obtained in cells expressing the α-subunit alone, for most of the N-arylbenzamide compounds, in contrast to NS1619. The EC40 values of NS1619, BKMe1 and BKOEt1 were not significantly affected by the co-expression of the BKCa channel α + β1-subunits. In contrast, 5 other N-arylbenzamides (BKPr2, BKPr3, BKPr4, BKH1 and BKVV) showed a significant (p <0.05) 2- to 10-fold increase in EC40 values when tested on the BKCa α + β1-subunit expressing cells compared to BKCa α-subunit expressing cells. Further, the Emax values for BKPr4, BKVV and BKH1 were lower in the BKCa channel α + β1-subunit expressing cells.In conclusion, the N-arylbenzamides studied, like NS1619, were able to activate BKCa channels formed of the α-subunit only. The co-expression of the β1-subunit, however, modified the ability of certain compounds to active the channel leading to differentiated pharmacodynamic profiles.  相似文献   

6.
The aim of this work was to study the effect of antimicrobial peptides: divergicin M35 and nisin A on Listeria monocytogenes LSD 530 potassium (K+) channels: ATP-sensitive (KATP), calcium-activated (BKCa), and depolarization-activated (Kv) types. Increase on K+ efflux and inhibition of cellular growth were observed after adding K+ channel activators pinacidil, NS1619, and cromakalim to divergicin M35. Increase in K+ efflux from log-phase cells was about 18 ± 1.1, 11 ± 0.63, and nmol mg−1 of cell dry weight (CDW) for pinacidil and NS1619, respectively, over the efflux obtained with divergicin M35 alone. Increases in K+ efflux obtained by adding the same K+ channel activators to nisin A fit a completely different profile. Divergicin M35 activates K+ channels, particularly of the Kv and BKCa types and to a lesser extent the KATP type, causing K+ efflux and consequently cell death.  相似文献   

7.
Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K+ channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca2+-activated K+ channels (BKCa). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K+ currents carried by BKCa channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC50 324 µM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 µM) can also block whole-cell K+ currents (~45% blockage) in which, under our working conditions, BKCa is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BKCa channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account.  相似文献   

8.
Gender associated differences in vascular reactivity regulation might contribute to the low incidence of cardiovascular disease in women. Cardiovascular protection is suggested to depend on female sex hormones’ effects on endothelial function and vascular tone regulation. We tested the hypothesis that potassium (K+) channels and Na+K+-ATPase may be involved in the gender-based vascular reactivity differences. Aortic rings from female and male rats were used to examine the involvement of K+ channels and Na+K+-ATPase in vascular reactivity. Acetylcholine (ACh)-induced relaxation was analyzed in the presence of L-NAME (100 µM) and the following K+ channels blockers: tetraethylammonium (TEA, 2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 µM) and charybdotoxin (ChTX, 0.1 µM). The ACh-induced relaxation sensitivity was greater in the female group. After incubation with 4-AP the ACh-dependent relaxation was reduced in both groups. However, the dAUC was greater in males, suggesting that the voltage-dependent K+ channel (Kv) participates more in males. Inhibition of the three types of Ca2+-activated K+ channels induced a greater reduction in Rmax in females than in males. The functional activity of the Na+K+-ATPase was evaluated by KCl-induced relaxation after L-NAME and OUAincubation. OUA reduced K+-induced relaxation in female and male groups, however, it was greater in males, suggesting a greater Na+K+-ATPase functional activity. L-NAME reduced K+-induced relaxation only in the female group, suggesting that nitric oxide (NO) participates more in their functional Na+K+-ATPase activity. These results suggest that the K+ channels involved in the gender-based vascular relaxation differences are the large conductance Ca2+-activated K+ channels (BKCa) in females and Kv in males and in the K+-induced relaxation and the Na+K+-ATPase vascular functional activity is greater in males.  相似文献   

9.
Large conductance Ca2+-activated K+ channel (BKCa) is a potential target for coronary artery-relaxing medication, but its functional regulation is largely unknown. Here, we report that inositol trisphosphate (IP3) activated BKCa channels in isolated porcine coronary artery smooth muscle cells and by which decreased the coronary artery tone. Both endogenous and exogenous IP3 increased the spontaneous transient outward K+ currents (STOC, a component pattern of BKCa currents) in perforated and regular whole-cell recordings, which was dependent on the activity of IP3 receptors. IP3 also increased the macroscopic currents (MC, another component pattern of BKCa currents) via an IP3 receptor- and sarcoplasmic Ca2+ mobilization-independent pathway. In inside-out patch recordings, direct application of IP3 to the cytosolic side increased the open probability of single BKCa channel in an IP3 receptor-independent manner. We conclude that IP3 is an activator of BKCa channels in porcine coronary smooth muscle cells and exerts a coronary artery-relaxing effect. The activation of BKCa channels by IP3 involves the enhancement of STOCs via IP3 receptors and stimulation of MC by increasing the Ca2+ sensitivity of the channels.  相似文献   

10.
Plasma membrane large-conductance Ca2+-activated K+ (BKCa) channels and sarcoplasmic reticulum inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are expressed in a wide variety of cell types, including arterial smooth muscle cells. Here, we studied BKCa channel regulation by IP3 and IP3Rs in rat and mouse cerebral artery smooth muscle cells. IP3 activated BKCa channels both in intact cells and in excised inside-out membrane patches. IP3 caused concentration-dependent BKCa channel activation with an apparent dissociation constant (Kd) of ∼4 µM at physiological voltage (−40 mV) and intracellular Ca2+ concentration ([Ca2+]i; 10 µM). IP3 also caused a leftward-shift in BKCa channel apparent Ca2+ sensitivity and reduced the Kd for free [Ca2+]i from ∼20 to 12 µM, but did not alter the slope or maximal Po. BAPTA, a fast Ca2+ buffer, or an elevation in extracellular Ca2+ concentration did not alter IP3-induced BKCa channel activation. Heparin, an IP3R inhibitor, and a monoclonal type 1 IP3R (IP3R1) antibody blocked IP3-induced BKCa channel activation. Adenophostin A, an IP3R agonist, also activated BKCa channels. IP3 activated BKCa channels in inside-out patches from wild-type (IP3R1+/+) mouse arterial smooth muscle cells, but had no effect on BKCa channels of IP3R1-deficient (IP3R1−/−) mice. Immunofluorescence resonance energy transfer microscopy indicated that IP3R1 is located in close spatial proximity to BKCa α subunits. The IP3R1 monoclonal antibody coimmunoprecipitated IP3R1 and BKCa channel α and β1 subunits from cerebral arteries. In summary, data indicate that IP3R1 activation elevates BKCa channel apparent Ca2+ sensitivity through local molecular coupling in arterial smooth muscle cells.  相似文献   

11.
AimsThe goal of this study was to evaluate the influence of γ-irradiation on Ca2+-activated K+ channel (BKCa) function and expression in rat thoracic aorta.Main methodsAortic cells or tissues were studied by the measurement of force versus [Ca2+]i, patch-clamp technique, and RT-PCR.Key findingsStimulation of smooth muscle cells with depolarizing voltage steps showed expression of outward K+ currents. Paxilline, an inhibitor of BKCa channels, decreased outward K+ current density. Outward currents in smooth muscle cells obtained from irradiated animals 9 and 30 days following radiation exposure demonstrated a significant decrease in K+ current density. Paxilline decreased K+ current in cells obtained 9 days, but was without effect 30 days after irradiation suggesting the absence of BKCa channels. Aortic tissue from irradiated animals showed progressively enhanced contractile responses to phenylephrine in the post-irradiation period of 9 and 30 days. The concomitant Ca2+ transients were significantly smaller, as compared to tissues from control animals, 9 days following irradiation but were increased above control levels 30 days following irradiation. Irradiation produced a decrease in BKCa α- and β1-subunit mRNA levels in aortic smooth muscle cells suggesting that the vasorelaxant effect of these channels may be diminished.SignificanceThese results suggest that the enhanced contractility of vascular tissue from animals exposed to radiation may result from an increase in myofilament Ca2+ sensitivity in the early post-irradiation period and a decrease in BKCa channel expression in the late post-irradiation period.  相似文献   

12.
L-type voltage-dependent Ca2+ channels (LVDCC) and large conductance Ca2+-activated K+ channels (BKCa) are the major factors defining membrane excitability in vascular smooth muscle cells (VSMCs). The Ca2+ release from sarcoplasmic reticulum through ryanodine receptor significantly contributes to BKCa activation in VSMCs. In this study direct coupling between LVDCC (Cav1.2) and BKCa and the role of caveoline-1 on their interaction in mouse mesenteric artery SMCs were examined. The direct activation of BKCa by Ca2+ influx through coupling LVDCC was demonstrated by patch clamp recordings in freshly isolated VSMCs. Using total internal reflection fluorescence microscopy, it was found that a large part of yellow fluorescent protein-tagged BKCa co-localized with the cyan fluorescent protein-tagged Cav1.2 expressed in the plasma membrane of primary cultured mouse VSMCs and that the two molecules often exhibited FRET. It is notable that each BKα subunit of a tetramer in BKCa can directly interact with Cav1.2 and promotes Cav1.2 cluster in the molecular complex. Furthermore, caveolin-1 deficiency in knock-out (KO) mice significantly reduced not only the direct coupling between BKCa and Cav1.2 but also the functional coupling between BKCa and ryanodine receptor in VSMCs. The measurement of single cell shortening by 40 mm K+ revealed enhanced contractility in VSMCs from KO mice than wild type. Taken together, caveolin-1 facilitates the accumulation/clustering of BKCa-LVDCC complex in caveolae, which effectively regulates spatiotemporal Ca2+ dynamics including the negative feedback, to control the arterial excitability and contractility.  相似文献   

13.
Cadmium is an environmental pollutant closely linked with cardiovascular diseases that seems to involve endothelium dysfunction and reduced nitric oxide (NO) bioavailability. Knowing that NO causes dilatation through the activation of potassium channels and Na+/K+-ATPase, we aimed to determine whether acute cadmium administration (10 μM) alters the participation of K+ channels, voltage-activated calcium channel, and Na+/K+-ATPase activity in vascular function of isolated aortic rings of rats. Cadmium did not modify the acetylcholine-induced relaxation. After L-NAME addition, the relaxation induced by acetylcholine was abolished in presence or absence of cadmium, suggesting that acutely, this metal did not change NO release. However, tetraethylammonium (a nonselective K+ channels blocker) reduced acetylcholine-induced relaxation but this effect was lower in the preparations with cadmium, suggesting a decrease of K+ channels function in acetylcholine response after cadmium incubation. Apamin (a selective blocker of small Ca2+-activated K+ channels—SKCa), iberiotoxin (a selective blocker of large-conductance Ca2+-activated K+ channels—BKCa), and verapamil (a blocker of calcium channel) reduced the endothelium-dependent relaxation only in the absence of cadmium. Finally, cadmium decreases Na+/K+-ATPase activity. Our results provide evidence that the cadmium acute incubation unaffected the calcium-activated potassium channels (SKCa and BKCa) and voltage-calcium channels on the acetylcholine vasodilatation. In addition, acute cadmium incubation seems to reduce the Na+/K+-ATPase activity.  相似文献   

14.
Several studies suggested that potassium channels are involved in the proliferation of cancer cells but the involvement of the large conductance Ca2+-activated K+ channels (BKCa) in the cancerous phenomenon is still controversial. In the present study, we used iberiotoxin, a specific blocker of BKCa, and report the activity of an iberiotoxin-sensitive current in various human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-468 and MDA-MB-435s) as well as in normal mammary epithelial cells (HME).Iberiotoxin and NS1619, an activator of BKCa, did not interfere with either cell proliferation or with the invasive properties of the cells, under normal culture conditions. However, extracellular pulses of ATP, which induced transient increases in intracellular Ca2+ concentration, revealed a significant reduction effect of iberiotoxin on cell proliferation.We conclude that the iberiotoxin-sensitive current is not involved in cell proliferation in basal conditions but participates when the intracellular Ca2+ concentration is increased. These experiments also suggest that BKCa channels are not involved in the cancerous transformation and are probably a relic from normal cells.  相似文献   

15.
16.

Background  

Granulosa cells (GCs) represent a major endocrine compartment of the ovary producing sex steroid hormones. Recently, we identified in human GCs a Ca2+-activated K+ channel (KCa) of big conductance (BKCa), which is involved in steroidogenesis. This channel is activated by intraovarian signalling molecules (e.g. acetylcholine) via raised intracellular Ca2+ levels. In this study, we aimed at characterizing 1. expression and functions of KCa channels (including BKCa beta-subunits), and 2. biophysical properties of BKCa channels.  相似文献   

17.
多不饱和脂肪酸具有包括离子通道在内的众多作用靶点,通过作用于这些靶点,可以有效保护免疫系统、神经系统和心血管系统的功能,在一定程度上保护人体健康。电压门控钾离子通道家族KV7通道和大电导钙离子激活的钾离子通道(BKCa)广泛表达于机体的各类组织中,具有重要的生理或病理功能。本综述围绕KV7和BKCa通道,根据对已有报道的汇总,多不饱和脂肪酸可以增大KV7和BKCa通道的电流幅值,其中对KV7通道电流的影响主要是改变其电压依赖特性和最大电导值,而对BKCa通道电流的影响主要是改变其孔道区域关闭态的构象。此外,多不饱和脂肪酸对KV7和BKCa通道功能的调节也会受到共表达的辅助亚基影响,但相关机制有待进一步阐明。深入理解多不饱和脂肪酸对KV7和BKCa通道调节作用效果和分子机制,有助于全面理解KV7和BK  相似文献   

18.
The role of homocysteine for store-operated calcium influx was investigated in human umbilical cord endothelial cell line. Homocysteine significantly decreased thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization. GSH and DTT prevented homocysteine-induced inhibition of thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; while GSSG had the opposite effect. Homocysteine blocked large conductance Ca2+-activated K+ (BKCa) channels in a concentration-dependent manner and related to the redox status of the endothelial cells. BKCa channels opener NS1619 reversed thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; BKCa channels inhibitor iberiotoxin had the opposite effect. The findings suggest that homocysteine is involved in store-regulated Ca2+ entry through membrane potential-dependent and actin cytoskeleton-dependent mechanisms, redox status of homocysteine and BKCa channels may play a regulatory role in it. (Mol Cell Biochem 269: 37–47, 2005)  相似文献   

19.
We evaluated the vasorelaxation effects of formononetin, an isoflavone/phytoestrogen found abundantly in Astragalus mongholicus Bunge, on rat isolated aorta and the underlying mechanisms involved. Cumulative administration of formononetin, genistein, daidzein and biochanin A relaxed phenylephrine-preconstricted aorta. Formononetin and biochanin A caused a similar magnitude of relaxation whereas daidzein was least potent. Mechanical removal of endothelium, L-NAME (100 μM) and methylene blue (10 μM) suppressed formononetin-induced relaxation. Formononetin increased endothelial nitric oxide (NO) synthase (eNOS), but not inducible NO synthase, activity with an up-regulation of eNOS mRNA and p-eNOSSer1177 protein expression. In endothelium-denuded preparations, formononetin-induced vasorelaxation was significantly reduced by glibenclamide (3 μM) and iberiotoxin (100 nM), and a combination of glibenclamide (3 μM) plus iberiotoxin (100 nM) abolished the relaxation. In contrast, formononetin-elicited endothelium-independent relaxation was not altered by ICI 182,780 (10 μM, an estrogen receptor (ERα/ERβ) antagonist) or mifepristone (10 μM, a progesterone receptor antagonist). In single aortic smooth muscle cells, formononetin caused opening of iberiotoxin-sensitive Ca2+-activated K+ (BKCa) channels and glibenclamide-sensitive adenosine triphosphate (ATP)-dependent K+ (KATP) channels. Thus, our results suggest that formononetin caused vascular relaxation via endothelium/NO-dependent mechanism and endothelium-independent mechanism which involves the activation of BKCa and KATP channels.  相似文献   

20.
NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one) is widely used as a large-conductance Ca2+-activated K+ (BKCa) channel opener. It was previously reported that activation of BKCa channels by NS1619 could protect the cardiac muscle against ischaemia and reperfusion injury. This study reports the effects of NS1619 on intracellular Ca2+ homeostasis in H9C2 and C2C12 cells as well as its molecular mechanism of action. The effects of NS1619 on Ca2+ homeostasis in C2C12 and H9C2 cells were assessed using the Fura-2 fluorescence method. Ca2+ uptake by sarcoplasmic reticulum (SR) vesicles isolated from rat skeletal muscles and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity were measured. The effect of NS1619 on the isometric force of papillary muscle contraction in the guinea pig heart was also examined. H9C2 and C2C12 cells treated with NS1619 released Ca2+ from internal stores in a concentration-dependent manner. Ca2+ accumulation by the SR vesicles was inhibited by NS1619 treatment. NS1619 also decreased the activity of SERCA derived from rat skeletal muscle. The calcium release from cell internal stores and inhibition of SERCA by NS1619 are pH dependent. Finally, NS1619 had a profound effect on the isometric force of papillary muscle contraction in the guinea pig heart. These results indicate that NS1619 is a potent modulator of the intracellular Ca2+ concentration in H9C2 and C1C12 cells due to its interaction with SRs. The primary target of NS1619 is SERCA, which is located in SR vesicles. The effect of NS1619-mediated SERCA inhibition on cytoprotective processes should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号