首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overnutrition during critical developmental periods is believed to be a risk factor for the emergence of metabolic disorders in adulthood. The present study investigated the effects of pups overfeeding during lactation on offspring's insulin secretion. To study the consequences of overnutrition early in life in rats, litter size reduction has been shown to be an appropriate experimental model. To induce early postnatal overnutrition, litter size was reduced to three pups per litter at the third day following birth [overfed group (OG)]. In the control group (CG), the litter size was adjusted to 10 pups per litter. Metabolic parameters and glucose-stimulated insulin secretion were assessed. OG pups ingested more milk at 10 and 21 days and had an augmented food intake at 1 year compared to the CG. Consistently, body weight, body fat, and fasting plasma levels of insulin were higher in 1-year-old OG rats. In addition, OG rats exhibited enhanced insulin secretion, accompanied by elevated content of GLUT-2 in pancreatic islets compared to CG. These findings indicate that early postnatal overnutrition during a critical developmental period in life may program permanent alterations in glucose-stimulated insulin secretion.  相似文献   

2.
3.
Overnutrition during the perinatal period has been associated with susceptibility to obesity and related comorbidities. We examined the effects of postnatal early overnutrition on the development of juvenile obesity and the associated renal pathophysiological changes. Three or 10 pups per mother from rat pup litters were assigned to either the overnutrition or control groups during the first 21 days of life. The effects of overfeeding were measured at 28 days. The smaller male litter pups were heavier than the controls between 4 and 28 days after birth (P<.05). By 28 days of age, the kidney weight per body weight ratio decreased in the small litter group (P<.05). Circulating leptin levels increased in the small litter rats (P<.05). Overnutrition had no effect on renal cell proliferation, apoptosis, macrophages and glomerulosclerosis. In the immunoblots and immunohistochemistry, renin and angiotensin II type (AT) 2 receptor expression increased in the overfed rats (P<.05). By contrast, the plasminogen activator inhibitor (PAI)-1 and matrix metalloproteinase (MMP)-9 expression decreased in the overnutrition group (P<.05). The AT 1 receptor, tissue inhibitor of MMP-1, monocyte chemoattractant protein-1, tumor necrosis factor-α, osteopontin and adiponectin expression was not changed. Our data showed that postnatal early overfeeding led to hyperleptinemia, juvenile obesity and the acquired reset of renal maturation. Up-regulation of renin and AT2 and down-regulation of PAI-1 and MMP-9 might contribute to abnormal programming of renal growth in rats exposed to postnatal early overnutrition.  相似文献   

4.
Exhaustive and chronic physical exercise leads to peripheral inflammation, which is one of the molecular mechanisms responsible for the impairment of the insulin signaling pathway in the heart. Recently, 3 different running overtraining models performed downhill (OTR/down), uphill (OTR/up), and without inclination (OTR) increased the serum levels of proinflammatory cytokines. This proinflammatory status induced insulin signaling impairment in the skeletal muscle; however, the response of this signaling pathway in the cardiac muscle of overtrained mice was still unknown. Thus, we investigated the effects of OTR/down, OTR/up, and OTR protocols on the protein levels of phosphorylation of insulin receptor β (pIRβ) (Tyr), phosphorylation of protein kinase B (pAkt) (Ser473), plasma membrane glucose transporter-1 (GLUT1) and GLUT4, phosphorylation of insulin receptor substrate-1 (pIRS-1) (Ser307), phosphorylation of IκB kinase α/β) (pIKKα/β (Ser180/181), phosphorylation of p38 mitogen-activated protein kinase (p-p38MAPK) (Thr180/Tyr182), phosphorylation of stress-activated protein kinases-Jun amino-terminal kinases (pSAPK-JNK) (Thr183/Tyr185), and glycogen content in mice hearts. The rodents were divided into naïve (N, sedentary mice), control (CT, sedentary mice submitted to performance evaluations), trained (TR, performed the training protocol), OTR/down, OTR/up, and OTR groups. After the grip force test, the cardiac muscles (ie, left ventricle) were removed and used for immunoblotting and histology. Although the OTR/up and OTR groups exhibited higher cardiac levels of pIRβ (Tyr), only the OTR group exhibited higher cardiac levels of pAkt (Ser473) and plasma membrane GLUT4. On the contrary, the OTR/down group exhibited higher cardiac levels of pIRS-1 (Ser307). The OTR model enhanced the cardiac insulin signaling pathway. All overtraining models increased the left ventricle glycogen content, with this probably acting as a compensatory organ in response to skeletal muscle insulin signaling impairment.  相似文献   

5.
Nutritional transition has contributed to growing obesity, mainly by changing eating habits of the population. The mechanisms by which diet-induced obesity leads to cardiac injury are not completely understood, but it is known that obesity is associated to impaired cardiac function and energy metabolism, increasing morbidity and mortality. Therefore, our study aimed to investigate the mechanisms underlying cardiac metabolism impairment related to Western diet-induced obesity. After weaning, male Swiss mice were fed a Western diet for 16 weeks in order to induce obesity. After this period, the content of proteins involved in heart energy metabolism GLUT1, cytosolic lysate and plasma membrane GLUT4, AMPK, pAMPK, IRβ, IRS-1, PGC-1α, CPT1 and UCP2 was evaluated. Also, the oxidative phosphorylation of myocardial fibers was measured by high-resolution respirometry. Mice in the Western diet group (WG) presented altered biometric parameters compared to those in control group, including higher body weight, increased myocardial lipid deposition and glucose intolerance, which demonstrate the obesogenic role of Western diet. WG presented increased CPT1 and UCP2 contents and decreased IRS-1, plasma membrane GLUT4 and PGC-1α contents. In addition, WG presented cardiac mitochondrial dysfunction and reduced biogenesis, demonstrating a lower capacity of carbohydrates and fatty acid oxidation and also decreased coupling between oxidative phosphorylation and adenosine triphosphate synthesis. Cardiac metabolism impairment related to Western diet-induced obesity is probably due to damaged myocardial oxidative capacity, reduced mitochondrial biogenesis and mitochondria uncoupling, which compromise the bioenergetic metabolism of heart.  相似文献   

6.
Bone marrow cells (BMCs) are the main type of cells used for transplantation therapies. Obesity, a major world health problem, has been demonstrated to affect various tissues, including bone marrow. This could compromise the success of such therapies. One of the main mechanisms underlying the pathogenesis of obesity is mitochondrial dysfunction, and recent data have suggested an important role for mitochondrial metabolism in the regulation of stem cell proliferation and differentiation. Since the potential use of BMCs for clinical therapies depends on their viability and capacity to proliferate and/or differentiate properly, the analysis of mitochondrial function and cell viability could be important approaches for evaluating BMC quality in the context of obesity. We therefore compared BMCs from a control group (CG) and an obese group (OG) of mice and evaluated their mitochondrial function, proliferation capacity, apoptosis, and levels of proteins involved in energy metabolism. BMCs from OG had increased apoptosis and decreased proliferation rates compared with CG. Mitochondrial respiratory capacity, biogenesis, and the coupling between oxidative phosphorylation and ATP synthesis were significantly decreased in OG compared with CG, in correlation with increased levels of uncoupling protein 2 and reduced peroxisome proliferator-activated receptor-coactivator 1α content. OG also had decreased amounts of the glucose transporter GLUT-1 and insulin receptor (IRβ). Thus, Western-diet-induced obesity leads to mitochondrial dysfunction and reduced proliferative capacity in BMCs, changes that, in turn, might compromise the success of therapies utilizing these cells.  相似文献   

7.
Ghrelin is a hormone synthesized by the stomach that acts in different tissues via a specific receptor (GHS-R1a), including hypothalamus and adipose tissue. For instance, recent reports have shown that ghrelin has a direct action on hypothalamic regulation of food intake mainly inducing an orexigenic effect. On the other hand, ghrelin also modulates energy stores and expenditure in the adipocytes. This dual action has suggested that this hormone may act as a link between the central nervous system and peripheral mechanisms. Furthermore, concerning nutritional disorders, it has been suggested that obesity may be considered an impairment of the above cited link. Therefore, considering that neonatal overfeeding induces obesity in adulthood by unknown mechanisms, in this study we examined the effects of early life overnutrition on the development of obesity and in particular on adipose tissue ghrelin signaling in young mice. Our data demonstrated that overnutrition during early life induces a significant increase in body weight of young mice, starting at 10 days, and this increase in weight persisted until adulthood (90 days of age). In these animals, blood glucose, liver weight and visceral fat weight were found higher at 21 days when compared to the control group. Acylated ghrelin circulating levels were found lower in the young obese pups. In addition, in white adipose tissue ghrelin receptor (GHS-R1a) expression increased and was associated to positive modulation of content and phosphorylation of proteins involved in cell energy store and use as AKT, PI3K, AMPK, GLUT-4, and CPT1. However, PPARγ content decreased in obese group. Basically, we showed that adipose tissue metabolism is altered in early life acquired obesity and probably due to such modification a new pattern of ghrelin signaling pathway takes place.  相似文献   

8.
Insulin has been described as a potential mediator of intrinsic responses to the nutritional state in the heart due to its effects on cardiac metabolism, mainly on glucose transport. It has been demonstrated that leptin can act through some components of the insulin-signaling cascade. We investigated the association between overfeeding during lactation and alterations of insulin and leptin signaling in the heart. In summary, we analyzed a feasible cross-talk between insulin and leptin through the study of some key proteins of their cascades in the heart. In order to study the effect of overfeeding on these cascades, Wistar rats were overfed through litter size reduction to only three pups. At 10 and 21 days of life, key proteins such as insulin receptor, leptin receptor, PI3-kinase, JAK2, STAT3, and GLUT4 were measured by Western blotting. Furthermore, the pups' weight and the plasma levels of insulin, leptin and glucose were determined. Overfed animals were overweight, had high insulin and leptin plasma levels, and displayed an activation of insulin and leptin cascade, leading to an increased translocation of GLUT4. We suggest that overfeeding during lactation probably alters cardiac metabolism, through the activation of a modulated cross-talk between leptin and insulin cascades.  相似文献   

9.
Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway.  相似文献   

10.
11.
In contrast to the masses of data on obesity, few data are available concerning the cardiometabolic and oxidative consequences of moderate overweight. The model of postnatal overfeeding (OF) induces an increase in body weight at weaning that remains during adult life.Litters of Wistar rats were either maintained at 12 pups (normal-fed group, NF), or reduced to 3 pups at birth in order to induce OF. At 6 months of age, metabolic parameters, circulating oxidative stress and aortic and coronary vasoreactivity were assessed. Cardiac susceptibility to ischemia-reperfusion injury was also evaluated ex vivo as were markers of cardiac remodeling. OF led to an increase in body weight at weaning (+50%); the increase in body weight persisted throughout adult life, but was less marked (+10%). Significant increases in plasma levels of fasting glucose, insulin and leptin were found in OF rats. An increase in both plasma hydroperoxides and cardiac superoxide dismutase activity and a decrease in plasma ascorbate were found in OF rats. Vasoreactivity was not modified, but ex vivo, after 30 min of ischemia, isolated hearts from OF rats showed lower recovery of coronary flow along with a greater release of LDH. Studies on heart tissues showed an increase in collagen content and increased expression and activity of MMP-2.Our findings show that moderate overweight in adult rats, induced by postnatal overfeeding, leads to both metabolic and oxidative disturbances as well as a higher susceptibility to cardiac injury after ischemia ex vivo, which may be explained, at least in part, by ventricular remodeling.  相似文献   

12.

Background

Postnatal overfeeding (OF) in rodents induces a permanent moderate increase in body weight in adulthood. However, the repercussions of postnatal OF on cardiac gene expression, cardiac metabolism and nitro-oxidative stress are less well known.

Methodology/Principal Findings

Immediately after birth, litters of C57BL/6 mice were either maintained at 10 (normal-fed group, NF), or reduced to 3 in order to induce OF. At weaning, mice of both groups received a standard diet. The cardiac gene expression profile was determined at weaning and cardiac metabolism and oxidative stress were assessed at 7 months. The cardiac expression of several genes, including members of the extracellular matrix and apelin pathway, was modified in juvenile OF mice. In adult mice, OF led to an increase in body weight (+30%) and to significant increases in plasma cholesterol, insulin and leptin levels. Myocardial oxidative stress, SOD and catalase activity and mRNA expression were increased in OF mice. In vivo, diastolic and systolic blood pressures were significantly higher and LV shortening and ejection fraction were decreased in OF mice. Ex vivo, after 30 min of ischemia, hearts isolated from OF mice showed lower functional recovery and larger infarct size (31% vs. 54%, p<0.05). Increases in collagen deposition and expression/activity of matrix-metalloproteinase-2 were observed in adult OF mouse hearts. Moreover, an increase in the expression of SOCS-3 and a decrease in STAT-3 phosphorylation were observed in ventricular tissues from OF mice.

Conclusions/Significance

Our study emphasizes that over-nutrition during the immediate postnatal period in mice leads to early changes in cardiac gene expression, which may permanently modify the heart’s structural organization and metabolism and could contribute to a greater susceptibility to myocardial ischemia-reperfusion injury.  相似文献   

13.
Ad libitum high-fat diet (HFD) induces obesity and skeletal muscle metabolic dysfunction. Liver kinase B1 (LKB1) regulates skeletal muscle metabolism by controlling the AMP-activated protein kinase family, but its importance in regulating muscle gene expression and glucose tolerance in obese mice has not been established. The purpose of this study was to determine how the lack of LKB1 in skeletal muscle (KO) affects gene expression and glucose tolerance in HFD-fed, obese mice.KO and littermate control wild-type (WT) mice were fed a standard diet or HFD for 14 weeks. RNA sequencing, and subsequent analysis were performed to assess mitochondrial content and respiration, inflammatory status, glucose and insulin tolerance, and muscle anabolic signaling.KO did not affect body weight gain on HFD, but heavily impacted mitochondria-, oxidative stress-, and inflammation-related gene expression. Accordingly, mitochondrial protein content and respiration were suppressed while inflammatory signaling and markers of oxidative stress were elevated in obese KO muscles. KO did not affect glucose or insulin tolerance. However, fasting serum insulin and skeletal muscle insulin signaling were higher in the KO mice. Furthermore, decreased muscle fiber size in skmLKB1-KO mice was associated with increased general protein ubiquitination and increased expression of several ubiquitin ligases, but not muscle ring finger 1 or atrogin-1. Taken together, these data suggest that the lack of LKB1 in skeletal muscle does not exacerbate obesity or insulin resistance in mice on a HFD, despite impaired mitochondrial content and function and elevated inflammatory signaling and oxidative stress.  相似文献   

14.
Exposure to overnutrition in critical or sensitive developmental periods may increase the risk of developing obesity and metabolic syndrome in adults. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome, but the relationship among postnatal nutrition, lipid metabolism, and NAFLD progression during development remains poorly understood. Here we investigated in a rat model whether postnatal overfeeding increases susceptibility to NAFLD in response to a high-fat diet. Litters from Sprague-Dawley dams were culled to three (small litters) or ten (normal litters) pups and then weaned onto a standard or high-fat diet at postnatal day 21 to generate normal-litter, small-litter, normal-litter/high-fat, and small-litter/high-fat groups. At age 16 weeks, the small-litter and both high-fat groups showed obesity, dyslipidemia, and insulin resistance. Hepatic disorders appeared earlier in the small-litter/high-fat rats with greater liver mass gain and higher hepatic triglycerides and steatosis score versus normal-litter/high-fat rats. Hepatic acetyl-CoA carboxylase activity and mRNA expression were increased in small-litter rats and aggravated in small-litter/high-fat rats but not in normal-litter/high-fat rats. The high expression in small-litter/high-fat rats coincided with high sterol regulatory element-binding protein-1c mRNA and protein expression. However, mRNA expression of enzymes involved in hepatic fatty acid oxidation (carnitine palmitoyltransferase 1) and output (microsomal triglyceride transfer protein) was decreased under a high-fat diet regardless of litter size. In conclusion, overfeeding related to small-litter rearing during lactation contributes to the NAFLD phenotype when combined with a high-fat diet, possibly through up-regulated hepatic lipogenesis.  相似文献   

15.
The receptors for IGF-I (IGF-IR) and insulin (IR) have been implicated in physiological cardiac growth, but it is unknown whether IGF-IR or IR signaling are critically required. We generated mice with cardiomyocyte-specific knockout of IGF-IR (CIGF1RKO) and compared them with cardiomyocyte-specific insulin receptor knockout (CIRKO) mice in response to 5 wk exercise swim training. Cardiac development was normal in CIGF1RKO mice, but the hypertrophic response to exercise was prevented. In contrast, despite reduced baseline heart size, the hypertrophic response of CIRKO hearts to exercise was preserved. Exercise increased IGF-IR content in control and CIRKO hearts. Akt phosphorylation increased in exercise-trained control and CIRKO hearts and, surprisingly, in CIGF1RKO hearts as well. In exercise-trained control and CIRKO mice, expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and glycogen content were both increased but were unchanged in trained CIGF1RKO mice. Activation of AMP-activated protein kinase (AMPK) and its downstream target eukaryotic elongation factor-2 was increased in exercise-trained CIGF1RKO but not in CIRKO or control hearts. In cultured neonatal rat cardiomyocytes, activation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) prevented IGF-I/insulin-induced cardiomyocyte hypertrophy. These studies identify an essential role for IGF-IR in mediating physiological cardiomyocyte hypertrophy. IGF-IR deficiency promotes energetic stress in response to exercise, thereby activating AMPK, which leads to phosphorylation of eukaryotic elongation factor-2. These signaling events antagonize Akt signaling, which although necessary for mediating physiological cardiac hypertrophy, is insufficient to promote cardiac hypertrophy in the absence of myocardial IGF-I signaling.  相似文献   

16.
Overfeeding and rapid weight gain during early life are risk factors for the development of obesity in adulthood. This metabolic malprogramming may be mediated by endocrine disturbances during critical periods of development. Cholecystokinin (CCK) acts on the central nervous system by elevating thermogenesis and the activity of anorectic neurons, modulating overall energy balance. Therefore, we tested the hypothesis that postnatal overfeeding impaired CCK effects. Pups were raised in either a litter of three (neonatal overnutrition/small litter group) or 12 (controls/normal litter group) pups per dam to study the effects of postnatal overfeeding on the central and peripheral CCK systems in adulthood. Rats raised in small litters became overweight during lactation and remained overweight as adults, with increased adiposity and plasma levels of lipids, glucose, insulin, and leptin. Neonatally over-nourished rats showed attenuation of gastric emptying and anorexigenic response to CCK, suggesting that offspring from the SL group may present CCK resistance as adult male rats. Consistent with this idea, overweight rats displayed impaired central response in c-Fos immunoreactivity on the nucleus tractus solitarius, area postrema, paraventricular nucleus, central amygdala, arcuate nucleus, and dorsomedial hypothalamus in response to peripheral CCK at adulthood. The small litter group of adult male rats also exhibited reduced norepinephrine- and CCK-stimulated thermogenesis. Unresponsiveness to the effects of CCK may contribute to overweight and metabolic dysfunctions observed in postnatally over-nourished adult rats. Thus, the involvement of an impaired CCK system, among other neurohormonal failures, may contribute to the development of obesity.  相似文献   

17.
Stearoyl-CoA desaturase 1 (SCD1) deficiency protects mice from diet-induced obesity and insulin resistance. To understand the tissue-specific role of SCD1 in energy homeostasis, we have generated mice with an adipose-specific knockout of Scd1 (AKO), and report here that SCD1 deficiency increases GLUT1 expression in adipose tissue of AKO mice, but not global SCD1 knockout (GKO) mice. In 3T3-L1 adipocytes treated with an SCD inhibitor, basal glucose uptake and the cellular expression of GLUT1 were significantly increased while GLUT4 expression remained unchanged. Consistently, adipose-specific SCD1 knockout (AKO) mice had significantly elevated GLUT1 expression, but not GLUT4, in white adipose tissue compared to Lox counterparts. Concurrently, adiponectin expression was significantly diminished, whereas TNF-α expression was elevated. In contrast, in adipose tissue of GKO mice, GLUT4 and adiponectin expression were significantly elevated with lowered TNF-α expression and little change in GLUT1 expression, suggesting a differential responsiveness of adipose tissue to global- or adipose-specific SCD1 deletion. Taken together, these results indicate that adipose-specific deletion of SCD1 induces GLUT1 up-regulation in adipose tissue, associated with decreased adiponectin and increased TNF-α production, and suggest that GLUT1 may play a critical role in controlling glucose homeostasis of adipose tissue in adipose-specific SCD1-deficient conditions.  相似文献   

18.
Fatty acid metabolism is enhanced in type 2 diabetic hearts   总被引:10,自引:0,他引:10  
The metabolic phenotype of hearts has been investigated using rodent models of type 2 diabetes which exhibit obesity and insulin resistance: db/db and ob/ob mice, and Zucker fatty and ZDF rats. In general, cardiac fatty acid (FA) utilization is enhanced in type 2 diabetic hearts, with increased rates of FA oxidation (db/db, ob/ob and ZDF models) and increased FA esterification into cellular triacylglycerols (db/db hearts). Hearts from db/db and ob/ob mice and ZDF rat hearts all have elevated levels of myocardial triacylglycerols, consistent with enhanced FA utilization. A number of mechanisms may be responsible for enhanced FA utilization in type 2 diabetic hearts: (i) increased FA uptake into cardiac myocytes and into mitochondria; (ii) altered mitochondrial function, with up-regulation of uncoupling proteins; and (iii) stimulation of peroxisome proliferator-activated receptor-alpha. Enhanced cardiac FA utilization in rodent type 2 diabetic models is associated with reduced cardiac contractile function, perhaps as a consequence of lipotoxicity and/or reduced cardiac efficiency. Similar results have been obtained with human type 2 diabetic hearts, suggesting that pharmacological interventions that can reduce cardiac FA utilization may have beneficial effects on contractile function.  相似文献   

19.
Mitochondrial dysfunction plays an important role in obesity‐induced cardiac impairment. SIRT3 is a mitochondrial protein associated with increased human life span and metabolism. This study investigated the functional role of SIRT3 in obesity‐induced cardiac dysfunction. Wild‐type (WT) and SIRT3 knockout (KO) mice were fed a normal diet (ND) or high‐fat diet (HFD) for 16 weeks. Body weight, fasting glucose levels, reactive oxygen species (ROS) levels, myocardial capillary density, cardiac function and expression of hypoxia‐inducible factor (HIF)‐1α/‐2α were assessed. HFD resulted in a significant reduction in SIRT3 expression in the heart. Both HFD and SIRT3 KO mice showed increased ROS formation, impaired HIF signalling and reduced capillary density in the heart. HFD induced cardiac hypertrophy and impaired cardiac function. SIRT3 KO mice fed HFD showed greater ROS production and a further reduction in cardiac function compared to SIRT3 KO mice on ND. Thus, the adverse effects of HFD on cardiac function were not attributable to SIRT3 loss alone. However, HFD did not further reduce capillary density in SIRT3 KO hearts, implicating SIRT3 loss in HFD‐induced capillary rarefaction. Our study demonstrates the importance of SIRT3 in preserving heart function and capillary density in the setting of obesity. Thus, SIRT3 may be a potential therapeutic target for obesity‐induced heart failure.  相似文献   

20.
Fucoxanthin (Fx) isolated from Undaria pinnatifida suppresses the development of hyperglycemia and hyperinsulinemia of diabetic/obese KK-A(y) mice after 2 weeks of feeding 0.2% Fx-containing diet. In the soleus muscle of KK-A(y) mice that were fed Fx, glucose transporter 4 (GLUT4) translocation to plasma membranes from cytosol was promoted. On the other hand, Fx increased GLUT4 expression levels in the extensor digitorum longus (EDL) muscle, although GLUT4 translocation tended to increase. The expression levels of insulin receptor (IR) mRNA and phosphorylation of Akt, which are in upstream of the insulin signaling pathway regulating GLUT4 translocation, were also enhanced in the soleus and EDL muscles of the mice fed Fx. Furthermore, Fx induced peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α), which has been reported to increase GLUT4 expression, in both soleus and EDL muscles. These results suggest that in diabetic/obese KK-A(y) mice, Fx improves hyperglycemia by activating the insulin signaling pathway, including GLUT4 translocation, and inducing GLUT4 expression in the soleus and EDL muscles, respectively, of diabetic/obese KK-A(y) mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号