首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sperm–oocyte interaction during fertilization is multiphasic, with multicomponent events, taking place between egg's glycoproteins and sperm surface receptors. Protein–carbohydrate complementarities in gamete recognition have observed in cases throughout the whole evolutionary scale. Sperm-associated α-l-fucosidases have been identified in various organisms. Their wide distribution and known properties reflect the hypothesis that fucose and α-l-fucosidases have fundamental function(s) during gamete interactions. An α-l-fucosidase has been detected as transmembrane protein on the surface of spermatozoa of eleven species across the genus Drosophila. Immunofluorescence labeling showed that the protein is localized in the sperm plasma membrane over the acrosome and the tail, in Drosophila melanogaster. In the present study, efforts were made to analyze with solid phase assays the oligosaccharide recognition ability of fruit fly sperm α-l-fucosidase with defined carbohydrate chains that can functionally mimic egg glycoconjugates. Our results showed that α-l-fucosidase bound to fucose residue and in particular it prefers N-glycans carrying core α1,6-linked fucose and core α1,3-linked fucose in N-glycans carrying only a terminal mannose residue. The ability of sperm α-l-fucosidase to bind to the micropylar chorion and to the vitelline envelope was examined in in vitro assays in presence of α-l-fucosidase, either alone or in combination with molecules containing fucose residues. No binding was detected when α-l-fucosidase was pre-incubated with fucoidan, a polymer of α-l-fucose and the monosaccharide fucose. Furthermore, egg labeling with anti-horseradish peroxidase, that recognized only core α1,3-linked fucose, correlates with α-l-fucosidase micropylar binding. Collectively, these data support the hypothesis of the potential role of this glycosidase in sperm–egg interactions in Drosophila.  相似文献   

2.
Studying genetic disorders in model organisms can provide insights into heritable human diseases. The Drosophila neurally altered carbohydrate (nac) mutant is deficient for neural expression of the HRP epitope, which consists of N-glycans with core α1,3-linked fucose residues. Here, we show that a conserved serine residue in the Golgi GDP-fucose transporter (GFR) is substituted by leucine in nac(1) flies, which abolishes GDP-fucose transport in vivo and in vitro. This loss of function is due to a biochemical defect, not to destabilization or mistargeting of the mutant GFR protein. Mass spectrometry and HPLC analysis showed that nac(1) mutants lack not only core α1,3-linked, but also core α1,6-linked fucose residues on their N-glycans. Thus, the nac(1) Gfr mutation produces a previously unrecognized general defect in N-glycan core fucosylation. Transgenic expression of a wild-type Gfr gene restored the HRP epitope in neural tissues, directly demonstrating that the Gfr mutation is solely responsible for the neural HRP epitope deficiency in the nac(1) mutant. These results validate the Drosophila nac(1) mutant as a model for the human congenital disorder of glycosylation, CDG-IIc (also known as LAD-II), which is also the result of a GFR deficiency.  相似文献   

3.
Lectins are carbohydrate binding proteins that are gaining attention as important tools for the identification of specific glycan markers expressed during different stages of the cancer. We earlier reported the purification of a mitogenic lectin from human pathogenic fungus Cephalosporium curvulum (CSL) that has complex sugar specificity when analysed by hapten inhibition assay. In the present study, we report the fine sugar specificity of CSL as determined by glycan array analysis. The results revealed that CSL has exquisite specificity towards core fucosylated N-glycans. Fucosylated trimannosyl core is the basic structure required for the binding of CSL. The presence of fucose in the side chain further enhances the avidity of CSL towards such glycans. The affinity of CSL is drastically reduced towards the non-core fucosylated glycans, in spite of their side chain fucosylation. CSL showed no binding to the tested O-glycans and monosaccharides. These observations suggest the unique specificity of CSL towards core fucosylated N-glycans, which was further validated by binding of CSL to human colon cancer epithelial and hepatocarcinoma cell lines namely HT29 and HepG2, respectively, that are known to express core fucosylated N-glycans, using AOL and LCA as positive controls. LCA and AOL are fucose specific lectins that are currently being used clinically for the diagnosis of hepatocellular carcinomas. Most of the gastrointestinal markers express core fucosylated N-glycans. The high affinity and exclusive specificity of CSL towards α1-6 linkage of core fucosylated glycans compared to other fucose specific lectins, makes it a promising molecule that needs to be further explored for its application in the diagnosis of gastrointestinal cancer.  相似文献   

4.
For many years, polyclonal antibodies raised against the plant glycoprotein horseradish peroxidase have been used to specifically stain the neural and male reproductive tissue of Drosophila melanogaster. This epitope is considered to be of carbohydrate origin, but no glycan structure from Drosophila has yet been isolated that could account for this cross-reactivity. Here we report that N-glycan core alpha1,3-linked fucose is, as judged by preabsorption experiments, indispensable for recognition of Drosophila embryonic nervous system by anti-horseradish peroxidase antibody. Further, we describe the identification by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry and high performance liquid chromatography of two Drosophila N-glycans that, as already detected in other insects, carry both alpha1,3- and alpha1,6-linked fucose residues on the proximal core GlcNAc. Moreover, we have isolated three cDNAs encoding alpha1,3-fucosyltransferase homologues from Drosophila. One of the cDNAs, when transformed into Pichia pastoris, was found to direct expression of core alpha1,3-fucosyltransferase activity. This recombinant enzyme preferred as substrate a biantennary core alpha1,6-fucosylated N-glycan carrying two non-reducing N-acetylglucosamine residues (GnGnF6; Km 11 microm) over the same structure lacking a core fucose residue (GnGn; Km 46 microm). The Drosophila core alpha1,3-fucosyltransferase enzyme was also shown to be able to fucosylate N-glycan structures of human transferrin in vitro, this modification correlating with the acquisition of binding to anti-horseradish peroxidase antibody.  相似文献   

5.
The modification of α1,6-linked fucose residues attached to the proximal (reducing-terminal) core N-acetylglucosamine residue of N-glycans by β1,4-linked galactose ("GalFuc" epitope) is a feature of a number of invertebrate species including the model nematode Caenorhabditis elegans. A pre-requisite for both core α1,6-fucosylation and β1,4-galactosylation is the presence of a nonreducing terminal N-acetylglucosamine; however, this residue is normally absent from the final glycan structure in invertebrates due to the action of specific hexosaminidases. Previously, we have identified two hexosaminidases (HEX-2 and HEX-3) in C. elegans, which process N-glycans. In the present study, we have prepared a hex-2;hex-3 double mutant, which possesses a radically altered N-glycomic profile. Whereas in the double mutant core α1,3-fucosylation of the proximal N-acetylglucosamine was abolished, the degree of galactosylation of core α1,6-fucose increased, and a novel Galα1,2Fucα1,3 moiety attached to the distal core N-acetylglucosamine residue was detected. Both galactosylated fucose moieties were also found in two parasitic nematodes, Ascaris suum and Oesophagostomum dentatum. As core modifications of N-glycans are known targets for fungal nematotoxic lectins, the sensitivity of the C. elegans double hexosaminidase mutant was assessed. Although this mutant displayed hypersensitivity to the GalFuc-binding lectin CGL2 and the N-acetylglucosamine-binding lectin XCL, the mutant was resistant to CCL2, which binds core α1,3-fucose. Thus, the use of C. elegans mutants aids the identification of novel N-glycan modifications and the definition of in vivo specificities of nematotoxic lectins with potential as anthelmintic agents.  相似文献   

6.
Plants synthesize N-glycans containing the antigenic sugars α(1,3)-fucose and β(1,2)-xylose. Therefore it is important to monitor these N-glycans in monoclonal antibodies produced in plants (plantibodies). We evaluated several techniques to characterize the N-glycosylation of a plantibody produced in tobacco plants with and without the KDEL tetrapeptide endoplasmic reticulum retention signal which should inhibit or drastically reduce the addition of α(1,3)-fucose and β(1,2)-xylose. Ammonium hydroxide/carbonate-based chemical deglycosylation and PNGase A enzymatic release were investigated giving similar 2-aminobenzamide-labeled N-glycan HPLC profiles. The chemical release does not generate peptides which is convenient for MS analysis of unlabeled pool but its main drawback is that it induces degradation of α1,3-fucosylated N-glycan reducing terminal sugar. Three analytical methods for N-glycan characterization were evaluated: (i) MALDI-MS of glycopeptides from tryptic digestion; (ii) negative-ion ESI-MS/MS of released N-glycans; (iii) normal-phase HPLC of fluorescently labeled glycans in combination with exoglycosidase sequencing. The MS methods identified the major glycans, but the HPLC method was best for identification and relative quantitation of N-glycans. Negative-mode ESI-MS/MS permitted also the correct identification of the linkage position of the fucose residue linked to the inner core N-acteylglucosamine (GlcNAc) in complex N-glycans.  相似文献   

7.
In insect cells fucose can be either α1,6- or α1,3-linked to the asparagine-bound GlcNAc residue of N-glycans. Difucosylated glycans have also been found. Kinetic studies and acceptor competition experiments demonstrate that two different enzymes are responsible for this α1,6- and α1,3-linkage of fucose. Using dansylated acceptor substrates a strict order of these enzymes can be established for the formation of difucosylated structures. First, the α1,6-fucosyltransferase catalyses the transfer of fucose into α1,6-linkage to the non-fucosylated acceptor and then the α1,3-fucosyltransferase completes the difucosylation. © 1998 Rapid Science Ltd  相似文献   

8.
BackgroundThe porcine nodule worm Oesophagostomum dentatum is a strongylid class V nematode rather closely related to the model organism Caenorhabditis elegans. However, in contrast to the non-parasitic C. elegans, the parasitic O. dentatum is an obligate sexual organism, which makes both a gender and developmental glycomic comparison possible.MethodsDifferent enzymatic and chemical methods were used to release N-glycans from male and female O. dentatum as well as from L3 and L4 larvae. Glycans were analysed by MALDI-TOF MS after either 2D-HPLC (normal then reversed phase) or fused core RP-HPLC.ResultsWhereas the L3 N-glycome was simpler and more dominated by phosphorylcholine-modified structures, the male and female worms express a wide range of core fucosylated N-glycans with up to three fucose residues. Seemingly, simple methylated paucimannosidic structures can be considered ‘male’, while methylation of fucosylated glycans was more pronounced in females. On the other hand, while many of the fucosylated paucimannosidic glycans are identical with examples from other nematode species, but simpler than the tetrafucosylated glycans of C. elegans, there is a wide range of phosphorylcholine-modified glycans with extended HexNAc2–4PC2–4 motifs not observed in our previous studies on other nematodes.ConclusionThe interspecies tendency of class V nematodes to share most, but not all, N-glycans applies also to O. dentatum; furthermore, we establish, for the first time in a parasitic nematode, that glycomes vary upon development and sexual differentiation.General significanceUnusual methylated, core fucosylated and phosphorylcholine-containing N-glycans vary between stages and genders in a parasitic nematode.  相似文献   

9.
Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins.  相似文献   

10.
Glycosylation is a common protein modification that is of interest in current cancer research because altered carbohydrate moieties are often found during cancer progress. A search for biomarkers in human lung cancer serum samples using glycoproteomic approaches identified fucosylated haptoglobin (Hp) significantly increased in serum of each subtype of lung cancer compared to normal donors. In addition, MS provided evidence of an increase of Hp fucosylation; the glycan structure was determined to be an α 2,6-linked tri-sialylated triantennary glycan containing α1,3-linked fucose attached to the four-linked position of the three-arm mannose of N-linked core pentasaccharide. These preliminary findings suggest that the specific glycoform of Hp may be useful as a marker to monitor lung cancer progression.  相似文献   

11.
The plant glycosyltransferases, beta1,2-xylosyltransferase (XylT) and core alpha1,3-fucosyltransferase (FucT), are responsible for the transfer of beta1,2-linked xylose and core alpha1,3-linked fucose residues to glycoprotein N-glycans. These glycan epitopes are not present in humans and thus may cause immunological responses, which represent a limitation for the therapeutic use of recombinant mammalian glycoproteins produced in transgenic plants. Here we report the genetic modification of the N-glycosylation pathway in Arabidopsis thaliana plants. Knockout plants were generated with complete deficiency of XylT and FucT. These plants lack antigenic protein-bound N-glycans and instead synthesise predominantly structures with two terminal betaN-acetylglucosamine residues (GlcNAc(2)Man(3)GlcNAc(2)).  相似文献   

12.
BackgroundInsects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability.MethodsUsing an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line.ResultsWe detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed.ConclusionThe lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species.SignificanceThe occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production.  相似文献   

13.
Cross-reactive carbohydrate determinants of plants are essentially a mixture of N-glycans containing beta1,2-xylose and core alpha1,3-fucose, the latter also found in insect glycoproteins. To determine the relative contributions of these two sugar residues to antibody binding, we prepared an array of glycomodified forms of human apo-transferrin. Using core-alpha1, 3-fucosyltransferase (EC 2.4.1.214) and beta1,2-xylosyltransferase (EC 2.4.2.38) recombinantly expressed in Pichia pastoris and suitable glycosidases, glycoforms containing either only fucose (MMF), only xylose (MMX), both (MMXF), or neither (MM) linked to the common pentasaccharide core were generated. Additional glycoforms were obtained by enzymatic removal of the alpha1,3-linked mannosyl residue. These transferrin glycoforms served to define the binding specificity of antibodies in western blot, ELISA, and inhibition ELISA. Rabbit anti-horseradish peroxidase serum bound to both the fucosylated (MMF) and the xylosylated (MMX) glycoforms. Inhibition studies indicated two independent highly specific populations reacting with either of the two epitopes. In contrast, the monoclonal antibody YZ1/2.23 appears to recognize a larger structure including both the fucosyl and the xylosyl residue. The mannose-deficient glycoform was a poorer inhibitor for both antibodies. Terminal GlcNAc residues prevented antibody binding. Rabbit anti-bee venom serum reacted with fucosylated forms (MMF and MMXF) only. Experiments with sera from allergic patients suggest that glycomodified human transferrin, especially the MMXF glycoform, is a suitable reagent for the detection of antibodies against cross-reactive carbohydrate determinants. Within the panel studied, several sera contained high levels of fucose-reactive IgE but only a few sera showed any binding to MMX-transferrin.  相似文献   

14.
Human IGFBP-3 contains three potential N-linked glycosylation sites. Published data concerning the type and saccharide composition of the N-glycans is scarce. The aim of this study was to characterise N-glycans covalently attached to IGFBP-3 from sera of healthy adults (men and women). In order to do that a panel of eight lectins covering broad saccharide specificity was used: agarose-immobilised SNA (Sambucus nigra agglutinin), Con A (lectin from Canavalia ensiformis), RCA I (Ricinus communis agglutinin I), PHA-E (Phaseolus vulgaris erythroagglutinin), PHA-L (P. vulgaris leukoagglutinin), succinylated WGA (wheat germ agglutinin), ECL (Erythrina cristagalli lectin) and UEA (Ulex europaeus agglutinin). IGFBP-3 interacted with SNA, Con A, RCA I, PHA-E and, to a much lesser extent, with PHA-L. These results indicate that human IGFBP-3 bears mostly biantennary complex type N-glycans with a very high content of α-2,6-linked Sia at their termini. Hybrid type and high-mannose type N-glycans are present, as well as a bisecting GlcNAc residue, which may be core fucosylated. N-glycosylation of IGFBP-3 follows the N-glycosylation pattern of major serum proteins. This study represents a ground for the future research of glycosylation pattern of IGFBP-3 from the circulation of men and women diagnosed with different illnesses.  相似文献   

15.
Aleuria aurantia lectin (AAL) is widely used to estimate the extent of α1,6-fucosylated oligosaccharides and to fractionate glycoproteins for the detection of specific biomarkers for developmental antigens. Our previous studies have shown that Aspergillus oryzae lectin (AOL) reflects the extent of α1,6-fucosylation more clearly than AAL. However, the subtle specificities of these lectins to fucose linked to oligosaccharides through the 2-, 3-, 4-, or 6-position remain unclear, because large amounts of oligosaccharides are required for the systematic comparative analysis using surface plasmon resonance. Here we show a direct comparison of the dissociation constants (Kd) of AOL and AAL using 113 pyridylaminated oligosaccharides with frontal affinity chromatography. As a result, AOL showed a similar specificity as AAL in terms of the high affinity for α1,6-fucosylated oligosaccharides, for smaller fucosylated oligosaccharides, and for oligosaccharides fucosylated at the reducing terminal core GlcNAc. On the other hand, AOL showed 2.9-6.2 times higher affinity constants (Ka) for α1,6-fucosylated oligosaccharides than AAL and only AAL additionally recognized oligosaccharides which were α1,3-fucosylated at the reducing terminal GlcNAc. These results explain why AOL reflects the extent of α1,6-fucosylation on glycoproteins more clearly than AAL. This systematic comparative analysis made from a quantitative viewpoint enabled a clear physical interpretation of these fucose-specific lectins with multivalent fucose-binding sites.  相似文献   

16.
L-fucose is a common constituent of Asn-linked glycans in vertebrates, invertebrates, and plants, but in fungal glycoproteins, fucose has not been found so far. However, by mass spectrometry we detected N-glycans and O-glycans containing one to six deoxyhexose residues in fruit bodies of several basidiomycetes. The N-glycans of chanterelles (Cantharellus cibarius) contained a deoxyhexose chromatographically identical to fucose and sensitive to α-L-fucosidase. Analysis of individual glycan species by tandem MS, glycosidase digestion, and finally (1)H NMR revealed the presence of L-fucose in α1,6-linkage to an α1,6-mannose of oligomannosidic N-glycans. The substitution by α1,6-mannose of α1,2-mannosyl residues of the canonical precursor structure was yet another hitherto unknown modification. No indication for the occurrence of yet other modifications, e.g. bisecting N-acetylglucosamine, was seen. Besides fucosylated N-glycans, short O-linked mannan chains substituted with fucose were present on chanterelle proteins. Although undiscovered so far, L-fucose appears to represent a prominent feature of protein-linked glycans in the fungal kingdom.  相似文献   

17.
BackgroundPrevious glycophylogenetic comparisons of dipteran and lepidopteran species revealed variations in the anionic and zwitterionic modifications of their N-glycans; therefore, we wished to explore whether species- and order-specific glycomic variations would extend to the hymenoptera, which include the honeybee Apis mellifera, an agriculturally- and allergologically-significant social species.MethodsIn this study, we employed an off-line liquid chromatography/mass spectrometry approach, in combination with enzymatic and chemical treatments, to analyse the N-glycans of male honeybee larvae and honeybee venom in order to facilitate definition of isomeric structures.ResultsThe neutral larval N-glycome was dominated by oligomannosidic and paucimannosidic structures, while the neutral venom N-glycome displayed more processed hybrid and complex forms with antennal N-acetylgalactosamine, galactose and fucose residues including Lewis-like epitopes; the anionic pools from both larvae and venom contained a wide variety of glucuronylated, sulphated and phosphoethanolamine-modified N-glycans with up to three antennae. In comparison to honeybee royal jelly, there were more fucosylated and fewer Man4/5-based hybrid glycans in the larvae and venom samples as well as contrasting antennal lengths.ConclusionsCombining the current data on venom and larvae with that we previously published on royal jelly, a total honeybee N-glycomic repertoire of some 150 compositions can be proposed in addition to the 20 previously identified on specific venom glycoproteins.SignificanceOur data are indicative of tissue-specific modification of the core and antennal regions of N-glycans in Apis mellifera and reinforce the concept that insects are capable of extensive processing to result in rather complex anionic oligosaccharide structures.  相似文献   

18.
Mammalian cells often contain an enzyme which transfers fucose onto the reducing terminal GlcNAc (GlcNAc-1) of N-glycans with an α1,6-linkage. In plants, on the other hand, the fucose is transferred to GlcNAc-1 with an α1,3-linkage. Insect cells can exhibit both enzymatic activities. Hitherto, the activity of these fucosyltransferases has been determined by the incorporation of radioactively labelled fucose into an acceptor glycopeptide. This assay, however, cannot discriminate these two activities. Here we report on the use of dansylated glycoasparagine for the specific determination of 1,3- and 1,6-fucosyltransferases. The two possible products and the substrate are separated on a reversed phase column and detected by fluorescence.  相似文献   

19.
Four biotinylated tri and tetrasaccharide fragments of plant and invertebrate N-glycans were synthesized using methyl tert-butyl phenyl (MBP) thioglycosides donors in order to evaluate their involvement in cross-allergies as cross-reactive carbohydrate determinants (CCDs). Various levels of reactivity to anti-bee and anti-HRP antibodies and with sera from allergic patients were observed when the conjugates were coated on streptavidin microplates. The results showed the potential utility of these xylosylated and fucosylated oligosaccharide fragments in determining CCD antibody epitopes.  相似文献   

20.
Antiserum raised against horseradish peroxidase (HRP) recognizes a neural specific carbohydrate antigen in Drosophila and other insects. The epitopic activity of the carbohydrate moiety of HRP recognized by anti-HRP antiserum was measured by a newly developed enzyme-linked immunosorbent assay, in which HRP glycopeptides conjugated with bovine serum albumin were coated onto the wells and then reacted with goat anti-HRP antiserum. HRP sugar moieties released by almond glycopeptidase A digestion of HRP pepsin digests were subjected to pyridylamination. Pyridylamino oligosaccharides were separated into seven fractions by reverse-phase high performance liquid chromatography. The major fraction, which comprised about 80% of the total sugars, reacted strongly with anti-HRP antiserum. The carbohydrate structure of this fraction was determined by sugar composition analysis and 600-MHz 1H NMR spectroscopy as follows: Man alpha 1----6(Man alpha 1----3)(Xyl beta 1----2)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----3)GlcNAc. Analyses of reactivity with anti-HRP antiserum of various oligosaccharide derivatives obtained from the major fraction by exoglycosidase digestion and partial acid hydrolysis indicated that alpha 1----6-linked mannose and alpha 1----3-linked fucose are predominantly involved in the epitopic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号