首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(7):855-862
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition, and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes, and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation, and mPTP opening.  相似文献   

2.
Intracellular Zn2+ toxicity is associated with mitochondrial dysfunction. Zn2+ depolarizes mitochondria in assays using isolated organelles as well as cultured cells. Some reports suggest that Zn2+-induced depolarization results from the opening of the mitochondrial permeability transition pore (mPTP). For a more detailed analysis of this relationship, we compared Zn2+-induced depolarization with the effects of Ca2+ in single isolated rat liver mitochondria monitored with the potentiometric probe rhodamine 123. Consistent with previous work, we found that relatively low levels of Ca2+ caused rapid, complete and irreversible loss of mitochondrial membrane potential, an effect that was diminished by classic inhibitors of mPT, including high Mg2+, ADP and cyclosporine A. Zn2+ also depolarized mitochondria, but only at relatively high concentrations. Furthermore Zn2+-induced depolarization was slower, partial and sometimes reversible, and was not affected by inhibitors of mPT. We also compared the effects of Ca2+ and Zn2+ in a calcein-retention assay. Consistent with the well-documented ability of Ca2+ to induce mPT, we found that it caused rapid and substantial loss of matrix calcein. In contrast, calcein remained in Zn2+-treated mitochondria. Considered together, our results suggest that Ca2+ and Zn2+ depolarize mitochondria by considerably different mechanisms, that opening of the mPTP is not a direct consequence of Zn2+-induced depolarization, and that Zn2+ is not a particularly potent mitochondrial inhibitor.  相似文献   

3.
ADP is not only a key substrate for ATP generation, but also a potent inhibitor of mitochondrial permeability transition pore (mPTP). In this study, we assessed how oxidative stress affects the potency of ADP as an mPTP inhibitor and whether its reduction of reactive oxygen species (ROS) production might be involved. We determined quantitatively the effects of ADP on mitochondrial Ca2+ retention capacity (CRC) until the induction of mPTP in normal and stressed isolated cardiac mitochondria. We used two models of chronic oxidative stress (old and diabetic mice) and two models of acute oxidative stress (ischemia reperfusion (IR) and tert-butyl hydroperoxide (t-BH)). In control mitochondria, the CRC was 344 ± 32 nmol/mg protein. 500 μmol/L ADP increased CRC to 774 ± 65 nmol/mg protein. This effect of ADP seemed to relate to its concentration as 50 μmol/L had a significantly smaller effect. Also, oligomycin, which inhibits the conversion of ADP to ATP by F0F1ATPase, significantly increased the effect of 50 μmol/L ADP. Chronic oxidative stress did not affect CRC or the effect of 500 μmol/L ADP. After IR or t-BH exposure, CRC was drastically reduced to 1 ± 0.2 and 32 ± 4 nmol/mg protein, respectively. Surprisingly, ADP increased the CRC to 447 ± 105 and 514 ± 103 nmol/mg protein in IR and t-BH, respectively. Thus, it increased CRC by the same amount as in control. In control mitochondria, ADP decreased both substrate and Ca2+-induced increase of ROS. However, in t-BH mitochondria the effect of ADP on ROS was relatively small. We conclude that ADP potently restores CRC capacity in severely stressed mitochondria. This effect is most likely not related to a reduction in ROS production. As the effect of ADP relates to its concentration, increased ADP as occurs in the pathophysiological situation may protect mitochondrial integrity and function.  相似文献   

4.
Long-chain 3-hydroxylated fatty acids (LCHFA) accumulate in long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. Affected patients usually present severe neonatal symptoms involving cardiac and hepatic functions, although long-term neurological abnormalities are also commonly observed. Since the underlying mechanisms of brain damage are practically unknown and have not been properly investigated, we studied the effects of LCHFA on important parameters of mitochondrial homeostasis in isolated mitochondria from cerebral cortex of developing rats. 3-Hydroxytetradecanoic acid (3 HTA) reduced mitochondrial membrane potential, NAD(P)H levels, Ca2 + retention capacity and ATP content, besides inducing swelling, cytochrome c release and H2O2 production in Ca2 +-loaded mitochondrial preparations. We also found that cyclosporine A plus ADP, as well as ruthenium red, a Ca2 + uptake blocker, prevented these effects, suggesting the involvement of the mitochondrial permeability transition pore (mPTP) and an important role for Ca2 +, respectively. 3-Hydroxydodecanoic and 3-hydroxypalmitic acids, that also accumulate in LCHAD and MTP deficiencies, similarly induced mitochondrial swelling and decreased ATP content, but to a variable degree pending on the size of their carbon chain. It is proposed that mPTP opening induced by LCHFA disrupts brain bioenergetics and may contribute at least partly to explain the neurologic dysfunction observed in patients affected by LCHAD and MTP deficiencies.  相似文献   

5.
The current view on apoptosis is given, with a special emphasis placed on apoptosis in yeasts. Induction of a non-specific permeability transition pore (mPTP) in mammalian and yeast mitochondria is described, particularly in mitochon-dria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, which are aerobes possessing the fully competent respiratory chain with all three points of energy conservation and well-structured mitochondria. They were examined for their ability to induce an elevated permeability transition of the inner mitochondrial membrane, being subjected to virtually all conditions known to induce the mPTP in animal mitochondria. Yeast mitochondria do not form Ca2+-dependent pores, neither the classical Ca2+/Pi-dependent, cyclosporin A-sensitive pore even under deenergization of mitochondria or depletion of the intramitochondrial nucleotide pools, nor a pore induced in mammalian mitochondria upon concerted action of moderate Ca2+ concentrations (in the presence of the Ca2+ ionophore ETH129) and saturated fatty acids. No pore formation was found in yeast mitochondria in the presence of elevated phosphate concentrations at acidic pH values. It is concluded that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.  相似文献   

6.
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation and mPTP opening.Key words: Bnip3, autophagy, cardiac myocytes, mitochondria, permeability transition pore, cyclophilin D  相似文献   

7.
The content and distribution of myelin basic protein (MBP) isoforms (17 and 21.5 kDa) as well as 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) were determined in mitochondrial fractions (myelin fraction, synaptic and non-synaptic mitochondria) obtained after separation of brain mitochondria by Percoll density gradient. All the fractions could accumulate calcium, maintain membrane potential, and initiate the opening of the permeability transition pore (mPTP) in response to calcium overloading. Native mitochondria and structural contacts between membranes of myelin and mitochondria were found in the myelin fraction associated with brain mitochondria. Using Western blot, it was shown that addition of myelin fraction associated with brain mitochondria to the suspension of liver mitochondria can lead to binding of CNPase and MBP, present in the fraction with liver mitochondria under the conditions of both closed and opened mPTP. However, induction of mPTP opening in liver mitochondria was prevented in the presence of myelin fraction associated with brain mitochondria (Ca2+ release rate was decreased 1.5-fold, calcium retention time was doubled, and swelling amplitude was 2.8-fold reduced). These results indicate possible protective properties of MBP and CNPase.  相似文献   

8.
In our previous studies phosphorylation of several membrane-bound proteins in brain and liver mitochondria were found to be regulated by Ca2+ as a second messenger. One of the proteins, the 46 kDa phosphoprotein was found to be highly phosphorylated when Ca2+-induced permeability transition pore (mPTP) was opened in rat brain mitochondria (RBM). In the present study the 46 kDa phosphoprotein was identified as 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) after purification by 2D diagonal electrophoresis following mass spectrometric analysis and Western blot probed with anti-CNP antibody. CNPase was discovered in immunoprecipitates of mitochondria, phosphorylated under both conditions (control and with opened mPTP). Status phosphorylation of CNPase was found to be higher in the inmmunoprecipiates of calcium-overloaded RBM. The phospohoserine and phosphotyrosine residues were detected in phosphorylated 46 kDa band (CNPase) as well as in CNPase immunoprecipitates indicating possible participation of tyrosine and serine protein kinases in phosphorylation of CNPase in mitochondria. The levels of phospo-Ser and phospho-Tyr were increased in RBM with mPTP opened. It was found that CNPase substrate, 2′,3′-cAMP (5 μM) and, a non-competitive CNPase inhibitor, atractyloside (5 μM), were able to increase the level of CNPase phosphorylation in calcium-overloaded mitochondria, while CsA (mPTP blocker) was able to strong suppress the phosphorylation of the enzyme. Collectively, our results provide evidence that Ca2+-stimulated and mPTP-associated CNPase phosphorylation might be an important stage of mPTP regulation in mitochondria, revealing a new function of CNPase outside of myelin structure.  相似文献   

9.
Oxidative stress caused by mitochondrial dysfunction during reperfusion is a key pathogenic mechanism in cerebral ischemia–reperfusion (IR) injury. Propofol (2,6-diisopropylphenol) has been proven to attenuate mitochondrial dysfunction and reperfusion injury. The current study reveals that propofol decreases oxidative stress injury by preventing succinate accumulation in focal cerebral IR injury. We evaluated whether propofol could attenuate ischemic accumulation of succinate in transient middle cerebral artery occlusion in vivo. By isolating mitochondria from cortical tissue, we also examined the in vitro effects of propofol on succinate dehydrogenase (SDH) activity and various mitochondrial bioenergetic parameters related to oxidative stress injury, such as the production of reactive oxidative species, membrane potential, Ca2+-induced mitochondrial swelling, and morphology via electron microscopy. Propofol significantly decreased the ischemic accumulation of succinate by inhibiting SDH activity and inhibited the oxidation of succinate in mitochondria. Propofol can decrease membrane potential in normal mitochondria but not in ischemic mitochondria. Propofol prevents Ca2+-induced mitochondrial swelling and ultrastructural changes to mitochondria. The protective effect of propofol appears to act, at least in part, by limiting oxidative stress injury by preventing the ischemic accumulation of succinate.  相似文献   

10.
Mitochondrial superoxide flashes reflect a quantal, bursting mode of reactive oxygen species (ROS) production that arises from stochastic, transient opening of the mitochondrial permeability transition pore (mPTP) in many types of cells and in living animals. However, the regulatory mechanisms and the exact nature of the flash-coupled mPTP remain poorly understood. Here we demonstrate a profound synergistic effect between mitochondrial Ca2+ uniport and elevated basal ROS production in triggering superoxide flashes in intact cells. Hyperosmotic stress potently augmented the flash activity while simultaneously elevating mitochondrial Ca2+ and ROS. Blocking mitochondrial Ca2+ transport by knockdown of MICU1 or MCU, newly identified components of the mitochondrial Ca2+ uniporter, or scavenging mitochondrial basal ROS markedly diminished the flash response. More importantly, whereas elevating Ca2+ or ROS production alone was inefficacious in triggering the flashes, concurrent physiological Ca2+ and ROS elevation served as the most powerful flash activator, increasing the flash incidence by an order of magnitude. Functionally, superoxide flashes in response to hyperosmotic stress participated in the activation of JNK and p38. Thus, physiological levels of mitochondrial Ca2+ and ROS synergistically regulate stochastic mPTP opening and quantal ROS production in intact cells, marking the flash as a coincidence detector of mitochondrial Ca2+ and ROS signals.  相似文献   

11.
In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca2+ uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca2+ transport system (Bazhenova et al. J Biol Chem 273:4372–4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96–100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352–1356, 2000; Deryabina et al. J Biol Chem 276:47801–47806, 2001) were very resistant to Ca2+ overload. However, exposure of yeast mitochondria to 50–100 μM Ca2+ in the presence of the Ca2+ ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca2+/nH+-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca2+- ETH129-induced activation of the Ca2+/H+-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca2+ overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319–331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37–51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.  相似文献   

12.
The functioning of the mitochondrial permeability transition pore (mPTP) is involved in the mechanism of programmed cell death and mitochondrial dysfunction observed with aging. In this work, the functional state of heart mitochondria isolated from young (mature and 2–3-month-old) and old (20–22-month-old) rats under conditions of mPTP opening was studied. In the mitochondria of old rats, the rates of Ca2+ and TPP+ absorption decreased by 40 and 42%, respectively, the threshold concentration of Ca2+ decreased by 20%, and the swelling rate of mitochondria from old animals was by 40% higher than that of mitochondria from young ones. In the heart mitochondria of old animals, the content and production of reactive oxygen species (ROS) varied, the superoxide anion content was increased, and the level of hydroperoxide (H2O2) increased at a threshold calcium concentration. Electron microscopy revealed a decrease in the number of cristae in mitochondria of the rat heart during aging. To study the potential role of proteins modulating the mPTP functioning, the content of 2',3'-cyclonucleotide-3'-phosphodiesterase (CNPase) and translocator protein (TSPO) in the heart mitochondria of rats of different ages was measured. A significant age-related decrease in the level of CNPase and an increase in the amount of TSPO were detected. The role of these proteins in mitochondrial dysfunction observed during aging is discussed.  相似文献   

13.
Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.  相似文献   

14.
Among other mitochondrial functions, energy production and Ca2+ uptake are crucial for maintaining neuronal viability. Both of these functions are critically dependent on mitochondrial membrane potential (ΔΨm). Mitochondrial Ca2+ overload causing a dissipation of ΔΨm is a key component of several neuronal pathologies. However, the mechanism of Ca2+-induced depolarization in neuronal mitochondria remains unclear. Typically, ΔΨm has been evaluated as a single overall estimate from all mitochondria present in a given cell or tissue. However, recent data showed that the population of mitochondria isolated from tissues is not homogeneous, and averaged parameters from the whole population do not necessarily reflect the processes taking place in a single organelle. This review summarizes our recent studies of Ca2+-induced depolarization in individual mitochondria isolated from rat forebrain and immobilized to coverslips. Fluorescence imaging techniques and potentiometric fluorescent dyes were effectively used to study ΔΨm changes. The data have shown that Ca2+ triggers ΔΨm oscillations in brain mitochondria followed by a complete depolarization. Further investigation of this phenomenon led us to suggest that Ca2+-induced ΔΨm oscillations can represent an intermediate unstable state that may lead to irreversible mitochondrial dysfunction. Therefore, further study of this phenomenon would help to understand what causes the irreversible damage of mitochondria during cytosolic/mitochondrial Ca2+ overload. Here we discuss the effects of different modulators of the mitochondrial permeability transition pore on Ca2+-induced depolarization in brain mitochondria and in liver mitochondria, where the mechanism of Ca2+-depolarization is better understood. A comparison of these effects in brain and liver mitochondria led us to conclude that Ca2+ can induce reversible “low conductance” permeability transition in brain mitochondria, the phenomenon which requires a transient conformational change of the adenine nucleotide translocator from a specific transporter to a non-specific pore. The article is published in the original.  相似文献   

15.
The mitochondrial permeability transition pore (mPTP) has long been known to have a role in mitochondrial calcium (Ca2+) homeostasis under pathological conditions as a mediator of the mitochondrial permeability transition and the activation of the consequent cell death mechanism. However, its role in the context of mitochondrial Ca2+ homeostasis is not yet clear. Several studies that were based on PPIF inhibition or knock out suggested that mPTP is involved in the Ca2+ efflux mechanism, while other observations have revealed the opposite result.  相似文献   

16.
Ischemia followed by reperfusion results in impairment of cellular and mitochondrial functionality due to opening of mitochondrial permeability transition pores. On the other hand, activation of mitochondrial ATP-sensitive K+ channels (mitoKATP) protects the heart against ischemic damage. This study examined the effects of mitoKATP and mitochondrial permeability transition on isolated rat heart mitochondria and cardiac cells submitted to simulated ischemia and reperfusion (cyanide/aglycemia). Both mitoKATP opening, using diazoxide, and the prevention of mitochondrial permeability transition, using cyclosporin A, protected against cellular damage, without additive effects. MitoKATP opening in isolated rat heart mitochondria slightly decreased Ca2+ uptake and prevented mitochondrial reactive oxygen species production, most notably in the presence of added Ca2+. In ischemic cells, diazoxide decreased ROS generation during cyanide/aglycemia while cyclosporin A prevented oxidative stress only during simulated reperfusion. Collectively, these studies indicate that opening mitoKATP prevents cellular death under conditions of ischemia/reperfusion by decreasing mitochondrial reactive oxygen species release secondary to Ca2+ uptake, inhibiting mitochondrial permeability transition.  相似文献   

17.
Phosphorylation of some membrane-bound proteins in the mitochondria of rat liver and brain is regulated by Ca2+ and cAMP acting as secondary messengers. These proteins are the main myelin components: 46 kDa 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP) and two isoforms of the myelin basic protein (MBP) with molecular weights of 17 and 21.5 kDa, which we have identified previously and found outside myelin in rat brain mitochondria. The phosphorylation level of CNP and both MBP isoforms increases when the mitochondrial permeability transition pore (mPTP) is opened. It is known that protein kinases A and C in heart mitochondria are directly bound to mPTP regulator proteins and are able to modulate the pore function. It is shown in this study that the inhibitors of protein kinases A (H-89) and C (staurosporin, Go 6976, and GF 109203 X) decrease the phosphorylation level of CNP and two MBP isoforms allowing us to assume that they are the targets of the signaling protein kinases A and C.  相似文献   

18.
M.A. Neginskaya  E.V. Pavlov  S-S. Sheu 《BBA》2021,1862(3):148357
The mitochondrial permeability transition pore (mPTP) is a channel that, when open, is responsible for a dramatic increase in the permeability of the mitochondrial inner membrane, a process known as the mitochondrial permeability transition (mPT). mPTP activation during Ca2+ dyshomeostasis and oxidative stress disrupts normal mitochondrial function and induces cell death. mPTP opening has been implicated as a critical event in many diseases, including hypoxic injuries, neurodegeneration, and diabetes. Discoveries of recent years indicate that mPTP demonstrates very complicated behavior and regulation, and depending on specific induction or stress conditions, it can function as a high-conductance pore, a small channel, or a non-specific membrane leak. The focus of this review is to summarize the literature on the electrophysiological properties of the mPTP and to evaluate the evidence that it has multiple molecular identities. This review also provides perspective on how an electrophysiological approach can be used to quantitatively investigate the biophysical properties of the mPTP under physiological, pharmacological, pathophysiological, and disease conditions.  相似文献   

19.
Cerebral ischemia is a key pathophysiological feature of various brain insults. Inadequate oxygen supply can manifest regionally in stroke or as a result of traumatic brain injury or globally following cardiac arrest, all leading to irreversible brain damage. Mitochondrial function is essential for neuronal survival, since neurons critically depend on ATP synthesis generated by mitochondrial oxidative phosphorylation. Mitochondrial activity depends on Ca2+ and is fueled either by Ca2+ from the extracellular space when triggered by neuronal activity or by Ca2+ released from the endoplasmic reticulum (ER) and taken up through specialized contact sites between the ER and mitochondria known as mitochondrial-associated ER membranes. The coordination of these Ca2+ pools is required to synchronize mitochondrial respiration rates and ATP synthesis to physiological demands. In this review, we discuss the role of the proteins involved in mitochondrial Ca2+ homeostasis in models of ischemia. The proteins include those important for the Ca2+-dependent motility of mitochondria and for Ca2+ transfer from the ER to mitochondria, the tethering proteins that bring the two organelles together, inositol 1,4,5-triphosphate receptors that enable Ca2+ release from the ER, voltage-dependent anion channels that allow Ca2+ entry through the highly permeable outer mitochondrial membrane and the mitochondrial Ca2+ uniporter together with its regulatory proteins that permit Ca2+ entry into the mitochondrial matrix. Finally, we address those proteins important for the extrusion of Ca2+ from the mitochondria such as the mitochondrial Na+/Ca2+ exchanger or, if the mitochondrial Ca2+ concentration exceeds a certain threshold, the mitochondrial permeability transition pore.  相似文献   

20.
Neutrophils release neutrophil extracellular traps (NETs) in response to numerous pathogenic microbes as the last suicidal resource (NETosis) in the fight against infection. Apart from the host defense function, NETs play an essential role in the pathogenesis of various autoimmune and inflammatory diseases. Therefore, understanding the molecular mechanisms of NETosis is important for regulating aberrant NET release. The initiation of NETosis after the recognition of pathogens by specific receptors is mediated by an increase in intracellular Ca2+ concentration, therefore, the use of Ca2+ ionophore A23187 can be considered a semi-physiological model of NETosis. Induction of NETosis by various stimuli depends on reactive oxygen species (ROS) produced by NADPH oxidase, however, NETosis induced by Ca2+ ionophores was suggested to be mediated by ROS produced in mitochondria (mtROS).Using the mitochondria-targeted antioxidant SkQ1 and specific inhibitors of NADPH oxidase, we showed that both sources of ROS, mitochondria and NADPH oxidase, are involved in NETosis induced by A23187 in human neutrophils. In support of the critical role of mtROS, SkQ1-sensitive NETosis was demonstrated to be induced by A23187 in neutrophils from patients with chronic granulomatous disease (CGD). We assume that Ca2+-triggered mtROS production contributes to NETosis either directly (CGD neutrophils) or by stimulating NADPH oxidase. The opening of the mitochondrial permeability transition pore (mPTP) in neutrophils treated by A23187 was revealed using the electron transmission microscopy as a swelling of the mitochondrial matrix. Using specific inhibitors, we demonstrated that the mPTP is involved in mtROS production, NETosis, and the oxidative burst induced by A23187.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号