首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most mosquito species must feed on the blood of a vertebrate host to produce eggs. In the yellow fever mosquito, Aedes aegypti, blood feeding triggers medial neurosecretory cells in the brain to release insulin-like peptides (ILPs) and ovary ecdysteroidogenic hormone (OEH). Theses hormones thereafter directly induce the ovaries to produce ecdysteroid hormone (ECD), which activates the synthesis of yolk proteins in the fat body for uptake by oocytes. ILP3 stimulates ECD production by binding to the mosquito insulin receptor (MIR). In contrast, little is known about the mode of action of OEH, which is a member of a neuropeptide family called neuroparsin. Here we report that OEH is the only neuroparsin family member present in the Ae. aegypti genome and that other mosquitoes also encode only one neuroparsin gene. Immunoblotting experiments suggested that the full-length form of the peptide, which we call long OEH (lOEH), is processed into short OEH (sOEH). The importance of processing, however, remained unclear because a recombinant form of lOEH (rlOEH) and synthetic sOEH exhibited very similar biological activity. A series of experiments indicated that neither rlOEH nor sOEH bound to ILP3 or the MIR. Signaling studies further showed that ILP3 activated the MIR but rlOEH did not, yet both neuropeptides activated Akt, which is a marker for insulin pathway signaling. Our results also indicated that activation of TOR signaling in the ovaries required co-stimulation by amino acids and either ILP3 or rlOEH. Overall, we conclude that OEH activates the insulin signaling pathway independently of the MIR, and that insulin and TOR signaling in the ovaries is coupled.  相似文献   

2.
3.
The prothoracicotropic hormone (PTTH) stimulates ecdysteroidogenesis by prothoracic gland in larval insects. Previous studies showed that Ca2+, cAMP, extracellular signal-regulated kinase (ERK), and tyrosine kinase are involved in PTTH-stimulated ecdysteroidogenesis by the prothoracic glands of both Bombyx mori and Manduca sexta. In the present study, the involvement of phosphoinositide 3-kinase (PI3K)/Akt signaling in PTTH-stimulated ecdysteroidogenesis by B. mori prothoracic glands was further investigated. The results showed that PTTH-stimulated ecdysteroidogenesis was partially blocked by LY294002 and wortmannin, indicating that PI3K is involved in PTTH-stimulated ecdysteroidogenesis. Akt phosphorylation in the prothoracic glands appeared to be moderately stimulated by PTTH in vitro. PTTH-stimulated Akt phosphorylation was inhibited by LY294002. An in vivo PTTH injection into day 6 last instar larvae also increased Akt phosphorylation of the prothoracic glands. In addition, PTTH-stimulated ERK phosphorylation of the prothoracic glands was not inhibited by either LY294002 or wortmannin, indicating that PI3K is not involved in PTTH-stimulated ERK signaling. A23187 and thapsigargin, which stimulated B. mori prothoracic gland ERK phosphorylation and ecdysteroidogenesis, could not activate Akt phosphorylation. PTTH-stimulated ecdysteroidogenesis was not further activated by insulin, indicating the absence of an additive action of insulin and PTTH on the prothoracic glands. The present study, together with the previous demonstration that insulin stimulates B. mori ecdysteroidogenesis through PI3K/Akt signaling, suggests that crosstalk exists in B. mori prothoracic glands between insulin and PTTH signaling, which may play a critical role in precisely regulated ecdysteroidogenesis during development.  相似文献   

4.
5.
《Insect Biochemistry》1986,16(1):143-147
The cellular mechanism of action of the cerebral neuropeptide, prothoracicotropic hormone (PTTH), was investigated in vitro using prothoracic glands from the tobacco hornworm, Manduca sexta. An involvement of cyclic AMP (cAMP) in PTTH-stimulated ecdysone synthesis was demonstrated as follows: (a) the steroidogenic effect of PTTH on prothoracic glands of day 3 fifth instar larvae and day 0 pupae was mimicked by agents (1-methyl-3-isobutylxanthine, dibutyryl cAMP and forskolin) which act by increasing intracellular levels of cAMP; and (b) PTTH stimulated the formation of cAMP in glands from both stages in a rapid, dose-dependent manner. However, a significant accumulation of cAMP in response to PTTH occurred only in larval prothoracic glands. In pupal glands, effects of the neuropeptide on cAMP synthesis were seen only in the presence of a phosphodiesterase inhibitor. Although cAMP is involved in PTTH action at both stages, it thus appears that the developmental state of the prothoracic glands influences the degree to which cAMP accumulates in response to the neurohormone. In addition to cAMP, it appears from the following that Ca2+ plays an essential role in mediating the steroidogenic effects of PTTH: (a) PTTH-stimulated ecdysone synthesis was blocked by omission of Ca2+ from the incubation medium; and (b) ecdysone synthesis was stimulated by the calcium ionophore A23187. Agents which act by increasing intracellular levels of cAMP enhanced ecdysone synthesis equally well in both the presence and absence of extracellular calcium. By contrast, cAMP formation stimulated by both PTTH and A23187 was completely dependent upon extracellular Ca2+. The results suggest a primary role for Ca2+ in mediating PTTH-stimulated synthesis of cAMP, with the cyclic nucleotide in turn stimulating ecdysone synthesis.  相似文献   

6.
Our previous studies showed that the prothoracicotropic hormone (PTTH) stimulated extracellular signal-regulated kinase (ERK) phosphorylation in prothoracic glands of Bombyx mori both in vitro and in vivo. In the present study, the signaling pathway by which PTTH activates ERK phosphorylation was further investigated using PTTH, second messenger analogs, and various inhibitors. ERK phosphorylation induced by PTTH was partially reduced in Ca2+-free medium. The calmodulin antagonist, calmidazolium, partially inhibited both PTTH-stimulated ERK phosphorylation and ecdysteroidogenesis, indicating the involvement of calmodulin. When the prothoracic glands were treated with agents that directly elevate the intracellular Ca2+ concentration [either A23187, thapsigargin, or the protein kinase C (PKC) activator, phorbol 12-myristate acetate (PMA)], a great increase in ERK phosphorylation was observed. In addition, it was found that PTTH-stimulated ecdysteroidogenesis was greatly attenuated by treatment with PKC inhibitors (either calphostin C or chelerythrine C). However, PTTH-stimulated ERK phosphorylation was not attenuated by the above PKC inhibitors, indicating that PKC is not involved in PTTH-stimulated ERK phosphorylation. A potent and specific inhibitor of insulin receptor tyrosine kinase, HNMPA-(AM)3, greatly inhibited the ability of PTTH to activate ERK phosphorylation and stimulate ecdysteroidogenesis. However, genistein, another tyrosine kinase inhibitor, did not inhibit PTTH-stimulated ERK phosphorylation, although it did markedly attenuate the ability of A23187 to activate ERK phosphorylation. From these results, it is suggested that PTTH-stimulated ERK phosphorylation is only partially Ca2+- and calmodulin-dependent and that HNMPA-(AM)3-sensitive receptor tyrosine kinase is involved in activation of ERK phosphorylation by PTTH.  相似文献   

7.
Tyramine (TA) is a biogenic amine in invertebrates. cDNA encoding the TA receptor (TAR) BmTAR2 was cloned from the nerve tissue of the silkworm Bombyx mori. The receptor's functional and pharmacological properties were examined in BmTAR2-transfected HEK-293 cells. In [3H]TA binding assays, BmTAR2 showed considerably higher affinity for TA than for other biogenic amines, with an IC50 value of 57.5 nM. Moreover, TA induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in cells, with an EC50 value of 11.6 nM, whereas octopamine and dopamine increased [Ca2+]i only at concentrations above 100 μM. A few antagonists were found to inhibit the TA-induced increases in [Ca2+]i; the rank order of potency was yohimbine > chlorpromazine > mianserin. TA showed no effect on intracellular cAMP concentration. The data indicate that BmTAR2 belongs to the second class of TARs, which are selectively coupled to intracellular Ca2+ mobilization. RT-PCR analysis revealed that BmTAR2 was expressed predominantly in the nervous tissue of B. mori larvae, suggesting that TA has neurotransmitter and neuromodulatory roles that are mediated by BmTAR2.  相似文献   

8.

Background

Mosquitoes are insects that vector many serious pathogens to humans and other vertebrates. Most mosquitoes must feed on the blood of a vertebrate host to produce eggs. In turn, multiple cycles of blood feeding promote frequent contacts with hosts and make mosquitoes ideal disease vectors. Both hormonal and nutritional factors are involved in regulating egg development in the mosquito, Aedes aegypti. However, the processes that regulate digestion of the blood meal remain unclear.

Methodology/Principal Findings

Here we report that insulin peptide 3 (ILP3) directly stimulated late phase trypsin-like gene expression in blood fed females. In vivo knockdown of the mosquito insulin receptor (MIR) by RNA interference (RNAi) delayed but did not fully inhibit trypsin-like gene expression in the midgut, ecdysteroid (ECD) production by ovaries, and vitellogenin (Vg) expression by the fat body. In contrast, in vivo treatment with double-stranded MIR RNA and rapamycin completely blocked egg production. In vitro experiments showed that amino acids did not simulate late phase trypsin-like gene expression in the midgut or ECD production by the ovaries. However, amino acids did enhance ILP3-mediated stimulation of trypsin-like gene expression and ECD production.

Conclusions/Significance

Overall, our results indicate that ILPs from the brain synchronize blood meal digestion and amino acid availability with ovarian ECD production to maximize Vg expression by the fat body. The activation of digestion by ILPs may also underlie the growth promoting effects of insulin and TOR signaling in other species.  相似文献   

9.
Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca2+ and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca2+ chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause.  相似文献   

10.
11.
Measurements of Ca2+ influx and [Ca2+]i changes in Fura-2/AM-loaded prothoracic glands (PGs) of the silkworm, Bombyx mori, were used to identify Ca2+ as the actual second messenger of the prothoracicotropic hormone (PTTH) of this insect. Dose-dependent increases of [Ca2+]i in PG cells were recorded in the presence of recombinant PTTH (rPTTH) within 5 minutes. The rPTTH-mediated increases of [Ca2+]i levels were dependent on extracellular Ca2+. They were not blocked by the dihydropyridine derivative, nitrendipine, an antagonist of high-voltage-activated (HVA) Ca2+ channels, and by bepridil, an antagonist of low-voltage-activated (LVA) Ca2+ channels. The trivalent cation La3+, a non-specific blocker of plasma membrane Ca2+ channels, eliminated the rPTTH-stimulated increase of [Ca2+]i levels in PG cells and so did amiloride, an inhibitor of T-type Ca2+ channels. Incubation of PG cells with thapsigargin resulted in an increase of [Ca2+]i levels, which was also dependent on extracellular Ca2+ and was quenched by amiloride, suggesting the existence of store-operated plasma membrane Ca2+ channels, which can also be inhibited by amiloride. Thapsigargin and rPTTH did not operate independently in stimulating increases of [Ca2+]i levels and one agent’s mediated increase of [Ca2+]i was eliminated in the presence of the other. TMB-8, an inhibitor of intracellular Ca2+ release from inositol 1,4,5 trisphosphate (IP3)-sensitive Ca2+ stores, blocked the rPTTH-stimulated increases of [Ca2+]i levels, suggesting an involvement of IP3 in the initiation of the rPTTH signaling cascade, whereas ryanodine did not influence the rPTTH-stimulated increases of [Ca2+]i levels. The combined results indicate the presence of a cross-talk mechanism between the [Ca2+]i levels, filling state of IP3-sensitive intracellular Ca2+ stores and the PTTH-receptor’s-mediated Ca2+ influx.  相似文献   

12.
Adenylyl cyclase activity in mealworm larval fat body and its dependence on external Ca2+ concentrations and glucose catabolism pathways in vitro were analyzed for their response to intestinal insulin-like peptide (ILP) and synthetic locust adipokinetic hormone I (AKH-I). Dose-response curve for cAMP accumulation was obtained with increasing doses of ILP. The effects of ILP were ten-fold lower than those of AKH-I. Forskolin and IBMX provoked very high levels of cAMP accumulation but IBMX did not potentiate the effects of ILP on cAMP accumulation. Accumulation of cAMP after a treatment with ILP involves a Ca2+ influx via the opening of L-type voltage gated channels. The cyclic AMP analogue chlorophenyl thio-cAMP as well as AKH-I induced a decrease in the utilization of the pentose cycle while the effects of ILP were totally opposite. Finally, the antagonism between ILP and AKH-I on glucose metabolism results from a participation of different transduction pathways (Ca2+-dependent and Ca2+-independent, respectively), probably located in the same target cells, thus suggesting the involvement of mechanisms similar to those existing in mammals. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The timing of ecdysis in the penultimate instar of Bombyx mori was demonstrated to be under the control of a circadian clock. The temporal organization of secretion of prothoracicotropic hormone (PTTH), ecdysone and juvenile hormone was studied with particular attention to the circadian control of the timing of hormone release. PTTH release occurs, at least, in the second and third night. The latter is responsible for evoking the larval ecdysis. Prothoracic gland initiates ecdysone secretion abruptly with a very short span after the second PTTH release and secrete enough amount of ecdysone for larval moulting, which takes place 11 h later. Juvenile hormone titer is relatively high before the second PTTH release and corpus allatum becomes dispensable for ensuring the larval moulting in 1.5 h. Based on these findings, interpretations for the endocrine system underlying precocious pupation and formation of intermediates, which are produced by neck ligation, are presented.  相似文献   

14.
The Ca2+ and cAMP/PKA pathways are the primary signaling systems in secretory epithelia that control virtually all secretory gland functions. Interaction and crosstalk in Ca2+ and cAMP signaling occur at multiple levels to control and tune the activity of each other. Physiologically, Ca2+ and cAMP signaling operate at 5–10% of maximal strength, but synergize to generate the maximal response. Although synergistic action of the Ca2+ and cAMP signaling is the common mode of signaling and has been known for many years, we know very little of the molecular mechanism and mediators of the synergism. In this review, we discuss crosstalk between the Ca2+ and cAMP signaling and the function of IRBIT (IP3 receptors binding protein release with IP3) as a third messenger that mediates the synergistic action of the Ca2+ and cAMP signaling.  相似文献   

15.

Background

Serotonin induces fluid secretion from Calliphora salivary glands by the parallel activation of the InsP3/Ca2+ and cAMP signaling pathways. We investigated whether cAMP affects 5-HT-induced Ca2+ signaling and InsP3-induced Ca2+ release from the endoplasmic reticulum (ER).

Results

Increasing intracellular cAMP level by bath application of forskolin, IBMX or cAMP in the continuous presence of threshold 5-HT concentrations converted oscillatory [Ca2+]i changes into a sustained increase. Intraluminal Ca2+ measurements in the ER of β-escin-permeabilized glands with mag-fura-2 revealed that cAMP augmented InsP3-induced Ca2+ release in a concentration-dependent manner. This indicated that cAMP sensitized the InsP3 receptor Ca2+ channel for InsP3. By using cAMP analogs that activated either protein kinase A (PKA) or Epac and the application of PKA-inhibitors, we found that cAMP-induced augmentation of InsP3-induced Ca2+ release was mediated by PKA not by Epac. Recordings of the transepithelial potential of the glands suggested that cAMP sensitized the InsP3/Ca2+ signaling pathway for 5-HT, because IBMX potentiated Ca2+-dependent Cl- transport activated by a threshold 5-HT concentration.

Conclusion

This report shows, for the first time for an insect system, that cAMP can potentiate InsP3-induced Ca2+ release from the ER in a PKA-dependent manner, and that this crosstalk between cAMP and InsP3/Ca2+ signaling pathways enhances transepithelial electrolyte transport.  相似文献   

16.

Background  

During early differentiation of Dictyostelium the attractant cAMP is released periodically to induce aggregation of the cells. Here we pursue the question whether pulsatile cAMP signaling is coupled to a basic Ca2+-oscillation.  相似文献   

17.
Metabotropic glutamate receptor 1α (mGluR1α) exerts important effects on numerous neurological processes. Although mGluR1α is known to respond to extracellular Ca2+ ([Ca2+]o) and the crystal structures of the extracellular domains (ECDs) of several mGluRs have been determined, the calcium-binding site(s) and structural determinants of Ca2+-modulated signaling in the Glu receptor family remain elusive. Here, we identify a novel Ca2+-binding site in the mGluR1α ECD using a recently developed computational algorithm. This predicted site (comprising Asp-318, Glu-325, and Asp-322 and the carboxylate side chain of the receptor agonist, Glu) is situated in the hinge region in the ECD of mGluR1α adjacent to the reported Glu-binding site, with Asp-318 involved in both Glu and calcium binding. Mutagenesis studies indicated that binding of Glu and Ca2+ to their distinct but partially overlapping binding sites synergistically modulated mGluR1α activation of intracellular Ca2+ ([Ca2+]i) signaling. Mutating the Glu-binding site completely abolished Glu signaling while leaving its Ca2+-sensing capability largely intact. Mutating the predicted Ca2+-binding residues abolished or significantly reduced the sensitivity of mGluR1α not only to [Ca2+]o and [Gd3+]o but also, in some cases, to Glu. The dual activation of mGluR1α by [Ca2+]o and Glu has important implications for the activation of other mGluR subtypes and related receptors. It also opens up new avenues for developing allosteric modulators of mGluR function that target specific human diseases.  相似文献   

18.
The ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P. aeruginosa persistence. In addition to its effects as a quorum-sensing gene regulator in P. aeruginosa, 3O-C12 elicits cross-kingdom effects on host cell signaling leading to both pro- or anti-inflammatory effects. We find that in addition to these slow effects mediated through changes in gene expression, 3O-C12 also rapidly increases Cl and fluid secretion in the cystic fibrosis transmembrane regulator (CFTR)-expressing airway epithelia. 3O-C12 does not stimulate Cl secretion in CF cells, suggesting that lactone activates the CFTR. 3O-C12 also appears to directly activate the inositol trisphosphate receptor and release Ca2+ from the endoplasmic reticulum (ER), lowering [Ca2+] in the ER and thereby activating the Ca2+-sensitive ER signaling protein STIM1. 3O-C12 increases cytosolic [Ca2+] and, strikingly, also cytosolic [cAMP], the known activator of CFTR. Activation of Cl current by 3O-C12 was inhibited by a cAMP antagonist and increased by a phosphodiesterase inhibitor. Finally, a Ca2+ buffer that lowers [Ca2+] in the ER similar to the effect of 3O-C12 also increased cAMP and ICl. The results suggest that 3O-C12 stimulates CFTR-dependent Cl and fluid secretion in airway epithelial cells by activating the inositol trisphosphate receptor, thus lowering [Ca2+] in the ER and activating STIM1 and store-operated cAMP production. In CF airways, where CFTR is absent, the adaptive ability to rapidly flush the bacteria away is compromised because the lactone cannot affect Cl and fluid secretion.  相似文献   

19.
The terrestrial ciliated protozoan Colpoda cucullus inhabits soil. When the habitat conditions become unfavorable, the vegetative cells of C. cucullus quickly transform into resting cysts. C. cucullus culture is established in our laboratory, and encystment is routinely induced by the addition of Ca2+ to overpopulated vegetative cells. However, an increase in Ca2+ concentration and overpopulation of vegetative cells do not always occur in natural. We investigated the effect of temperature and found that cyst formation was induced by a rapid increase of 5 °C within 2 min but not by a decrease. Moreover, an increase in intracellular Ca2+ concentrations is essential, but Ca2+ inflow does not necessarily occur during encystment. Ca2+ image analysis showed that Ca2+ is stored in vesicular structures and released into the cytoplasm within 60 s after temperature stimulation. Multiple signaling pathways are activated after the release of Ca2+ from vesicles, and cAMP is a candidate second messenger with a crucial role in the process of temperature-induced encystment. Further studies are needed to clarify the mechanism underlying the sensing of temperature and release of Ca2+ from vesicles.  相似文献   

20.
A cDNA encoding a seven-transmembrane receptor was cloned from the nervous tissues of silkworm (Bombyx mori) larvae. Sequence analysis indicated that the gene is an ortholog of CG6989, which encodes a Drosophila β-adrenergic-like octopamine (OA) receptor (DmOctβ2R). As very little information is available regarding this class of receptors, we generated a cell line that stably expressed the gene in HEK-293 cells and we then performed functional and pharmacological studies of this receptor. [3H]OA-binding assays using membrane preparations of this cell line showed that the receptor possesses a higher affinity for OA than for tyramine (TA) or dopamine (DA). The cell line elicited a bell-shaped, OA concentration-dependent increase in intracellular cAMP levels, with a maximum at 100 nM. (R)-OA was more potent than (S)-OA. TA and DA had weak or marginal effects on cAMP production. The OA receptor agonist demethylchlordimeform elicited a similar biphasic response, although the maximum response was attained at a concentration as low as 1 nM. The rank order of potency of other agonists was as follows: naphazoline > tolazoline, clonidine. Among the antagonists tested, only chlorpromazine significantly attenuated the OA-induced increase in cAMP levels. No increase in intracellular Ca2+ levels was observed with OA at concentrations up to 100 μM. These findings indicate that the cloned receptor is a β-adrenergic-like OA receptor with unique functional and pharmacological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号