首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
Maternal undernutrition can cause reduced nephron number and glomerular hypertrophy, consequently leading to adult kidney disease. We intended to elucidate whether NO deficiency evolves to kidney disease vulnerability in offspring from mothers with caloric restriction diets and whether maternal l-citrulline (l-Cit) supplementation can prevent this. Using a rat model with 50% caloric restriction, four groups of 3-month-old male offspring were sacrificed to determine their renal outcome: control, caloric restriction (CR), control treated with 0.25% l-citrulline solution during the whole period of pregnancy and lactation (Cit), and CR treated in the same way (CR + Cit group). The CR group had low nephron numbers, increased glomerular diameter, and an increased plasma creatinine level compared with the control group. Maternal l-Cit supplementation prevented these effects. The CR + Cit and Cit groups developed hypertension beginning at 4 and 8 weeks of age, respectively. Plasma asymmetric and symmetric dimethylarginine (ADMA and SDMA) levels were increased, but l-arginine/ADMA ratios (AAR) were decreased in the CR group vs the control group. This was prevented by maternal l-Cit supplementation. Renal cortical neuronal NOS-α (nNOSα) protein abundance was significantly decreased in the Cit and CR + Cit groups. Collectively, reduced nephron number, reduced renal nNOSα expression, increased ADMA, and decreased AAR contribute to the developmental programming of adult kidney disease and hypertension. Although maternal l-Cit supplementation prevents caloric restriction-induced low nephron number and renal dysfunction, it also induces hypertension.  相似文献   

2.
This study investigated possible mechanisms for cardioprotective effects of lipoic acid (LA), quercetin (Q) and resveratrol (R) on oxidative stress related to thyroid hormone alterations in long-term obesity. Female C57BL/6 mice were fed on high-fat diet (HFD), HFD + LA, HFD + R, HFD + Q and normal diet for 26 weeks. Body weight, blood pressure, thyroid hormones, oxidative stress markers, angiotensin converting enzyme (ACE), nitric oxide synthase (NOS) and ion pump activities were measured, and expression of cardiac genes was analyzed by real-time polymerase chain reaction. HFD induced marked increase (P < .05) in body weight, blood pressure and oxidative stress, while plasma triidothyronine levels reduced. ACE activity increased (P < .05) in HFD mice (0.69 ± 0.225 U/mg protein) compared with controls (0.28 ± 0.114 U/mg protein), HFD + LA (0.231 ± 0.02 U/mg protein) and HFD + Q (0.182 ± 0.096 U/mg protein) at 26 weeks. Moreover, Na+/K+-ATPase and Ca2 +-ATPase activities increased in HFD mice whereas NOS reduced. A 1.5-fold increase in TRα1 and reduction in expression of the deiodinase iodothyronine DIO1, threonine protein kinase and NOS3 as well as up-regulation of AT1α, ACE, ATP1B1, GSK3β and Cja1 genes also occurred in HFD mice. Conversely, LA, Q and R inhibited weight gain; reduced TRα1 expression as well as increased DIO1; reduced ACE activity and AT1α, ATP1B1 and Cja1 gene expression as well as inhibited GSK3β; increased total antioxidant capacity, GSH and catalase activity; and reduced blood pressure. In conclusion, LA, resveratrol and quercetin supplementation reduces obesity thereby restoring plasma thyroid hormone levels and attenuating oxidative stress in the heart and thus may have therapeutic potential in heart diseases.  相似文献   

3.
Vulnerability of the fetus upon maternal obesity can potentially occur during all developmental phases. We aimed at elaborating longer-term health outcomes of fetal overnutrition during the earliest stages of development. We utilized Naval Medical Research Institute (NMRI) mice to induce pre-conceptional and gestational obesity and followed offspring outcomes in the absence of any postnatal obesogenic influences. Male adult offspring developed overweight, insulin resistance, hyperleptinemia, hyperuricemia and hepatic steatosis; all these features were not observed in females. Instead, they showed impaired fasting glucose and a reduced fat mass and adipocyte size. Influences of the interaction of maternal diet 1 sex concerned offspring genes involved in fatty liver disease, lipid droplet size regulation and fat mass expansion. These data suggest that a peri-conceptional obesogenic exposure is sufficient to shape offspring gene expression patterns and health outcomes in a sex- and organ-specific manner, indicating varying developmental vulnerabilities between sexes towards metabolic disease in response to maternal overnutrition.  相似文献   

4.
Radiation exposure poses a major risk for workers in the nuclear power plants and other radiation related industry. In this context, we demonstrate that γ-radiation is an efficient DNA demethylating agent and its injurious effect can be minimized by dietary methyl supplements (folate, choline and vitamin B12). To elucidate the possible underlying mechanism(s), male Swiss mice were maintained on normal control diet (NCD) and methyl-supplemented diet (MSD). After 2 weeks of NCD and MSD dietary regimen, we exposed the animals to γ-radiation (2, 4 and 6 Gy) and investigated the profile of downstream metabolites and activity levels of one-carbon (C1) flux generating enzymes. In MSD fed and irradiated animals, hepatic folate levels increased (P < 0.01), while hepatic homocysteine levels decreased (P < 0.01) compared to NCD fed and irradiated animals. Although hepatic folate level increased significantly in MSD fed animals (P < 0.01), it showed a decrease in response to high doses of γ-irradiation. Under these conditions, a marked suppression of S-adenosylmethionine (SAM) levels occurred in NCD fed and irradiated animals, suggesting reduced conversion of homocysteine to SAM. Concomitant with decline in liver SAM Pool, activities of DNA methyltransferase (Dnmt, that methylates DNA) and methionine synthase (MSase, that regenerates methionine from homocysteine) were both decreased in NCD fed and irradiated mice. However, in MSD fed and irradiated mice, they were increased. These results strongly indicated that increased levels of dnmt and MSase may enhance C1 flux towards DNA methylation reactions in MSD fed animals. These results were confirmed and further substantiated by measuring genomic DNA methylation levels, which were maintained at normal levels in MSD fed and irradiated mice compared to NCD fed and irradiated animals (P < 0.01). In conclusion, our results suggest that maintenance of genomic DNA methylation under γ-radiation stress might be a very dynamic, progressive diet dependent process that could involve increased one-carbon flux through various C1 metabolites.  相似文献   

5.
A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague–Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress + Vehicle, 2) No Stress + Fluoxetine, 3) Prenatal Stress + Vehicle, and 4) Prenatal Stress + Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect–related behaviors and their underlying molecular mechanisms.  相似文献   

6.
Alterations in lipid metabolism play a significant role in the pathogenesis of obesity-associated disorders, and dysregulation of the lipidome across multiple diseases has prompted research to identify novel lipids indicative of disease progression. To address the significant gap in knowledge regarding the effect of age and diet on the blood lipidome, we used shotgun lipidomics with electrospray ionization-mass spectrometry (ESI-MS). We analyzed blood lipid profiles of female C57BL/6 mice following high-fat diet (HFD) and low-fat diet (LFD) consumption for short (6 weeks), long (22 weeks), and prolonged (36 weeks) periods. We examined endocannabinoid levels, plasma esterase activity, liver homeostasis, and indices of glucose tolerance and insulin sensitivity to compare lipid alterations with metabolic dysregulation. Multivariate analysis indicated differences in dietary blood lipid profiles with the most notable differences after 6 weeks along with robust alterations due to age. HFD altered phospholipids, fatty acyls, and glycerolipids. Endocannabinoid levels were affected in an age-dependent manner, while HFD increased plasma esterase activity at all time points, with the most pronounced effect at 6 weeks. HFD-consumption also altered liver mRNA levels of PPARα, PPARγ, and CD36. These findings indicate an interaction between dietary fat consumption and aging with widespread effects on the lipidome, which may provide a basis for identification of female-specific obesity- and age-related lipid biomarkers.  相似文献   

7.
Quercetin, a naturally occurring flavonoid, has been reported to possess numerous biological activities including activation of adenosine-5’-monophosphate-activated protein kinase (AMPK). We investigated the effects of quercetin intake during lactation on the AMPK activation in the livers of adult offspring programmed by maternal protein restriction during gestation. Pregnant Wistar rats were fed control and low-protein diets during gestation. Following delivery, each dam received a control or 0.2% quercetin-containing control diet during lactation as follows: control on control (CC), control on restricted (LPC) and 0.2% quercetin-containing control on restricted (LPQ). At weaning (week 3), some of the pups from each dam were killed, and the remaining pups (CC, n= 8; LPC, n= 10; LPQ, n= 13) continued to receive a standard laboratory diet and were killed at week 23. Blood chemistry and phosphorylation levels of AMPKα, acetyl-CoA carboxylase (ACC), endothelial nitric oxide synthase (eNOS) and mammalian target of rapamycin (mTOR) in the livers of male offspring were examined. At week 3, the level of phosphorylated AMPK protein in LPQ increased about 1.5- and 2.1-fold compared with LPC and CC, respectively, and the level in LPQ at week 23 increased about 1.9- and 2.9-fold, respectively. A significant increase in phosphorylated ACC and eNOS levels was found in LPQ. There was no significant difference among the three groups in the level of phosphorylated mTOR protein. In conclusion, quercetin intake during lactation up-regulates AMPK activation in the adult offspring of protein-restricted dams and modulates the AMPK pathway in the liver.  相似文献   

8.
BackgroundWe have previously shown that high fat (HF) feeding during pregnancy primes the development of non-alcoholic steatohepatits (NASH) in the adult offspring. However, the underlying mechanisms are unclear.AimsSince the endogenous molecular clock can regulate hepatic lipid metabolism, we investigated whether exposure to a HF diet during development could alter hepatic clock gene expression and contribute to NASH onset in later life.MethodsFemale mice were fed either a control (C, 7% kcal fat) or HF (45% kcal fat) diet. Offspring were fed either a C or HF diet resulting in four offspring groups: C/C, C/HF, HF/C and HF/HF. NAFLD progression, cellular redox status, sirtuin expression (Sirt1, Sirt3), and the expression of core clock genes (Clock, Bmal1, Per2, Cry2) and clock-controlled genes involved in lipid metabolism (Rev-Erbα, Rev-Erbβ, RORα, and Srebp1c) were measured in offspring livers.ResultsOffspring fed a HF diet developed NAFLD. However HF fed offspring of mothers fed a HF diet developed NASH, coupled with significantly reduced NAD+/NADH (p < 0.05, HF/HF vs C/C), Sirt1 (p < 0.001, HF/HF vs C/C), Sirt3 (p < 0.01, HF/HF vs C/C), perturbed clock gene expression, and elevated expression of genes involved lipid metabolism, such as Srebp1c (p < 0.05, C/HF and HF/HF vs C/C).ConclusionOur results suggest that exposure to excess dietary fat during early and post-natal life increases the susceptibility to develop NASH in adulthood, involving altered cellular redox status, reduced sirtuin abundance, and desynchronized clock gene expression.  相似文献   

9.
Nucleotide-excision repair (NER) is important for the maintenance of genomic integrity and to prevent the onset of carcinogenesis. Oxidative stress was previously found to inhibit NER in vitro, and dietary antioxidants could thus protect DNA not only by reducing levels of oxidative DNA damage, but also by protecting NER against oxidative stress-induced inhibition. To obtain further insight in the relation between oxidative stress and NER activity in vivo, oxidative stress was induced in newborn piglets by means of intra-muscular injection of iron (200 mg) at day 3 after birth. Indeed, injection of iron significantly increased several markers of oxidative stress, such as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) levels in colon DNA and urinary excretion of 8-oxo-7,8-dihydroguanine (8-oxoGua). In parallel, the influence of maternal supplementation with an antioxidant-enriched diet was investigated in their offspring. Supplementation resulted in reduced iron concentrations in the colon (P = 0.004) at day 7 and a 40% reduction of 8-oxodG in colon DNA (P = 0.044) at day 14 after birth. NER capacity in animals that did not receive antioxidants was significantly reduced to 32% at day 7 compared with the initial NER capacity on day 1 after birth. This reduction in NER capacity was less pronounced in antioxidant-supplemented piglets (69%). Overall, these data indicate that NER can be reduced by oxidative stress in vivo, which can be compensated for by antioxidant supplementation.  相似文献   

10.
In this study, the effects of methyl jasmonate (MJ) and silver nitrate (SN) treatment on metabolic profiles and yields of phytosterols such as campesterol, stigmasterol, and β-sitosterol in whole plant cultures of Lemna paucicostata were investigated using gas chromatography–mass spectrometry coupled with multivariate statistical analysis. The MJ and SN treatments retarded the growth of L. paucicostata plants, while they enhanced the yields of three phytosterols, compared to control. Higher yields of phytosterols were attained at day 28 compared to day 42. Moreover, stigmasterol yield was the highest at 0.85 mg/g from day 28 plants grown under MJ + SN co-treated culture. Among the various metabolites, the levels of palmitic and stearic acids, which might participate in a defense mechanism, were higher in the MJ + SN condition than in control. To determine the optimal timing of MJ + SN addition, MJ + SN was added on days 21, 28, and 35 after inoculation. The total yield and productivity of phytosterol reached maximum levels when the MJ + SN was added at day 35. The highest productivity of stigmasterol (6.08 mg/L) was also achieved when MJ + SN was added on day 35.  相似文献   

11.
AimsThe present study evaluated a comparative and combined hepatoprotective effect of atorvastatin (AS) and ferulic acid (F) against high fat diet (HFD) induced oxidative stress in terms of hyperlipidemia, anti-oxidative status, lipid peroxidation and inflammation.Main methodsMale Swiss albino mice were given a diet containing high fat (H) (23.9% wt/wt), supplemented with AS (10 mg/kg) or F (100 mg/kg) and both (10 and 100 mg/kg) for 8 weeks. The control mice (C) were fed with normal diet.Key findingsThe H mice exhibited increased body weight; hyperlipidemia; serum level of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); hepatic lipid profile; lipid accumulation; reactive oxygen species (ROS) of hepatocytes, lipid peroxidation and liver antioxidant capacity was decreased. Immunofluorescent and Western blot assay revealed activation of nuclear factor kappa B (NF-κB) signaling pathway. The addition of F or AS and both in the diet significantly counteracted HFD induced body weight gain; hyperlipidemia; TNF-α, IL-6; hepatic lipid profile; fatty infiltration; NF-κB signaling pathway; ROS; lipid peroxidation and moreover elevated levels of hepatic antioxidant enzymes activity were observed.SignificanceSimultaneous treatment with AS, F and their combination protected against HFD induced weight gain and oxidative stress. The protection may be attributed to the hypolipidemic and free radical scavenging activity of AS or F and their combination. This study illustrates that AS and F have relatively similar hypolipidemic, antioxidative, anti-inflammatory actions and the AS + F combination along with HFD has shown outstanding effects as compared to other treated groups.  相似文献   

12.
This study aimed to determine the effects of dietary pyridoxine and selenium (Se) on embryo development, reproductive performance and redox system in gilts. Eighty-four gilts were fed one of five diets: CONT) basal diet; MSeB60) CONT + 0.3 mg/kg of Na-selenite; MSeB610) diet 2 + 10 mg/kg of HCl-pyridoxine; OSeB60) CONT + 0.3 mg/kg of Se-enriched yeast; and OSeB610) diet 4 + 10 mg/kg of HCl-pyridoxine. Blood samples were collected for long-term (each estrus and slaughter) and peri-estrus (fourth estrus d −4 to d +3) profiles. At slaughter (gestation d 30), organs and embryos were collected. For long-term and peri-estrus profiles, Se level and source affected (P < 0.01) blood Se concentration whereas B6 level increased (P < 0.01) erythrocyte pyridoxal-5-phosphate concentration. A B6 level (P < 0.05) effect was observed on long-term plasma Se-dependent glutathione peroxidase (Se-GPX) activity whereas peri-estrus Se-GPX was minimum on d −1 (P < 0.01). Selenium level increased sows’ organs and embryo Se concentration (P < 0.01). Selenium source tended to enhance embryo Se content (P = 0.06). Within-litter embryo Se content was increased by B6 level (P < 0.01). Selenium level tended to affect Se-GPX and total GPX activities in organs mitochondria (P = 0.09 and 0.07, respectively). Selenium source affected kidney ATP synthesis (P = 0.05). In conclusion, B6 level affected the Se-GPX activity on a long-term basis, whereas the basal level of Se was adequate during the peri-estrus period. Embryo quality was not improved by dietary Se, and B6 impaired within-litter homogeneity.  相似文献   

13.
The objective of the current study was to investigate the preference of weaned pigs given the choice of diets supplemented with dl-methionine (DLM) or liquid dl-methionine hydroxy analog-free acid (MHA-FA). A basal diet (BD) was formulated to contain 2.5 g methionine (Met) per kilogram of diet. The experimental diets included: (1) BD, (2) BD + 1 g DLM/kg, (3) BD + 2 g DLM/kg, (4) BD + 1.13 g MHA-FA/kg, (5) BD + 1.52 g MHA-FA/kg, (6) BD + 2.25 g MHA-FA/kg and (7) BD + 3.05 g MHA-FA/kg. Sixty weaned mixed-sex pigs were allotted to 5 treatment groups with 12 pig replicates per treatment in a randomized complete block design. During a 35-day experimental period, pigs in treatment group 1 received the BD whereas pigs in the other 4 treatment groups were allowed to choose between a pair of diets with either added 1 g DLM/kg in combination with either 1.13 or 1.52 g MHA-FA/kg or 2 g DLM/kg in combination with 2.25 or 3.05 g MHA-FA/kg, respectively. Pigs were housed in individual pens and had free access to feed and water. Daily feed intake (FI) was used as an indicator of diet preference. Cumulatively, pigs showed a preference (% of total FI) for the diet added with 1 g/kg DLM at 74% (P<0.05) in group 2, and 65% in group 3. Irrespective of the level of MHA-FA supplementation (2.25 or 3.05 g/kg), a preference for the diet supplemented with 2 g DLM/kg was 84% (P<0.05) in groups 4 and 5. During the entire period, pigs consistently (P<0.05) consumed more and preferred the diets supplemented with DLM more than the diets supplemented with MHA-FA in groups 2, 4 and 5. The preference for diets supplemented with DLM was more pronounced at higher Met supplementation levels. Feeding pigs a pair of diets supplemented with DLM or MHA-FA improved (P<0.05) the final body weight, daily weight gain, and FCR. The performance of pigs among the Met-supplemented groups was not different. In conclusion, when given a choice pigs preferred the diets supplemented with DLM more than the diets supplemented with liquid MHA-FA.  相似文献   

14.
The impact of a social stress in gestation and an enriched pen in lactation on components of sow maternal behavior was studied in a 2 × 2 factorial experiment. At breeding, 41 sows were assigned to a social mixing stress treatment (T) during mid-gestation or a control group (C). During lactation, half of the T and C sows were housed in straw enriched pens (E) (1.57 m × 4.10 m) and the others in standard farrowing crates (S) (0.68 m × 2.10 m). The mixing stress consisted in introducing each T sow to the home pen of two unfamiliar sows twice for 1 week, from d 39 to 45 and 59 to 65 of gestation. Aggressive behavior was observed and lesion scores were taken to confirm that a social stress occurred. During lactation, the responses of sows to a simulated piglet crush test on d 3 and an isolated piglet playback test on d 21 were observed. Postural budgets of sows were automatically detected using accelerometers on d 5 and 19 of lactation. Sow-initiated social contacts with the piglets were observed continuously from video recordings on d 6 and 20 of lactation. Data were analyzed with a mixed models procedure. The social stress treatment had an impact on the response of sows to isolated piglet vocalizations with T sows showing longer latencies to respond vocally than C sows (P = 0.035). In early lactation, T sows spent more time lying ventrally than C sows (P = 0.007). Furthermore, the social stress had an impact on the space use in the enriched housing, with T sows spending less time in the nesting straw area of the pen than C sows (P = 0.018). Housing also impacted maternal behavior with E sows tending to spend more time lying ventrally than S sows in late lactation (P = 0.067) and tending to have more social contacts with their piglets than S sows in early lactation (P = 0.058). In conclusion, the social stress during gestation had a slight negative impact on sow maternal behavior, and while an enriched farrowing pen allowed for more opportunities to express maternal behavior, it did not counteract the negative effects of gestation stress.  相似文献   

15.
This study aimed to assess the interaction between vitamin B6 and selenium (Se) for the flow of Se towards the Se-dependent glutathione peroxidase (GPX) system in response to oxidative stress naturally induced by oestrus in a pubertal pig model. At first oestrus, forty-five gilts were randomly assigned to the experimental diets (n = 9/group): basal diet (CONT); CONT + 0.3 mg/kg of Na-selenite (MSeB60); MSeB60 + 10 mg/kg of HCl-B6 (MSeB610); CONT + 0.3 mg/kg of Se-enriched yeast (OSeB60); and OSeB60 + 10 mg/kg of HCl-B6 (OSeB610). Blood samples were collected at each oestrus (long-term profiles), and daily from day −4 to +3 (slaughter) of the fourth oestrus (peri-oestrus profiles) after which liver, kidneys, and ovaries were collected. For long-term profiles, CONT had lower blood Se than Se-supplemented gilts (p < 0.01) and OSe was higher than MSe (p < 0.01). Lower erythrocyte pyridoxal-5-phosphate was found in B60 than B610 (p < 0.01). No treatment effect was observed on GPX activity. For peri-oestrus profiles, treatment effects were similar to long-term profiles. Treatment effects on liver Se were similar to those for long-term blood Se profiles and OSe had higher renal Se concentrations than MSe gilts (p < 0.01). Gene expressions of GPX1, GPX3, GPX4, and selenocysteine lyase in liver and kidney were greatest in OSeB610 gilts (p < 0.05). These results suggest that dietary B6 modulate the metabolic pathway of OSe towards the GPX system during the peri-oestrus period in pubertal pigs.  相似文献   

16.
《Cytokine》2011,53(3):168-174
The present study examined the effects of aerobic training and energy restriction on adipokines levels in mesenteric (MEAT) and retroperitoneal (RPAT) white adipose tissue from obese rats. Male Wistar rats were fed with standard laboratory diet (Control group) or high fat diet (HFD). After 15 weeks, HFD rats were randomly assigned to the following groups: rats submitted to HFD, which were sedentary (sedentary HFD, n = 8) or trained (trained HFD, n = 8); or submitted to energy-restriction (ER), which were sedentary (sedentary ER, n = 8) or trained (trained ER, n = 8). Trained rats ran on a treadmill at 55% VO2max for 60 min/day, 5 days/week, for 10 weeks. ER rats were submitted to a reduction of 20% daily caloric ingestion compared to the Control group. ER and aerobic training decreased body weight, MEAT and RPAT absolute weight, and fat mass. IL-6, IL-10 and TNF-α levels were decreased and adiponectin did not change in RPAT in response to ER protocol. On the other hand, ER and the aerobic training protocol decreased IL-6, TNF-α and adiponectin levels in MEAT. Absolute MEAT weight showed a positive correlation with IL-6 (r = 0.464), TNF-α (r = 0.508); and adiponectin (r = 0.342). These results suggest a tissue-specific heterogeneous response in adipokines level. The combination of the protocols (aerobic training and energy restriction) did not induce an enhanced effect.  相似文献   

17.
Twenty eight 2–3 month old castrated male Black Bengal kids (Capra hircus) were used to determine the effects of dietary Cu concentration on lipid metabolism. These kids were randomly assigned to one of seven treatments in a ((2 × 3) + 1) factorial arrangement. Factors were two sources of Cu (CuSO4 versus Cu proteinate) fed at three dietary levels (10, 20 or 30 mg/kg) and the control group, where neither CuSO4 nor Cu proteinate were supplemented. Kids were fed a basal diet containing maize (19.5%), soybean (17.0%), deoiled rice bran (56.5%), molasses (4.0%), di-calcium phosphate and salt (1.0% each), and mineral and vitamin mixture (0.5% each) supplements, at 3.5% of BW to meet NRC requirements for protein, energy, macro minerals and micro minerals, excluding Cu. The basal diet (DM basis) contained 5.7 mg Cu/kg, 122.5 mg Fe/kg, 110 mg Zn/kg, 0.26 mg Mo/kg and 0.32% S. CuSO4 or Cu proteinate (Cu-P) was added to the basal diet at the rate of 10, 20 and 30 mg/kg. Kids were housed in a well-ventilated shed with facilities for individual feeding in aluminum plated metabolic cages in an open-sided barn. Blood samples were collected on Days 0, 30, 60 and 90 to determine serum cholesterol, high density lipoprotein (HDL), total lipid and phospholipids. Kids were slaughtered after metabolism trial and liver tissues were collected to determine the copper and zinc concentrations. Kids receiving Cu-P showed higher (P < 0.05) HDL, total lipid and phospholipid concentrations. Increase in dietary level of Cu significantly decreased (P < 0.05) serum cholesterol and increased serum HDL, total lipid and phospholipid concentrations. There was an increasing (P < 0.05) trend in liver Cu with the increased dietary level of Cu supplementation irrespective of source, but the increasing rate was greater with CuSO4 than Cu-P supplementation. Kids’ diet containing 30 mg/kg CuSO4 had 26% more liver Cu than those fed iso-amounts of Cu-P. Fecal Cu excretion was increased with the increasing dietary level of Cu, and excretion was reduced by the use of Cu-P in the diet. In conclusion, dietary supplementation of organic Cu in the form of copper proteinate had significant effects on lipid metabolism in goat kids. There was an increase in accumulation of Cu in the liver and excretion of Cu in feces with the increase of dietary level of Cu in the diet of Black Bengal kids.  相似文献   

18.
The potential mechanisms of action of polyphenols in nonalcoholic fatty liver disease (NAFLD) are overlooked. Here, we evaluate the beneficial therapeutic effects of hydroxytyrosol (HT), the major metabolite of the oleuropein, in a nutritional model of insulin resistance (IR) and NAFLD by high-fat diet. Young male rats were divided into three groups receiving (1) standard diet (STD; 10.5% fat), (2) high-fat diet (HFD; 58.0% fat) and (3) HFD + HT (10 mg/kg/day by gavage). After 5 weeks, the oral glucose tolerance test was performed, and at 6th week, blood sample and tissues (liver and duodenum) were collected for following determinations. The HT-treated rats showed a marked reduction in serum AST, ALT and cholesterol and improved glucose tolerance and insulin sensitivity, reducing homeostasis model assessment index. HT significantly corrected the metabolic impairment induced by HFD, increasing hepatic peroxisome proliferator-activated receptor PPAR-α and its downstream-regulated gene fibroblast growth factor 21, the phosphorylation of acetyl-CoA carboxylase and the mRNA carnitine palmitoyltransferase 1a. HT also reduced liver inflammation and nitrosative/oxidative stress decreasing the nitrosylation of proteins, reactive oxygen species production and lipid peroxidation. Moreover, HT restored intestinal barrier integrity and functions (fluorescein isothiocyanate-dextran permeability and mRNA zona occludens ZO-1). Our data demonstrate the beneficial effect of HT in the prevention of early inflammatory events responsible for the onset of IR and steatosis, reducing hepatic inflammation and nitrosative/oxidative stress and restoring glucose homeostasis and intestinal barrier integrity.  相似文献   

19.
Angiotensin-(1–7) and resveratrol have been described as new potential therapeutic tools on treating and preventing metabolic disorders. In the present study we aimed to evaluate the effect of an oral formulation of angiotensin-(1–7) [Ang-(1–7)] included in HPB-cyclodextrin and resveratrol (RSV), in modulation of sirtuin and renin-angiotensin system (RAS) in adipose tissue of mice treated with a high-fat diet (HFD). We observed that HFD + Ang-(1–7) and HFD + RSV groups presented marked decrease in the adipose tissue mass. Furthermore, these animals showed improved insulin-sensitivity and glucose tolerance as well as lower plasma levels of fasting glucose and lipids. The RT-PCR analysis revealed decreased expression of ACE and an increase of ACE2 [Ang-(1–7) marker] in group treated with resveratrol and also an increased expression of SIRT1 in groups that received Ang-(1–7). We showed for the first time that improved metabolic profile is associated with increased expression of GLUT4 and high expression of AMPK/FOXO1/PPAR-γ pathway in adipose-tissue. Finally, adipocyte primary cell-culture incubated with and without sirtuin and Ang-(1–7)/Mas antagonists pointed out for a cross-talking between RAS and sirtuins. We conclude that oral administration of Ang-(1–7) and RSV improved metabolic profile through a cross-modulation between RAS and Sirtuins.  相似文献   

20.
Two experiments (Exp.) were conducted to evaluate the effects of β-glucan inclusion in the diet on growth performance and immune function after lipopolysaccharide (LPS) challenge. In Exp. 1, a total of 40 weaned pigs (progeny of Landrace×Yorkshire sows by Duroc) with an initial body weight (BW) of 7.89 ± 0.84 kg (21 ± 2 d) of age) were used in a 28-day (d) experiment to determine the effects of dietary β-glucan on growth performance. Pigs were allotted randomly to two treatments consisting of addition of 0 or 0.1 g β-glucan/kg diet with four replicate pens per treatment and five pigs per pen. Growth performance was not affected by β-glucan supplementation throughout the experiment. However, dietary β-glucan reduced (P<0.05) the number of fecal Escherichia coli. In Exp. 2, a total of 20 weaned barrows (6.22 ± 0.25 kg of BW and 21 ± 2 d of age) individually raised in metabolic cages were used to evaluate immunological responses following LPS challenge. Pigs were fed 0 or 0.1 g β-glucan/kg diet for 42 d. At the end of the trial, half of the pigs (n = 5) from each treatment were injected intraperitoneal with E. coli LPS at a concentration of 100 μg/kg BW and the other half were injected with sterile saline solution. Treatments were arranged as a 2×2 factorial, with the main effect of LPS challenge (saline vs. LPS) and β-glucan supplementation (0 g/kg vs. 0.1 g/kg). After LPS injection, blood was taken at 0, 2, 4, 6, 8 and 12 hours (h) for the blood cell counts and blood inflammatory response. Dietary β-glucan increased (P<0.05) leukocytes counts at 4, 6 and 8 h, and blood lymphocyte concentrations at 2, 4 and 6 h and LPS challenge increased (P<0.05) counts of leukocytes at 2, 4, 6 and 8 h and blood lymphocyte at 2 and 4 h post-challenge. The rectal temperature was increased (P<0.05) at 2, 4, 6 and 8 h after LPS challenge. Dietary β-glucan reduced (P<0.05) and LPS challenge increased (P<0.05) blood plasma tumor necrosis factor-α (TNF-α) concentration at 2 and 4 h post-challenge. Dietary β-glucan increased (P<0.05) the concentration of the cluster of differentiation antigens 4 cells (CD4+) at 2, 4 and 6 h, and of 8 (CD8+) at 4 and 6 h post-challenge, respectively. The LPS challenge increased (P<0.05) CD4+ and CD8+ cell concentrations at 2, 4 and 6 h post-challenge. The CD4+:CD8+ ratio was reduced (P<0.05) by LPS challenge but was increased (P<0.05) by dietary β-glucan at 2, 4, 6 and 8 h post-challenge. In conclusion, dietary β-glucan decreased E. coli numbers but did not affect growth performance in weaned pigs and may offer benefits on immune function in weaned pigs challenged with LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号