首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canine copper toxicosis is an important inherited disease in Bedlington terriers, because of its high prevalence rate and similarity to human copper storage disease. It can lead to chronic liver disease and occasional haemolytic anaemia due to impaired copper excretion. The responsible gene for copper toxicosis in Bedlington terriers has been recently identified and was found not to be related to human Wilson’s disease gene ATP7B. Although our understanding of copper metabolism in mammals has improved through genetic molecular technology, the diversity of gene mutation related to copper metabolism in animals will help identify the responsible genes for non-Wilsonian copper toxicoses in human. This review paper discusses our knowledge of normal copper metabolism and the pathogenesis, molecular genetics and current research into copper toxicosis in Bedlington terriers, other animals and humans.  相似文献   

2.
Copper toxicosis is an autosomal recessive disorder affecting Bedlington terriers, characterized by elevated liver copper levels and early death of affected dogs. Genetic linkage mapping studies initially identified linkage between the disease and the microsatellite marker C04107. Subsequently, the deletion of exon 2 of the copper metabolism domain containing 1 (COMMD1) gene (formerly MURR1) was shown to be the major cause of copper toxicosis, although the deletion breakpoints were not defined. In this investigation, polymerase chain reaction (PCR)-based techniques and sequencing were used to isolate the deletion breakpoints, utilizing the newly available dog genome sequence. The breakpoints were positioned at 65.3091 and 65.3489 Mb of dog chromosome 10, in intron 1 and intron 2 of COMMD1 respectively, a deletion of 39.7 kb. The two breakpoints share sequence homology suggesting that homologous recombination may have been responsible for the deletion. Using this information, a genomic diagnostic test for the COMMD1 deletion was developed and compared with microsatellite C04107 genotypes of 40 Bedlington terriers. Results from the 40 samples showed allele 2 of C04107 to be in linkage disequilibrium with the COMMD1 deletion.  相似文献   

3.
Recently, linkage of a DNA microsatellite marker to inherited copper toxicosis has been reported in American Bedlington terrier families. Due to the fact that there is little exchange of breeding stock between the USA and Europe, it remains to be investigated whether in Europe the marker is informative and is linked with the disease. We have therefore examined the diagnostic value of the microsatellite marker in the European Bedlington. In 130 dogs at least one year of age (62 from The Netherlands, 35 from Belgium, and 33 from Germany) histo- or cytochemical staining of copper was done in liver biopsies. Based on liver histo- or cytochemistry, 51 dogs were obligate carriers, and 25 dogs had copper toxicosis. The inferred genotypes of these 76 dogs were compared with the marker genotypes. All dogs with the disease were homozygous for the 167 bp marker allele. All obligate carriers were heterozygotes with the 167 bp and a 163-bp alleles. All phenotypically healthy dogs were either homozygous for the 163 bp allele or heterozygous. Thus, the marker was in complete linkage disequilibrium with the putative copper toxicosis gene with the 167 bp allele in phase with the disease allele. The frequencies of the 167 bp and the 163 bp allele, respectively, were 0.33 and 0.67 in Dutch dogs, 0.31 and 0.69 in German dogs, and 0.57 and 0.43 in Belgian dogs. We have confirmed the utility of this marker for diagnosis of inherited copper toxicosis in European Bedlington terriers.  相似文献   

4.
A breeding programme to eradicate copper toxicosis in Danish Bedlington terriers has been established based on a DNA marker test. Genotyping of both parents is compulsory and after 1 January 2000, only homozygous non-carriers are used for breeding. In this study, two groups of Bedlington terriers were genotyped at 18 microsatellite loci. One group represented the original population of Bedlington terriers before introducing the breeding programme (n = 23); the other represented a group of homozygous non-carriers (n = 24) available for breeding after year 2000. Allele numbers, allele frequencies, observed heterozygosities (Ho), expected heterozygosities (He), locus-specific coefficients of inbreeding (Fl) and Nei's genetic distance (D) was calculated. Individual coefficients of inbreeding (Fi) were calculated from the pedigrees and an assignment test was performed. Four rare alleles were lost in the group of homozygous non-carriers. No significant differences were observed between the mean values of allele numbers, Ho, He, Fl and Fi of the two populations of dogs. Nei's genetic distance between the two populations was 0.06 and 88% of the homozygous non-carriers were assigned correctly in the assignment test. The overall diversity of the breed was low (Ho = 0.41) and the breeders were advised to include the heterozygous carriers again.  相似文献   

5.
Copper is a trace element indispensable for life, but at the same time it is implicated in reactive oxygen species formation. Several inherited copper storage diseases are described of which Wilson disease (copper overload, mutations in ATP7B gene) and Menkes disease (copper deficiency, mutations in ATP7A gene) are the most prominent ones. After the discovery in 2002 of a novel gene product (i.e. COMMD1) involved in hepatic copper handling in Bedlington terriers, studies on the mechanism of action of COMMD1 revealed numerous non-copper related functions. Effects on hepatic copper handling are likely mediated via interactions with ATP7B. In addition, COMMD1 has many more interacting partners which guide their routing to either the plasma membrane or, often in an ubiquitination-dependent fashion, trigger their proteolysis via the S26 proteasome. By stimulating NF-κB ubiquitination, COMMD1 dampens an inflammatory reaction. Finally, targeting COMMD1 function can be a novel approach in the treatment of tumors.  相似文献   

6.
7.
Background/aimWilson’s disease (WD) is a hereditary disorder characterized by abnormal metabolism of copper. For unknown reasons, the clinical picture of this disease appears to be sex-dependent. Because the metabolism of copper and iron is interrelated, we aimed to evaluate whether the variability in the clinical picture of WD could be explained by the sex difference in iron metabolism.MethodsA total of 138 WD patients were examined in this study: 39 newly diagnosed, treatment naive patients and 99 individuals already treated with decoppering drugs. The serum concentration of ceruloplasmin (Cp) and copper were measured using an enzymatic colorimetric assay and by atomic absorption spectroscopy, respectively. The parameters of iron metabolism were determined by using standard laboratory methods and enzyme immunoassays.ResultsIn the treatment naive group men had a higher median serum concentration of ferritin (290.5 vs. 81.0 ng/mL, p < 10−4), and hepcidin (Hepc) (55.4 vs. 22.8 ng/mL, p < 10-3) compared to women, and tended to have higher concentration of iron, hemoglobin (HGB) and number of red blood cells (RBC). In the treated group men had higher median ferritin (122.0 vs. 46.0 ng/mL, p < 10−4), Hepc (23.5 vs. 10.8 ng/mL, p < 10−4), iron (102.5 vs. 68.0 μg/dL, p < 10−4), HGB (15.0 vs. 13.2 g/dL, p < 10−4), and RBC (5.0 vs. 4.5 M/L, p < 10−4) than women.ConclusionIron metabolism differs between men and women with WD, which may partly explain the sex difference noted in the disease manifestation.  相似文献   

8.
High-density lipoproteins cholesterol (HDL-C) level, a strong coronary artery disease (CAD) clinical biomarker, shows significant interindividual variability. However, the molecular mechanisms involved remain mostly unknown. ATP-binding cassette A1 (ABCA1) catalyzes the cholesterol transfer from peripheral cells to nascent HDL particles. Recently, a differentially methylation region was identified in ABCA1 gene promoter locus, near the first exon. Therefore, we hypothesized that DNA methylation changes at ABCA1 gene locus is one of the molecular mechanisms involved in HDL-C interindividual variability. The study was conducted in familial hypercholesterolemia (FH), a monogenic disorder associated with a high risk of CAD . Ninety-seven FH patients (all p.W66G for the LDLR gene mutation and not under lipid-lowering treatment) were recruited and finely phenotyped for DNA methylation analyses at ABCA1 gene locus. ABCA1 DNA methylation levels were found negatively correlated with circulating HDL-C (r = -0.20; p = 0.05), HDL2-phospholipid levels (r = -0.43; p = 0.04), and with a trend for association with HDL peak particle size (r = -0.38; p = 0.08). ABCA1 DNA methylation levels were also found associated with prior history of CAD (CAD = 40.2% vs. without CAD = 34.3%; p = 0.003). These results suggest that epigenetic changes within the ABCA1 gene promoter contribute to the interindividual variability in plasma HDL-C concentrations and are associated with CAD expression. These findings could change our understanding of the molecular mechanisms involved in the pathophysiological processes leading to CAD.  相似文献   

9.
Several lines of evidence suggest that the ATP binding cassette A1 (ABCA1) is also involved in other degenerative processes such as brain neurodegeneration. Cholesterol and cAMP activate ABCA1 in a cell-specific manner. We employed a cell culture model of murine monocytes (P388) and neuroblastoma cells (N2A) and studied the differential induction of the ABCA1-gene product by modifying the cholesterol acceptor and by inhibition of the MAP-kinase pathway. Our study reveals a rise of ABCA1-expression in both N2A and P388 by cAMP. This increase is accompanied by a higher activation of the MAP-kinase-pathway. The inhibition of the MAP-kinase activation disrupts the stimulating effect of cAMP but increases the base line expression of ABCA1. Our data suggest a negative feedback between the MAP-kinase-system and ABCA1. We conclude that the interaction of the MAP-kinase pathway and the ABCA1 system might affect the function of neuronal and microglial cells in the brain.  相似文献   

10.
11.
The Wilson disease gene, a copper transporting ATPase (Atp7b), is responsible for the sequestration of Cu into secretory vesicles, and this function is exhibited by the orthologous Ccc2p in the yeast. In this study, we aimed to characterize clinically relevant new mutations of human ATP7B (p.T788I, p.V1036I and p.R1038G-fsX83) in yeast lacking the CCC2 gene. Expression of human wild type ATP7B gene in ccc2Δ mutant yeast restored the growth deficiency and copper transport activity; however, expression of the mutant forms did not restore the copper transport functions and only partially supported the cell growth. Our data support that p.T788I, p.V1036I and p.R1038G-fsX83 mutations cause functional deficiency in ATP7B functions and suggest that these residues are important for normal ATP7B function.  相似文献   

12.
BackgroundAscites is associated with the poor prognosis of malignant tumors. The biological importance of the changes in the content of trace elements in the ascitic fluid is unknown. Herein, we analyzed trace elements in the ascitic fluid of patients with ovarian tumors and used cultured cells to determine the copper (Cu)-induced changes in gene expression in ovarian cancer.MethodsInductively coupled plasma mass spectrometry (ICP-MS) was used to compare ascitic fluid trace element levels in patients with benign ovarian tumors (n = 22) and borderline/malignant tumors (n = 5) for primary screening. Cu levels were validated using atomic absorption spectrometry (AAS) in 88 benign, 11 borderline, and 25 malignant ovarian tumor patients. To confirm Cu-induced gene expression changes, microarray analysis was performed for Cu-treated OVCAR3, A2780, and Met5A cells. The vascular endothelial growth factor (VEGF) concentration in the cell supernatant or ascitic fluid (ovarian cancer samples) was measured using ELISA.ResultsICP-MS showed that Co, Ni, Cu, Zn, As, Se, and Mo levels significantly increased in patients with malignant/borderline ovarian tumors compared to those in patients with benign ovarian tumors. AAS showed that malignant ovarian tumors were independently associated with elevated levels of Cu in ascites adjusted for age, body mass index, alcohol, smoking, and supplement use (p < 0.001). Microarray analysis of both Cu-treated ovarian cancer cell lines OVCAR3 and A2780 and the mesothelial cell line Met-5A revealed the upregulation of the angiogenesis biological process. Real-time polymerase chain reaction and ELISA demonstrated that an increased Cu content significantly enhanced VEGF mRNA expression and protein secretion in OVCAR3, A2780, and Met-5A cells. VEGF levels and clinical stages of the tumors correlated with the ascitic fluid Cu content in patients with malignant ovarian tumors (correlation coefficient 0.445, 95 % confidence interval [CI]: 0.069–0.710, p = 0.023 and correlation coefficient 0.406, 95 % CI: 0.022–0.686, p = 0.040, respectively).ConclusionCu levels significantly increased in patients with malignant ovarian cancer. Cu induced angiogenic effects in ovarian cancer and mesothelial cells, which affected ascites fluid production. This study clarifies the link between elevated Cu in ascites and malignant ovarian tumor progression. Strategies to decrease Cu levels in the ascitic fluid may help downregulate VEGF expression, thereby improving the prognosis of ovarian malignancies.  相似文献   

13.
The aim of this study was to investigate the correlation between polymorphism of circadian locomotor output cycle kaput (CLOCK) gene rs4864548 A/G and susceptibility of Alzheimer’s disease (AD). A total of 296 unrelated AD patients and 423 control subjects were enrolled in the case-control study. Genotypes of apolipoprotein E (APOE) and CLOCK gene rs4864548 A/G were determined by a Polymerase Chain Reaction (PCR) restriction fragment length polymorphism detection method. Our results showed that in the whole sample or APOE ε 4 non-carriers, prevalence of A carriers in CLOCK gene rs4864548 A/G in AD patients was remarkably higher than that in control subjects (in the whole sample: χ2 = 47.614, p < 0.0001; in APOE ε 4 non-carriers: χ2 = 22.493, p < 0.0001). However, among APOE ε 4 carriers, the difference in the prevalence of A carriers in CLOCK gene rs4864548 A/G between AD patients and controls was no statistically significant (χ2 = 0.669, p = 0.379). These findings demonstrate that A carriers in CLOCK gene rs 4864548 A/G were closely related to a high susceptibility of AD among APOE ε 4 non-carriers while the functional polymorphism of CLOCK gene rs4864548 A/G was not associated with the susceptibility of AD among APOE ε 4 carriers.  相似文献   

14.
《Cell reports》2023,42(2):112120
  1. Download : Download high-res image (87KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
Leucine uptake by Saccharomyces cerevisiae is mediated by three transport systems, the general amino acid transport system (GAP), encoded by GAP1, and two group-specific systems (S1 and S2), which also transport isoleucine and valine. A new mutant defective in both group-specific transport activities was isolated by employing a gap1 leu4 strain and selecting for trifluoroleucine-resistant mutants which also showed greatly reduced ability to utilize l-leucine as sole nitrogen source and very low levels of [14C]l-leucine uptake. A multicopy plasmid containing a DNA fragment which complemented the leucine transport defect was isolated by selecting for transformants that grew normally on minimal medium containing leucine as nitrogen source and subsequently assaying [14C]l-leucine uptake. Transformation of one such mutant, lep1, restored sensitivity to trifluoroleucine. The complementing gene, designated LEP1, was subcloned and sequenced. The LEP1 ORF encodes a large protein that lacks characteristics of a transporter or permease (i.e., lacks hydrophobic domains necessary for membrane association). Instead, Lep1p is a very basic protein (pI of 9.2) that contains a putative bipartite signal sequence for targeting to the nucleus, suggesting that it might be a DNA-binding protein. A database search revealed that LEP1 encodes a polypeptide that is identical to Sac3p except for an N-terminal truncation. The original identification of SAC3 was based on the isolation of a mutant allele, sac3-1, that suppresses the temperature-sensitive growth defect of an actin mutant containing the allele act1-1. Sac3p has been previously shown to be localized in the nucleus. When a lep1 mutant was crossed with a sac3 deletion mutant, no complementation was observed, indicating that the two mutations are functionally allelic.  相似文献   

17.

Purpose

In the past decade, a number of case–control studies have been carried out to investigate the relationship between ABCA1 polymorphisms and Alzheimer's disease (AD). However, these studies have yielded contradictory results. To investigate this inconsistency, a meta-analysis was performed.

Methods

Databases including PubMed, Web of Science, EMBASE and CNKI were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association.

Results

A total of 13 case–control studies, involving 6214 patients and 6034 controls for ABCA1 polymorphisms were included. In a combined analysis, the summary per-allele odds ratio for AD of the 219 K was 1.03 (95% CI: 0.93–1.14, p = 0.56). A meta-analysis of studies on the 883 M and 1587 K variant showed no significant overall association with AD, yielding a per-allele odds ratio of 1.10 (95% CI: 0.96–1.26, p = 0.16), and 1.09 (95% CI: 0.97–1.24, p = 0.16) respectively. Similar results were also found for heterozygous and homozygous. In the subgroup analysis by ethnicity, sample size, APOE status and onset type, no significant associations were found in almost all genetic models.

Conclusions

In summary, there was no significant association detected between ABCA1 R219K, I883M and R1587K polymorphisms and risk for AD.  相似文献   

18.
An isopeptide of amyloid β peptide 1–42 (isoAβ42) was considered as a non-aggregative precursor molecule for the highly aggregative Aβ42. It has been applied to biological studies after several pretreatments. Here we report that isoAβ42 is monomeric with a random coil structure at 40 μM without any pretreatment. But we also found that isoAβ42 retains a slight aggregative nature, which is significantly weaker than that of the native Aβ42.  相似文献   

19.
STIM1 is an endoplasmic reticulum(ER) protein with a key role in Ca~(2+)mobilization. Due to its ability to act as an ER-intraluminal Ca~(2+) sensor, it regulates store-operated Ca~(2+) entry(SOCE), which is a Ca~(2+) influx pathway involved in a wide variety of signalling pathways in eukaryotic cells. Despite its important role in Ca~(2+) transport, current knowledge about the role of STIM1 in neurons is much more limited. Growing evidence supports a role for STIM1 and SOCE in the preservation of dendritic spines required for long-term potentiation and the formation of memory. In this regard, recent studies have demonstrated that the loss of STIM1, which impairs Ca~(2+) mobilization in neurons, risks cell viability and could be the cause of neurodegenerative diseases. The role of STIM1 in neurodegeneration and the molecular basis of cell death triggered by low levels of STIM1 are discussed in this review.  相似文献   

20.
We compared immunohistochemical (IHC) staining of tissue sections of liver, kidney, spleen, lung, proventriculus, sciatic nerve, bursa of Fabricius, brain, heart, intestine and skin; immunocytochemical (ICC) staining of peripheral blood samples and touch preparations of liver, spleen and kidney of laying hens naturally infected with Marek’s disease (MD) virus. We used one hundred and fifty 5-17-week-old commercial hens. IHC and ICC staining were performed using polymer-based techniques. IHC staining exhibited mostly free immunopositive reactions in tumor cells and in the cytoplasm of the parenchymal cells of liver, kidney, spleen and bursa of Fabricius. In the sciatic nerve, severe reactions were observed in the cytoplasm of plasma and MD cells in the lymphoproliferative areas. Pronounced staining was found in the lymphoid cells in the medulla of intrafollicular regions in the bursa of Fabricius. Although immunostaining was observed in the liver and spleen touch preparations, there was no staining in the kidneys and peripheral blood cell samples. The presence of virus in the tissue and peripheral blood samples and in touch preparations was compared immunohistochemically and immunocytochemically. IHC and ICC techniques were helpful for diagnosis of MD. Peripheral blood samples are inappropriate for field conditions and natural infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号