首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马尾松与湿地松人工林生物量动态及养分循环特征   总被引:21,自引:1,他引:21  
田大伦  项文化  闫文德 《生态学报》2004,24(10):2207-2210
对乡土树种马尾松和引进外来树种湿地松人工林的生物量动态变化、养分积累与分配以及养分循环特征进行比较 ,结果表明 :在林分生长发育早期 ,马尾松生长慢 ,而湿地松生长快 ,生长发育后期马尾松生长速度比湿地松快。马尾松人工林生物量的数量成熟年龄为 36 a,采伐利用时的最大生物量为 4 34t/ hm2 ;湿地松的为 2 6 a,采伐利用时的最大生物量为 338t/ hm2。湿地松人工林各器官和总的养分积累量均高于马尾松 ,其中养分的总积累量是马尾松的 2倍多 ,树干高达 5倍多。在采伐利用时 ,不管是全树利用还是仅利用干材 ,同马尾松相比 ,湿地松林将带走更多的养分 ,对地力的养分消耗量更大。同时 ,湿地松林养分循环速率低 ,周转时间长 ,需要的养分多 ,比马尾松林维持地力的能力差。因此 ,在湿地松人工林的经营管理过程 ,更应处理好养地与用地之间的关系 ,否则会造成林地生产力的下降  相似文献   

2.
植物与土壤微生物在调控生态系统养分循环中的作用   总被引:14,自引:0,他引:14       下载免费PDF全文
陆地生态系统的地上、地下是相互联系的。植物与土壤微生物作为陆地生态系统中的重要组成部分, 它们之间的相互作用是生态系统地上、地下结合的重要纽带。该文首先介绍了植物在养分循环中对营养元素的吸收、积累和归还等作用, 阐述了土壤微生物对养分有效性及土壤质量具有重要的作用。其次, 重点综述了植物与土壤微生物之间相互依存、相互竞争的关系。植物通过其凋落物与分泌物为土壤微生物提供营养, 土壤微生物作为分解者提供植物可吸收的营养元素, 比如共生体菌根真菌即可使植物根与土壤真菌达到互惠。然而, 植物的养分吸收与微生物的养分固持同时存在, 因而两者之间存在对养分的竞争。通过植物多样性对土壤微生物多样性的影响分析, 以及土壤微生物直接或间接作用于植物多样性和生产力的分析, 探讨了植物物种多样性与土壤微生物多样性之间的内在联系。针对当前植物与土壤微生物对养分循环的调控机制的争论, 提出植物凋落物是调节植物与土壤微生物养分循环的良好媒介, 植物与土壤微生物的共同作用对维持整个生态系统的稳定性具有重要意义。也指出了目前在陆地生态系统地上、地下研究中存在的不足和亟待解决的问题。  相似文献   

3.
In a Scots pine forest stand, demineralized water and a complete set of nutrients with water were applied to the soil by means of frequent irrigation for four years in order to eliminate water and nutrient shortage of the trees. Apart from this optimization, dissolved (NH4)2SO4 was irrigated at a rate of 120 kg N ha-1 y-1 to create a situation of N excess. Effect of treatments on tree growth and chemical composition of soil water and vegetation were monitored. From the first treatment year onwards basal area growth increased by ca. 35% as a result of the increased water supply. Nutrient applications increased K and P concentrations in pine needles immediately, but growth was enhanced only in the fourth treatment year and coincided with an improved K supply. Most of the applied P and K was retained in the soil, and only 6% was recovered in the vegetation. Tree nutrient status did not respond on Ca and Mg applications, whereas Ca and Mg seepage losses were increased with ca. 5 kg ha-1 y-1. The applied NH4 was mostly retained in the 0–20 cm surface soil and caused a drastic increase of Al in soil solution. Tree growth was stimulated initially by extra NH4, but was hampered after three years obviously because of a decreased P nutrition. The applied base cations were absorped to the soil and the accompanying anions were leached, thus temporarily increasing the acidification of the soil solution.  相似文献   

4.
free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta‐analytic techniques, we summarized the results of 117 studies on plant biomass production, soil organic matter dynamics and biological N2 fixation in FACE and OTC experiments. The objective of the analysis was to determine whether elevated CO2 alters nutrient cycling between plants and soil and if so, what the implications are for soil carbon (C) sequestration. Elevated CO2 stimulated gross N immobilization by 22%, whereas gross and net N mineralization rates remained unaffected. In addition, the soil C : N ratio and microbial N contents increased under elevated CO2 by 3.8% and 5.8%, respectively. Microbial C contents and soil respiration increased by 7.1% and 17.7%, respectively. Despite the stimulation of microbial activity, soil C input still caused soil C contents to increase by 1.2% yr?1. Namely, elevated CO2 stimulated overall above‐ and belowground plant biomass by 21.5% and 28.3%, respectively, thereby outweighing the increase in CO2 respiration. In addition, when comparing experiments under both low and high N availability, soil C contents (+2.2% yr?1) and above‐ and belowground plant growth (+20.1% and+33.7%) only increased under elevated CO2 in experiments receiving the high N treatments. Under low N availability, above‐ and belowground plant growth increased by only 8.8% and 14.6%, and soil C contents did not increase. Nitrogen fixation was stimulated by elevated CO2 only when additional nutrients were supplied. These results suggest that the main driver of soil C sequestration is soil C input through plant growth, which is strongly controlled by nutrient availability. In unfertilized ecosystems, microbial N immobilization enhances acclimation of plant growth to elevated CO2 in the long‐term. Therefore, increased soil C input and soil C sequestration under elevated CO2 can only be sustained in the long‐term when additional nutrients are supplied.  相似文献   

5.
橡胶人工林养分循环通量及特征   总被引:3,自引:0,他引:3  
对不同树龄的PR107无性系橡胶人工林N、P、K 3种元素的养分循环通量及特征进行了研究.结果表明:(1)橡胶林生态系统养分循环通量中养分总吸收量为315.28~949.13 kg/hm2,总存留量为282.78~714.51 kg/hm2,总归还量为32.50~205.74 kg/hm2,胶乳总损失量为10.18~37.73 kg/hm2,土壤中养分总输入量为111.73~652.79 kg/hm2,总输出量为315.28~949.13 kg/hm2,平均亏损量为-249.94 kg/hm2,各循环通量都随着树龄的增加而增大,其中3种养分元素的大小顺序均为N>K>P;(2)胶林生态系统养分循环特征参数中吸收系数随林分生长呈凸抛物线变化(先增大后减小),归还系数逐渐上升,存留系数不断下降,周转时间加快,而6a后,胶林的枯落物养分平衡指数与土壤养分平衡指数开始下降,胶园土壤养分收支失衡,另外,产胶对养分的利用效率在14a前后表现为先升高后降低;(3)不同元素循环特征参数有差异.吸收系数、归还系数中的大小顺序为N>P>K,存留系数为K>P>N,枯落物养分平衡指数为K>N>P,土壤养分平衡指数为P>N>K,养分利用率为P>K>N,表明N的流动性大,故循环速率最快,循环水平最高,其次是K,而P的循环速率最慢,水平最低.  相似文献   

6.
We measured net ecosystem CO2 exchange (NEE), plant biomass and growth, species composition, peat microclimate, and litter decomposition in a fertilization experiment at Mer Bleue Bog, Ottawa, Ontario. The bog is located in the zone with the highest atmospheric nitrogen deposition for Canada, estimated at 0.8–1.2 g N m−2 yr−1 (wet deposition as NH4 and NO3). To establish the effect of nutrient addition on this ecosystem, we fertilized the bog with six treatments involving the application of 1.6–6 g N m−2 yr−1 (as NH4NO3), with and without P and K, in triplicate 3 m × 3 m plots. The initial 5–6 years have shown a loss of first Sphagnum, then Polytrichum mosses, and an increase in vascular plant biomass and leaf area index. Analyses of NEE, measured in situ with climate‐controlled chambers, indicate that contrary to expectations, the treatments with the highest levels of nutrient addition showed lower rates of maximum NEE and gross photosynthesis, but little change in ecosystem respiration after 5 years. Although shrub biomass and leaf area increased in the high nutrient plots, loss of moss photosynthesis owing to nutrient toxicity, increased vascular plant shading and greater litter accumulation contributed to the lower levels of CO2 uptake. Our study highlights the importance of long‐term experiments as we did not observe lower NEE until the fifth year of the experiment. However, this may be a transient response as the treatment plots continue to change. Higher levels of nutrients may cause changes in plant composition and productivity and decrease the ability of peatlands to sequester CO2 from the atmosphere.  相似文献   

7.
The influence of stand development on nutrient demand,growth and allocation   总被引:1,自引:0,他引:1  
Miller  Hugh G. 《Plant and Soil》1995,(1):225-232
As an even-aged stand develops growth is concentrated first on leaves and fine roots, as a result nutrient accumulation is very rapid. During this early stage there is a distinct species effect whereas later nutrient uptake becomes a function of growth rate irrespective of species. Once canopy is closed up to two thirds of the nutrients required for growth can be obtained by retranslocation from older or dying tissues, an efficient conservation mechanism that leads to a reduction in the demands that are further reduced by the cycle through the litter layer. In consequence nutritional problems are most likely in the early years while the green crown is being constructed. Later in the rotation problems are unlikely unless nutrient cycles are disturbed, for example by thinning or as a result of excessive accumulation of humus. The eventual clear felling is a major disruption to nutrient cycles. Accelerated litter decomposition can lead to leaching losses, although this can be short lived, and burning if practised can have a major impact on poor sites. Nutrient loss in material removed from the felling site, whether or not harvested, is not high but is much increased if crowns are removed, particularly for the heavily crowned species. The importance of such loss clearly varies with site but may be significant for more than just loss of nitrogen, with loss of calcium, phosphorus or even organic matter per se all being possibly causes of worry.  相似文献   

8.
拜得珍  纪中华  沙毓沧 《生态学报》2007,27(3):1093-1098
通过样方调查和采样,对元谋干热区2年生不同种植密度木豆人工林养分的营养循环和养分利用效率进行了研究。结果表明,不同种植密度下林分的营养循环表现出了一定的差异性,而养分的利用效率则一样。0.8×0.8m2、1.0×0.8m2和1.0×1.0m2种植密度下林分的养分吸收量分别为1497.64、1326.26和1046.00kg/(hm.2a),其中从土壤中年吸收养分量以Ca最多,N、K次之,Mg、P再次,Fe、Cu最少,且随种植密度的增大呈增加趋势;养分的归还量分别为476.30、729.95和518.98kg/(hm.2a);存留量分别为753.34、596.3和527.07kg/(hm.2a);大量元素养分的循环速率分别为0.49、0.55和0.49,微量元素养分循环速率分别为0.79、0.83和0.80。据此提出,对于生长旺盛后期的林分,采取适量施肥和调整林分密度等经营措施,提高养分的利用效率,增加林分对养分的吸收量和存留量。同时得出1.0×0.8m2的种植密度更有利于系统内营养元素的生物循环、养分利用效率和保持地力持久。与油松、刺槐、板栗、锥栗等相比,木豆对养分的利用效率明显偏低。  相似文献   

9.
陈凯  刘增文  李俊  田楠  时腾飞 《生态学报》2011,31(23):7022-7030
对森林生态系统进行分类是认识森林生态过程的根本途径,传统的从结构角度对森林生态系统分类只能反映森林的外在特征,而无法从功能角度区别森林的本质差异.通过对黄土高原3个生物气候区18个不同森林生态系统的养分循环特征测算和分析,选取了能全面反映养分的积累和分布(生物量、枯落物积累量、养分积累量)、循环通量(年吸收量、年存留量、年归还量)以及养分循环效率(循环系数、利用系数、养分生产力)等多方面指标作为分类指标体系,利用自组织映射特征网络(SelfOrganizing Feature Maps,SOFM)聚类方法,从养分循环的角度将黄土高原森林生态系统划分为2个一级类型,6个二级类型.该分类结果与实际较符,从而探索了森林生态系统的功能分类方法,也验证了SOFM网络模型应用于森林养分循环分类的可行性.  相似文献   

10.
环境中硒的生物地球化学循环和营养调控及分异成因   总被引:32,自引:0,他引:32  
赵少华  宇万太  张璐  沈善敏  马强 《生态学杂志》2005,24(10):1197-1203
硒是环境中重要的生命元素,它在环境中含量水平的高低直接影响着人及动植物的健康安全。结合国内外资料及最新的研究进展,阐述了环境中硒的生物地球球化学循环,包括环境中硒的生物地球化学循环特征,土壤中硒的含量分布、形态及有效性,大气和水环境中硒的形态分布,植物体中的硒及其对硒的吸收关系;讨论了低硒高硒环境中硒营养水平的调节及环境分异的成因,诸如母质类型、气候特征、风化淋失、气体挥发、土壤质地和地力耗竭等方面;并提出了环境中硒研究的前沿及今后关注的热点问题,以促进今后环境中硒的研究。  相似文献   

11.
Ecologists have long recognized that species are sustained by the flux, storage and turnover of two biological currencies: energy, which fuels biological metabolism and materials (i.e. chemical elements), which are used to construct biomass. Ecological theories often describe the dynamics of populations, communities and ecosystems in terms of either energy (e.g. population-dynamics theory) or materials (e.g. resource-competition theory). These two classes of theory have been formulated using different assumptions, and yield distinct, but often complementary predictions for the same or similar phenomena. For example, the energy-based equation of von Bertalanffy and the nutrient-based equation of Droop both describe growth. Yet, there is relatively little theoretical understanding of how these two distinct classes of theory, and the currencies they use, are interrelated. Here, we begin to address this issue by integrating models and concepts from two rapidly developing theories, the metabolic theory of ecology and ecological stoichiometry theory. We show how combining these theories, using recently published theory and data along with new theoretical formulations, leads to novel predictions on the flux, storage and turnover of energy and materials that apply to animals, plants and unicells. The theory and results presented here highlight the potential for developing a more general ecological theory that explicitly relates the energetics and stoichiometry of individuals, communities and ecosystems to subcellular structures and processes. We conclude by discussing the basic and applied implications of such a theory, and the prospects and challenges for further development.  相似文献   

12.
Biomass, production, and nutrient distribution of a pure Quercus variabilis Bl. stand (stand 1) and two mixed Q. variabilisQ. mongolica Fisch. stands (stand 2 and 3) were investigated in central Korea. Stand 1 naturally occurred on a site with a southern aspect while stand 2 and stand 3 occurred on sites with a northern aspect. Total (overstory+understory vegetation) biomass (tha-1) and annual production (tha–1year–1) were 137.8 and 11.1 for stand 1, 216.2 and 16.6 for stand 2, and 253.3 and 19.7 for stand 3. Nutrient contents (kgha–1) in the vegetation were distributed as follows: K, 478–860; N, 471–839; Ca, 428–791; Mg, 72–125; Na, 77–141; and P, 37–71, and were greatest in stand 3 followed by stand 2, and stand 1. Stand density influenced the differences in biomass, annual production and nutrient contents in the vegetation. Forest floor dry mass and N content (kgha–1) were 13400 and 169 for stand 1, 10400 and 133 for stand 2, and 11200 and 127 for stand 3. Total amounts of N, P and Na in the ecosystem were greatest in the upper 40cm of mineral soil followed by the vegetation and forest floor. However, the vegetation contained a greater amount of K than the mineral soil. It appeared that microenvironments, such as, aspect influenced the distribution of natural oak species within a relatively small area and resulted in differences in biomass, production and nutrient distribution among the stands.  相似文献   

13.
喀斯特生态系统退化导致植被群落结构简单、系统生态功能逐渐丧失与稳定性不断下降,这些退化特征皆与系统生物量结构和生物地球化学循环特征密切相关。采用实地调查和典型取样方法,探讨了贵州省普定县3个不同退化程度的喀斯特生态系统生物量结构与养分分布格局。结果表明:(1)随着生态系统不断退化,植被地上部分生物量和土壤有效态养含量呈下降趋势,植物营养物质通过凋落物返还土壤的比例也呈类似的趋势,而细根和草本植物等活性生物组分的生物量却呈现上升趋势。(2)对应于生物量结构的变化,各组分主要养分储量也呈现相似的变化特征。乔木林枯落物层养分(N和P)累积量显著高于草本层和细根部分,而灌木林和灌草丛系统草本层和细根部分的养分储量超过或接近枯落物层。(3)随着生态系统不断退化,N和P的生物吸收率、生物返还率、生物迁移率和生物分解率出现明显变化,生物吸收率和生物分解率呈现明显下降趋势,而生物迁移率和生物返还率却表现出上升趋势。  相似文献   

14.
Singh  Bajrang 《Plant and Soil》1998,203(1):15-26
Three clones of Populus deltoides were raised on the degraded soils of Gangetic alluvium in north India (26°45 N; 80°53E). The soil was compact, sodic and impervious to water associated with nutrient deficiency or toxicity. Clones G3 and G48 produced nearly similar biomass of 49 t ha-1 at 10 yr, whereas, clone D121 did not perform well. All the clones depicted a polynomial growth pattern of net productions during 5–10 yr culminating on 8–9 yr. Clone G48 outscored in net production and its nutrient demand particularly for N was relatively less than other two clones. A high nitrogen requirement of clone G3 was accomplished by adopting a tight cycling through greater retranslocations from the senescising leaf and lesser return by litter fall. Whereas, the process for P and K contents did not vary between the clones G3 and G48. In contrast, a lose cycling of nutrient by clone G48, increased its nutrient use efficiency based on net production per unit of nutrient uptake or requirement except to K and Ca elements. Grass communities contributed significantly in efficient nutrient recycling and soil amelioration. Symptoms of nutrient depletion in the soil have not been yet distinguished during the five years and rather soil was ameliorated to some extent through the elevated levels of total N, exchangeable Ca and Mg contents. A marked reduction of exchangeable Na content in the soil, particularly by G48 clone, would be in favour of plant productivity to next rotation as the Na toxicity in sodic soils limits the plant growth. Clone G3 dominated in nutrient removal from the site during wood extraction. This study infers that clone G48 has a modest potential of cropping at a short rotation of 9 yr, preferably under an agroforestry land use system on such degraded soils.  相似文献   

15.
16.
K. D. Hyde  S. Y. Lee 《Hydrobiologia》1995,295(1-3):107-118
Recent investigations have increased our knowledge of the ecology of mangrove fungi. In this paper this information is reviewed with emphasis on biogeography, biodiversity, differences in the tropical and subtropical mycoflora, fungal distribution on mangroves trees, host specificity, vertical zonation and distribution with salinity. Gaps in our knowledge are discussed. There is little knowledge of the role of mangrove fungi in nutrient cycling which is also reviewed. Areas in which knowledge is deficient include quantification techniques for fungal abundance, the nature and activities of fungal extracellular enzymes and fungal modification of mangrove detritus matter, especially the dissolved form.  相似文献   

17.
爬山虎是典型的亚热带木本攀援植物,在垂直绿化、植被恢复和水土保持等方面的应用日益普遍,而营养元素对爬山虎生长的影响还缺乏研究,这不利于爬山虎的生长调控与合理应用。通过水培试验,对不同氮素水平(0、0.15、0.3、0.45、0.6、0.75g.L-1)条件下爬山虎幼苗生长、氮磷钾营养分配和利用状况作了研究。结果表明:供氮水平的提高能显著促进植株的生物量增加,并影响茎叶的生物量分配比例,供氮处理的叶生物量占总生物量的50%以上;供氮水平的提高能增加植株根、茎、叶的氮含量,对磷含量影响不显著,对茎叶中的钾含量有一定的稀释作用;叶片是主要的氮养分贮存器官,叶片氮累积量达到整个植株总氮累积量的60%以上;供氮水平的增加,降低了爬山虎的氮利用率,提高了磷钾的利用率。  相似文献   

18.
Nutrient availability influences virtually every aspect of an ecosystem, and is a critical modifier of ecosystem responses to global change. Although this crucial role of nutrient availability in regulating ecosystem structure and functioning has been widely acknowledged, nutrients are still often neglected in observational and experimental synthesis studies due to difficulties in comparing the nutrient status across sites. In the current study, we explain different nutrient‐related concepts and discuss the potential of soil‐, plant‐ and remote sensing‐based metrics to compare the nutrient status across space. Based on our review and additional analyses on a dataset of European, managed temperate and boreal forests (ICP [International Co‐operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests] Forests dataset), we conclude that the use of plant‐ and remote sensing‐based metrics that rely on tissue stoichiometry is limited due to their strong dependence on species identity. The potential use of other plant‐based metrics such as Ellenberg indicator values and plant‐functional traits is also discussed. We conclude from our analyses and review that soil‐based metrics have the highest potential for successful intersite comparison of the nutrient status. As an example, we used and adjusted a soil‐based metric, previously developed for conifer forests across Sweden, against the same ICP Forests data. We suggest that this adjusted and further adaptable metric, which included the organic carbon concentration in the upper 20 cm of the soil (including the organic fermentation‐humus [FH] layer), the C:N ratio and of the FH layer, can be used as a complementary tool along with other indicators of nutrient availability, to compare the background nutrient status across temperate and boreal forests dominated by spruce, pine or beech. Future collection and provision of harmonized soil data from observational and experimental sites is crucial for further testing and adjusting the metric.  相似文献   

19.
Moose (Alces alces) browsing on diamondleaf willow (Salix planifolia pulchra) caused significant increases in subsequent growth of stems and leaves in treeline plant communities in central Alaska, USA. Willows growing in the shade were significantly more palatable for moose than those growing in the sun. Moose density had strong effects on rates of nutrient cycling, ostensibly through effects of browsing and inputs from fecal and urinary nitrogen. Moose are a keystone herbivore that likely mediate rates of nutrient cycling in northern ecosystems.  相似文献   

20.
设置4个营养水平(I: 0.5 mg N·L-1, 0.1 mg P·L-1; II: 1.5 mg N·L-1, 0.3 mg P·L-1; III: 4.5 mg N·L-1, 0.9 mg P·L-1; Ⅳ: 13.5 mg N·L-1, 2.7 mg P·L-1), 研究了水体营养水平、物种组合及其交互作用对入侵漂浮植物凤眼莲、本地扎根浮叶植物黄花水龙和沉水植物苦草生物量累积与分配的影响.结果表明:随营养水平的升高,4个营养水平的凤眼莲和黄花水龙单种和混种的总生物量及茎叶生物量都呈上升趋势,凤眼莲和黄花水龙的总生物量在Ⅲ、Ⅳ处理下平均比Ⅰ、Ⅱ处理下分别增加了54.47%和102.63%;不同植物组合下,苦草各部分生物量呈下降趋势,Ⅲ、Ⅳ处理的总生物量比Ⅰ、Ⅱ处理平均降低了45.88%;经双因素分析,水体营养水平对凤眼莲和黄花水龙生物量有极显著的正影响(P<0.01),对苦草生物量有极显著的负影响(P<0.01);而植物组合的影响随目标植物的不 同呈现出差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号