首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of the coiled-coil motif in interactions mediated by TPD52   总被引:2,自引:0,他引:2  
TPD52 (D52)-like proteins are small coiled-coil motif-bearing proteins first identified through their expression in human breast carcinoma that mutually interact in hetero- and homomeric fashions. However, it has been unclear whether the coiled-coil motif is sufficient, or even necessary, for these interactions to occur. We have therefore examined the binding activities of a panel of C-terminally deleted D52 proteins in both the yeast two-hybrid system and pull-down assays. In the yeast two-hybrid system, interactions were only detected when regions C-terminal to the coiled-coil motif were also present. However, using pull-down assays, interactions were detected for all deletion mutants which included the coiled-coil motif. This suggests that the coiled-coil motif is indeed necessary for interactions mediated by D52 proteins, but that C-terminal protein regions facilitate and/or stabilize these interactions.  相似文献   

3.
The TPD52 (tumor protein D52)-like proteins are small coiled-coil motif-bearing proteins which were first identified though their expression in human breast carcinoma. TPD52-like proteins are known to interact in hetero-and homomeric fashions, but there are no known heterologous binding partners for these proteins. We now report the cloning of a novel member of the MAL proteolipid family, named MAL2, though its interaction with a TPD52L2 bait in a yeast two-hybrid screen. MAL2 is predicted to be 176 residues (19 kDa) with four transmembrane domains and is 35.8% identical to MAL, a proteolipid required in apical vesicle transport. The MAL2 prey bound all TPD52-like baits tested in the yeast two-hybrid system and in vitro translation of MAL2 produced a single 19-kDa (35)S-labeled protein which specifically bound full-length GST-Tpd52 in GST pull-down assays. The gene MAL2, which was localized to human chromosomal band 8q23 and shown to consist of four exons, is predominantly expressed in human kidney, lung, and liver. Our study has therefore identified a novel member of the MAL proteolipid family and potentially implicates TPD52-like proteins in vesicle transport.  相似文献   

4.
The tumor protein D52 family: many pieces, many puzzles   总被引:4,自引:0,他引:4  
Tumor protein D52-like proteins are small coiled-coil motif bearing proteins which are conserved from lower organisms to human. The founding member of the family, human D52, has principally attracted research interest due to its frequent overexpression in cancer, often in association with D52 gene amplification. This review summarises published literature concerning this protein family since their discovery, which is highlighting an increasing diversity of functions for D52-like proteins. This in turn highlights a need for more comparative functional analyses, to determine which functions are conserved and which may be isoform-specific. This knowledge will be crucial for any future manipulation of D52 function in human disease, including cancer.  相似文献   

5.
6.
Membrane traffic is an important regulator of cell migration through the endocytosis and recycling of cell surface receptors such as integrin heterodimers. Intracellular nanovesicles (INVs) are transport vesicles that are involved in multiple membrane trafficking steps, including the recycling pathway. The only known marker for INVs is tumor protein D54 (TPD54/TPD52L2), a member of the TPD52-like protein family. Overexpression of TPD52-like family proteins in cancer has been linked to poor prognosis and an aggressive metastatic phenotype, which suggests cell migration may be altered under these conditions. Here, we show that TPD54 directly binds membrane and associates with INVs via a conserved positively charged motif in its C terminus. We describe how other TPD52-like proteins are also associated with INVs, and we document the Rab GTPase complement of all INVs. Depletion of TPD52-like proteins inhibits cell migration and invasion, while their overexpression boosts motility. We show that inhibition of migration is likely due to altered recycling of α5β1 integrins in INVs.  相似文献   

7.
Tumor protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54, and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical (e.g., COPI and COPII) transport vesicles. Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by four amphipathic helices (AH1-4), which could fold upon binding to lipid membranes. Limited proteolysis, CD spectroscopy, tryptophan fluorescence, and cysteine mutagenesis coupled to covalent binding of a membrane-sensitive probe showed that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. Furthermore, site-directed mutagenesis indicated that AH2 and AH3 have a predominant role in TPD54 binding to membranes both in cells and using model liposomes. We found that AH3 has the physicochemical features of an amphipathic lipid packing sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Accordingly, we observed that binding of TPD54 to liposomes is very sensitive to membrane curvature and lipid unsaturation. We conclude that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and ALPS-independent mechanisms.  相似文献   

8.
Tumor protein D52 (TPD52) is involved in transformation and metastasis and has been shown to be over-expressed in tumor cells compared to normal cells and tissues. Murine TPD52 (mD52) shares 86% protein identity with the human TPD52 orthologue (hD52). To study TPD52 protein as a target for active vaccination recombinant, mD52 was administered as a protein-based vaccine. Naïve mice were immunized with either mD52 protein and CpG/ODN as a molecular adjuvant or CpG/ODN alone. Two weeks following the final immunization, mice were challenged s.c. with syngeneic tumor cells that over-express mD52. Two distinct murine tumor cell lines were used for challenge in this model, mKSA and 3T3.mD52. Half of the mice immunized with mD52 and CpG/ODN rejected or delayed onset of mKSA s.c. tumor cell growth, and 40% of mice challenged with 3T3.mD52 rejected s.c. tumor growth, as well as the formation of spontaneous lethal lung metastases. Mice immunized with mD52 and CpG/ODN generated detectable mD52-specific IgG antibody responses indicating that mD52 protein vaccination induced an adaptive immune response. In addition, mice that rejected tumor challenge generated tumor-specific cytotoxic T lymphocytes’ responses. Importantly, microscopic and gross evaluation of organs from mD52 immunized mice revealed no evidence of autoimmunity as assessed by absence of T cell infiltration and absence of microscopic pathology. Together, these data demonstrate that mD52 vaccination induces an immune response that is capable of rejecting tumors that over-express mD52 without the induction of harmful autoimmunity.  相似文献   

9.
10.
In the present study, we characterized an evolutionarily conserved non-transmembrane ATP-binding cassette protein: hABCF3. Subcellular immunofluorescence staining demonstrated that hABCF3 localizes preferentially in cytoplasm, unlike its paralog protein hABCF1, which localizes in both cytoplasm and nucleus. Quantitative realtime PCR analysis revealed that hABCF3 is expressed in all tissues examined, with high expression level in heart, liver, and pancreas. Interestingly, ectopic hABCF3 promoted proliferation of human liver cancer cell lines. Moreover, knock down of hABCF3 protein expression by siRNA inhibited cell proliferation. In addition, we identified TPD52L2 (Tumor Protein D52-like 2) as a hABCF3 interacting protein via yeast two-hybrid. This interaction was further confirmed by in vivo co-immunoprecipitation and co-localization assays. Furthermore, we identified the interactional region of hABCF3 to be the first 200 amino acids uncharacterized region. Notably, the truncated version of hABCF3, which lacks the TPD52L2 binding region, remarkably impaired hABCF3-mediated cell proliferation. Taken together, these findings suggest that hABCF3 positively regulates cell proliferation, at least partially through the interaction with a tumor protein D52 protein family member: TPD52L2.  相似文献   

11.
肿瘤蛋白D52家族近年来引起了人们的研究兴趣。D52最早是从人乳腺癌中发现的。该家族成员分子中都含有一个叫做Coli-Coli基序的高度保守结构域,这个结构域在低等生物到哺乳动物或者同种生物的不同成员间也是高度保守的。已有的研究表明该家族成员可以通过选择性剪接的方式产生功能不同的拼接体。D52家族基因在多种癌症中广泛扩增,蛋白表达水平升高。目前认为,他们的基因功能可能与包括癌症在内的人类疾病相关,关于这个家族成员发挥作用的分子机制还有待于进一步的探讨。  相似文献   

12.
Tumor protein D52 (TPD52) is overexpressed in different cancers, but its molecular functions are poorly defined. A large, low-stringency yeast two-hybrid screen using full-length TPD52 bait identified known partners (TPD52, TPD52L1, TPD52L2, MAL2) and four other preys that reproducibly bound TPD52 and TPD52L1 baits (PLP2, RAB5C, GOLGA5, YIF1A). PLP2 and RAB5 interactions with TPD52 were confirmed in pull down assays, with interaction domain mapping experiments indicating that both proteins interact with a novel binding region of TPD52. This study provides insights into TPD52 functions, and ways to maximise the efficiency of low-stringency yeast two-hybrid screens.  相似文献   

13.
Tumor protein D52 (TPD52) is involved in cellular transformation, proliferation and metastasis. TPD52 over expression has been demonstrated in several cancers including prostate, breast, and ovarian carcinomas. Murine TPD52 (mD52) has been shown to induce anchorage independent growth in vitro and metastasis in vivo, and mirrors the function and normal tissue expression patterns of the human orthologue of TPD52. We believe TPD52 represents a self, non-mutated tumor associated antigen (TAA) important for maintaining a transformed and metastatic cellular phenotype. The transgenic adeno-carcinoma of the mouse prostate (TRAMP) model was employed to study mD52 as a vaccine antigen. Naïve mice were immunized with either recombinant mD52 protein or plasmid DNA encoding the full-length cDNA of mD52. Following immunization, mice were challenged with a subcutaneous, tumorigenic dose of mD52 positive, autochthonous TRAMP-C1 tumor cells. Sixty percent of mice were tumor free 85 days post challenge with TRAMP-C1 when immunized with mD52 as a DNA-based vaccine admixed with soluble granulocyte-macrophage colony stimulating factor (GM-CSF). Survivors of the initial tumor challenge rejected a second tumor challenge given in the opposite flank approximately 150 days after the first challenge, and remained tumor free for more than an additional 100 days. The T cell cytokine secretion patterns from tumor challenge survivors indicated that a TH1-type cellular immune response was involved in tumor protection. These data suggest that mD52 vaccination induced a memory, cellular immune response that resulted in protection from murine prostate tumors that naturally over express mD52 protein.  相似文献   

14.
As part of a systematic study of rabbit epididymal proteins involved in sperm maturation, we have identified and characterized a novel glycoprotein (rabbit epididymal secretory protein 52 [REP52]) of 52 kDa. REP52 is synthesized and secreted in a tissue-specific manner by the mid (region 6) and distal (region 7) corpus epididymidis and associates weakly with the sperm surface overlying the principal piece of the tail. Sequencing of cloned REP52 cDNA demonstrated that this protein represents a novel member of the highly conserved fibronectin type II (FN2) module protein family. The protein appears related but not homologous to ungulate seminal plasma proteins and is the first known example to be identified as a rabbit epididymal secretory protein. Consistent with other members of this protein family, REP52 possessed a high level of sequence identity within the FN2 module-encoding domains, but a highly variable N-terminal sequence that failed to show significant homology with published sequences. By analogy with evidence from studies of the ungulate seminal plasma proteins it is hypothesized that the tandemly arranged FN2 modules could facilitate the association of REP52 with sperm phosphatidylcholine residues on the outer leaflet of the sperm tail. It is also considered likely that these domains represent key elements for the function of this novel protein, a conclusion supported by the fact that antisera raised against the REP52 protein blocked in vitro fertilization in a concentration-dependent fashion.  相似文献   

15.
Glycogenin is a self-glucosylating protein involved in the initiation of glycogen biosynthesis. Self-glucosylation leads to the formation of an oligosaccharide chain, which, when long enough, supports the action of glycogen synthase to elongate it and form a mature glycogen molecule. To identify possible regulators of glycogenin, the yeast two-hybrid strategy was employed. By using rabbit skeletal muscle glycogenin as a bait, cDNAs encoding three different proteins were isolated from the human skeletal muscle cDNA library. Two of the cDNAs encoded glycogenin and glycogen synthase, respectively, proteins known to be interactors. The third cDNA encoded a polypeptide of unknown function and was designated GNIP (glycogenin interacting protein). Northern blot analysis revealed that GNIP mRNA is highly expressed in skeletal muscle. The gene for GNIP generates at least four isoforms by alternative splicing. The largest isoform GNIP1 contains, from NH(2)- to COOH-terminal, a RING finger, a B box, a putative coiled-coil region, and a B30.2-like motif. The previously identified protein TRIM7 (tripartite motif containing protein 7) is also derived from the GNIP gene and is composed of the RING finger, B box, and coiled-coil regions. The GNIP2 and GNIP3 isoforms consist of the coiled-coil region and B30.2-like domain. Physical interaction between GNIP2 and glycogenin was confirmed by co-immunoprecipitation, and in addition GNIP2 was shown to stimulate glycogenin self-glucosylation 3-4-fold. GNIPs may represent a novel participant in the initiation of glycogen synthesis.  相似文献   

16.
Generating accurate prognoses is extremely important for treating patients with cancer. Prognostic prediction based on messenger RNA (mRNA) expression has shown superior clinical value to other markers for some cancers but is not currently used for acute myeloid leukemia (AML). Lipid metabolism is associated with biological aspects of cancer progression, including massive proliferation, and abnormal signaling. Moreover, abnormalities in lipid metabolism have prognostic significance. Patients with AML display abnormalities in sphingolipid metabolism and fatty acid oxidation. TPD52 is a regulator of lipid metabolism and plays a role in the formation of lipid droplets and fatty acid storage. Although the prognostic significance of TPD52 expression has been reported for many types of cancer, it has not yet been assessed in patients with AML. Therefore, the aim of the current study was to assess the prognostic significance of TPD52 in AML using three independent AML cohorts: one from The Cancer Genome Atlas (TGCA; n = 142) and two from the National Center for Biotechnology Information: GSE12417 (GPL96-97; n = 162) and GSE12417 (GPL570; n = 78). TPD52 was found to be overexpressed in patients with AML (GSE84881; n = 23). The Kaplan-Meier curve revealed that TPD52 overexpression was associated with a poor prognosis for patients with AML with good discrimination ( P = 0.013, P = 0.005, and P = 0.032 for the TGCA, GSE12417, and GSE12417, respectively). Analysis of C-indices and area under the receiver operating characteristic curve values further supported this discriminative ability. Moreover, multivariate analysis confirmed the prognostic significance of TPD52 expression levels ( P = 0.0196). These results suggest that the TPD52 mRNA level is a potential biomarker for AML.  相似文献   

17.
We report a 2.0 Å structure of the CAE31940 protein, a proteobacterial NMT1/THI5-like domain-containing protein. We also discuss the primary and tertiary structure similarity with its homologs. The highly conserved FGGXMP motif was identified in CAE31940, which corresponds to the GCCCX motif located in the vicinity of the active center characteristic for THi5-like proteins found in yeast. This suggests that the FGGXMP motif may be a unique hallmark of proteobacterial NMT1/THI5-like proteins.  相似文献   

18.
Heat shock factor-binding protein (HSBP) 1 is a small, evolutionarily conserved protein originally identified in a yeast two-hybrid screen using the trimerization domain of heat shock factor (HSF) 1 as the bait. Similar in size to HSF1 trimerization domain, human HSBP1 contains two arrays of hydrophobic heptad repeats (designated HR-N and HR-C) characteristic of coiled-coil proteins. Proteins of the HSBP family are relatively small (<100 residues), comprising solely a putative coiled-coil oligomerization domain without any other readily recognizable structural or functional motif. Our biophysical and biochemical characterization of human HSBP1 reveals a cooperatively folded protein with high alpha-helical content and moderate stability. NMR analyses reveal a single continuous helix encompassing both HR-N and HR-C in the highly conserved central region, whereas the less conserved carboxyl terminus is unstructured and accessible to proteases. Unlike previously characterized coiled-coils, backbone 15N relaxation measurements implicate motional processes on the millisecond time scale in the coiled-coil region. Analytical ultracentrifugation and native PAGE studies indicate that HSBP1 is predominantly trimeric over a wide concentration range. NMR analyses suggest a rotationally symmetric trimer. Because the highly conserved hydrophobic heptad repeats extend over 60% of HSBP1, we propose that HSBP most likely regulates the function of other proteins through coiled-coil interactions.  相似文献   

19.
Cyclin E-Cdk2 is an evolutionary conserved cyclin-dependent kinase (CDK) complex that drives the G1 to S phase transition of the cell cycle. A novel cDNA encoding a HECT family protein also containing RCC1-like repeats was isolated by a yeast two-hybrid screening using both cyclin E and its inhibitor p21. The protein product of this cDNA, Ceb1, interacts with various cyclin subunits of CDKs in mammalian cells. Expression of Ceb1 is specifically detected in testis and ovary and is highly elevated when the functions of the tumor suppressor proteins, p53 and RB, are compromised by mutations or viral oncoproteins. The present results suggest that Ceb1 may play a critical role when its expression and the CDK activity are upregulated by inactivation of p53 and RB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号