首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The c-Jun N-terminal protein kinase mitogen-activated protein kinases (JNK MAPKs) are an evolutionarily-conserved family of serine/threonine protein kinases. First identified in 1990 when intraperitoneal injection of the protein synthesis inhibitor cycloheximide activated a 54 kDa protein kinase, the JNK MAPKs have now taken on a prominent role in signal transduction. This research has revealed a number of levels of complexity. Alternative gene splicing is now recognised to result in ten different JNK MAPK isoforms of 46-55 kDa, and these isoforms differ in their substrate affinities. Furthermore, although originally classified as stress-activated protein kinases (SAPKs), or SAPKs, the JNK MAPKs are also critical mediators of signal transduction in response to stimulation by cytokines and some growth factors. JNK MAPKs have been shown to be critical mediators in dorsal closure in developing Drosophila embryos, and targeted knockout of murine JNK MAPKs has suggested a critical involvement of these kinases in mammalian embryonic development. Recent work has also highlighted their importance in programmed cell death. Thus, the JNK MAPKs may provide a critical target for regulation in both normal and diseased states.  相似文献   

2.
Two ubiquitously expressed isoforms of c-Jun N-terminal protein kinase (JNK), JNK1 and JNK2, have shared functions and different functions. However, the molecular mechanism is unknown. Here we report that JNK1, but not JNK2, is essential for tumor necrosis factor alpha (TNF-alpha)-induced c-Jun kinase activation, c-Jun expression, and apoptosis. Using mouse fibroblasts deficient in either Jnk1 or Jnk2, we found that JNK1 was activated by TNF-alpha, whereas JNK2 activation was negligible. In addition, JNK2 interfered with JNK1 activation via its "futile" phosphorylation by upstream kinases. Consequently, expression and activation of c-Jun, which depends on JNK activity, were impaired in Jnk1 null cells but enhanced in Jnk2 null cells. TNF-alpha-induced apoptosis was also suppressed in Jnk1 null fibroblasts but increased in Jnk2 null cells. Thus, our results provide a molecular mechanism underlying the different biological functions of JNK isoforms.  相似文献   

3.
4.
G-protein-coupled receptors (GPCRs) typically activate c-Jun N-terminal kinase (JNK) through the G protein betagamma subunit (Gbetagamma), in a manner dependent on Rho family small GTPases, in mammalian cells. Here we show that JNK activation by the prototypic Gq-coupled alpha1B-adrenergic receptor is mediated by the alpha subunit of Gq (Galphaq), not by Gbetagamma, using a transient transfection system in human embryonic kidney cells. JNK activation by the alpha1B-adrenergic receptor/Galphaq was selectively mediated by mitogen-activated protein kinase kinase 4 (MKK4), but not MKK7. Also, MKK4 activation by the alpha1B-adrenergic receptor/Galphaq required c-Src and Rho family small GTPases. Furthermore, activation of the alpha1B-adrenergic receptor stimulated JNK activity through Src family tyrosine kinases and Rho family small GTPases in hamster smooth muscle cells that natively express the alpha1B-adrenergic receptor. Together, these results suggest that the alpha1B-adrenergic receptor/Galphaq may up-regulate JNK activity through a MKK4 pathway dependent on c-Src and Rho family small GTPases in mammalian cells.  相似文献   

5.
6.
Involvement of c-Jun N-terminal kinases activation in diabetic embryopathy   总被引:1,自引:0,他引:1  
The mechanisms for diabetic embryopathy are not well understood. JNK1/2 activation is increased in diabetic embryopathy, and antioxidants abolish JNK activation, and thus, ameliorate diabetic embryopathy. Phosphorylated SEK1 were significantly elevated in malformed embryos from diabetic mouse. In a dose-dependent manner, JNK inhibitor (SP600125) significantly reduced hyperglycemia-induced embryopathy. Malformation rates in embryos from the diabetic WT group were 15.6-fold higher than that in the non-diabetic WT control group. Jnk2 null mutant (JNKKO mice) was associated with a 71% reduction in the malformation rate of embryos under maternal diabetic conditions. Embryos cultured in 0.5mM sorbitol (JNK activator) had a malformation rate that was significantly higher than that of the control group. Pharmacological and genetic evidence from the present studies strongly support JNK activation being an indispensable mediator of diabetic embryopathy. JNK activation itself is sufficient to induce embryonic anomalies, and thus mimics the teratogenic effect of hyperglycemia.  相似文献   

7.
Bacterial lipopolysaccharide (LPS) is a potent activator of antibacterial responses by macrophages. Following LPS stimulation, the tyrosine phosphorylation of several proteins is rapidly increased in macrophages, and this event appears to mediate some responses to LPS. We now report that two of these tyrosine phosphoproteins of 41 and 44 kDa are isoforms of mitogen-activated protein (MAP) kinase. Each of these proteins was reactive with anti-MAP kinase antibodies and comigrated with MAP kinase activity in fractions eluted from a MonoQ anion-exchange column. Following LPS stimulation, column fractions containing the tyrosine phosphorylated forms of p41 and p44 exhibited increased MAP kinase activity. Inhibition of LPS-induced tyrosine phosphorylation of these proteins was accompanied by inhibition of MAP kinase activity. Additionally, induction of p41/p44 tyrosine phosphorylation and MAP kinase activity by LPS appeared to be independent of activation of protein kinase C, even though phorbol esters also induced these responses. These results demonstrate that LPS induces the tyrosine phosphorylation and activation of at least two MAP kinase isozymes. Since MAP kinases appear to modulate cellular processes in response to extracellular signals, these kinases may be important targets for LPS action in macrophages.  相似文献   

8.
The Cry1Ac toxin from Bacillus thuringiensis is used commercially as a bio-insecticide and is expressed in transgenic plants that are used for human and animal consumption. Although it was originally considered innocuous for mammals, the Cry1Ac toxin is not inert and has the ability to induce mucosal and systemic immunogenicity. Herein, we examined whether the Cry1Ac toxin promotes macrophage activation and explored the signalling pathways that may mediate this effect. Treatment of primary and RAW264.7 macrophages with the Cry1Ac toxin resulted in upregulation of the costimulatory molecules CD80, CD86 and ICOS-L and enhanced production of nitric oxide, the chemokine MCP-1 and the proinflammatory cytokines TNF-α and IL-6. Remarkably, the Cry1Ac toxin induced phosphorylation of the mitogen-activated protein kinases (MAPKs) ERK1/2, JNK and p38 and promoted nuclear translocation of nuclear factor-kappa B (NF-κB) p50 and p65. p38 and ERK1/2 MAPKs were involved in this effect, as indicated by the Cry1Ac-induced upregulation of CD80 and IL-6 and TNF-α abrogation by the p38 MAPK inhibitor SB203580. Furthermore, treatment the MEK1/2 kinase inhibitor PD98059 blocked increases in MCP-1 secretion and augmented Cry1Ac-induced ICOS-L upregulation. These data demonstrate the capacity of the Cry1Ac toxin to induce macrophage activation via the MAPK and NF-κB pathways.  相似文献   

9.
10.
The c-Jun N-terminal kinase (JNK) branch of the mitogen-activated protein kinase (MAPK) signaling pathway regulates cellular differentiation, stress responsiveness and apoptosis in multicellular eukaryotic organisms. Here we investigated the functional importance of JNK signaling in regulating differentiated cellular growth in the post-mitotic myocardium. JNK1/2 gene-targeted mice and transgenic mice expressing dominant negative JNK1/2 were determined to have enhanced myocardial growth following stress stimulation or with normal aging. A mechanism underlying this effect was suggested by the observation that JNK directly regulated nuclear factor of activated T-cell (NFAT) activation in culture and in transgenic mice containing an NFAT-dependent luciferase reporter. Moreover, calcineurin Abeta gene targeting abrogated the pro-growth effects associated with JNK inhibition in the heart, while expression of an MKK7-JNK1 fusion protein in the heart partially reduced calcineurin-mediated cardiac hypertrophy. Collectively, these results indicate that JNK signaling antagonizes the differentiated growth response of the myocardium through direct cross-talk with the calcineurin-NFAT pathway. These results also suggest that myocardial JNK activation is primarily dedicated to modulating calcineurin-NFAT signaling in the regulation of differentiated heart growth.  相似文献   

11.
Li X  Qiu J  Wang J  Zhong Y  Zhu J  Chen Y 《FEBS letters》2001,492(3):210-214
The present study showed that corticosterone (B) could induce a rapid activation of p38 and c-Jun NH(2)-terminal protein kinase (JNK) in PC12 cells. The dose-response and time-response curves were bell-shaped with maximal activation at 10(-9) M and at 15 min. RU38486 had no effect, and bovine serum albumin-coupled B could induce the activation. Genistein failed to block the phosphorylation, suggesting the pathway was not involved in tyrosine kinase activity. Phorbol 12-myristate 13-acetate could mimic, while G?6976 could abolish the actions. These results demonstrated that B might act via a putative membrane receptor to activate p38 and JNK rapidly through a protein kinase C-dependent pathway.  相似文献   

12.
c-Jun NH(2)-terminal kinase (JNK) is activated by a number of cellular stimuli such as inflammatory cytokines and environmental stresses. Reactive oxygen species also cause activation of JNK; however, the signaling cascade that leads to JNK activation remains to be elucidated. Because recent reports showed that expression of Cas, a putative Src substrate, stimulates JNK activation, we hypothesized that the Src kinase family and Cas would be involved in JNK activation by reactive oxygen species. An essential role for both Src and Cas was demonstrated. First, the specific Src family tyrosine kinase inhibitor, PP2, inhibited JNK activation by H(2)O(2) in a concentration-dependent manner but had no effect on extracellular signal-regulated kinases 1 and 2 and p38 activation. Second, JNK activation in response to H(2)O(2) was completely inhibited in cells derived from transgenic mice deficient in Src but not Fyn. Third, expression of a dominant negative mutant of Cas prevented H(2)O(2)-mediated JNK activation but had no effect on extracellular signal-regulated kinases 1 and 2 and p38 activation. Finally, the importance of Src was further supported by the inhibition of both H(2)O(2)-mediated Cas tyrosine phosphorylation and Cas.Crk complex formation in Src-/- but not Fyn-/- cells. These results demonstrate an essential role for Src and Cas in H(2)O(2)-mediated activation of JNK and suggest a new redox-sensitive pathway for JNK activation mediated by Src.  相似文献   

13.
The serine-threonine mitogen-activated protein kinase (MAPK) family includes extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 kinases. In NK cells, spontaneous or Ab-mediated recognition of target cells leads to activation of an ERK-2 MAPK-dependent biochemical pathway(s) involved in the regulation of NK cell effector functions. Here we assessed the roles of p38 and JNK MAPK in NK cell-mediated cytotoxicity. Our data indicate that p38 is activated in primary human NK cells upon stimulation with immune complexes and interaction with NK-sensitive target cells. FcgammaRIIIA-induced granule exocytosis and both spontaneous and Ab-dependent cytotoxicity were reduced in a dose-dependent manner in cells pretreated with either of two specific inhibitors of this kinase. Target cell-induced IFN-gamma and FcgammaRIIIA-induced TNF-alpha mRNA accumulation was similarly affected under the same conditions. Lack of inhibition of NK cell cytotoxicity in cells overexpressing an inactive form of JNK1 indicates that this kinase, activated only upon FcgammaRIIIA ligation, does not play a significant role in cytotoxicity. These data underscore the involvement of p38, but not JNK1, in the molecular mechanisms regulating NK cell cytotoxicity.  相似文献   

14.
The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) is a critical regulator of collagenase-1 production in rheumatoid arthritis (RA). The MAPKs are regulated by upstream kinases, including MAPK kinases (MAPKKs) and MAPK kinase kinases (MAP3Ks). The present study was designed to evaluate the expression and regulation of the JNK pathway by MAP3K in arthritis. RT-PCR studies of MAP3K gene expression in RA and osteoarthritis synovial tissue demonstrated mitogen-activated protein kinase/ERK kinase kinase (MEKK) 1, MEKK2, apoptosis-signal regulating kinase-1, TGF-beta activated kinase 1 (TAK1) gene expression while only trace amounts of MEKK3, MEKK4, and MLK3 mRNA were detected. Western blot analysis demonstrated immunoreactive MEKK2, TAK1, and trace amounts of MEKK3 but not MEKK1 or apoptosis-signal regulating kinase-1. Analysis of MAP3K mRNA in cultured fibroblast-like synoviocytes (FLS) showed that all of the MAP3Ks examined were expressed. Western blot analysis of FLS demonstrated that MEKK1, MEKK2, and TAK1 were readily detectable and were subsequently the focus of functional studies. In vitro kinase assays using MEKK2 immunoprecipitates demonstrated that IL-1 increased MEKK2-mediated phosphorylation of the key MAPKKs that activate JNK (MAPK kinase (MKK)4 and MKK7). Furthermore, MEKK2 immunoprecipitates activated c-Jun in an IL-1 dependent manner and this activity was inhibited by the selective JNK inhibitor SP600125. Of interest, MEKK1 immunoprecipitates from IL-1-stimulated FLS appeared to activate c-Jun through the JNK pathway and TAK1 activation of c-Jun was dependent on JNK, ERK, and p38. These data indicate that MEKK2 is a potent activator of the JNK pathway in FLS and that signal complexes including MEKK2, MKK4, MKK7, and/or JNK are potential therapeutic targets in RA.  相似文献   

15.
16.
17.
Myocardial stretch is a major determinant of ventricular hypertrophy, a physiological adaptational process that can be detrimental, leading to heart failure. Therapies aimed to limit the development of cardiac hypertrophy are thus currently evaluated. Among possible targets, the small G protein Ras and the epidermal growth factor receptor (EGFR) have been shown to be involved during stretch but their precise role in the activation of the major actors of hypertrophy, the mitogen activated protein kinases (MAPK) ERK and JNK is not well known. Our goal was thus was to evaluate precisely the activation pathways of ERK and JNK during stretch, with an emphasis on the role of the EGFR. For this purpose, neonatal rat cardiomyocytes in culture were stretched for different time durations. As measured by Western blot of their phosphorylated forms, ERK and JNK were activated by stretch. Ras inhibition decreased basal ERK phosphorylation but had no effect on stretch-induced ERK activation. Under basal conditions, EGFR activated ERK in a classical Ras-dependent manner. Upon stretch, EGFR transactivation activated ERK through both Ras-dependent and Ras-independent pathways. Interestingly, we also show that the Akt pathway participates in stretch-induced ERK activation with an involvement of EGFR. Unlike ERK, JNK activation is independent of either EGFR or PI3 kinase but dependent on other tyrosine kinases. In conclusion these data show different Ras-dependent and Ras-independent pathways in basal conditions and during stretch with a previously unrecognized role of Akt in the activation of ERK.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号