首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases is an early response of cells upon exposure to DNA-damaging agents. JNK-mediated phosphorylation of c-Jun is currently understood to stimulate the transactivating potency of AP-1 (e.g., c-Jun/c-Fos; c-Jun/ATF-2), thereby increasing the expression of AP-1 target genes. Here we show that stimulation of JNK1 activity is not a general early response of cells exposed to genotoxic agents. Treatment of NIH 3T3 cells with UV light (UV-C) as well as with methyl methanesulfonate (MMS) caused activation of JNK1 and an increase in c-Jun protein and AP-1 binding activity, whereas antineoplastic drugs such as mafosfamide, mitomycin C, N-hydroxyethyl-N-chloroethylnitrosourea, and treosulfan did not elicit this response. The phosphatidylinositol 3-kinase inhibitor wortmannin specifically blocked the UV-stimulated activation of JNK1 but did not affect UV-driven activation of extracellular regulated kinase 2 (ERK2). To investigate the significance of JNK1 for transactivation of c-jun, we analyzed the effect of UV irradiation on c-jun expression under conditions of wortmannin-mediated inhibition of UV-induced stimulation of JNK1. Neither the UV-induced increase in c-jun mRNA, c-Jun protein, and AP-1 binding nor the activation of the collagenase and c-jun promoters was affected by wortmannin. In contrast, the mitogen-activated protein kinase/ERK kinase inhibitor PD98056, which blocked ERK2 but not JNK1 activation by UV irradiation, impaired UV-driven c-Jun protein induction and AP-1 binding. Based on the data, we suggest that JNK1 stimulation is not essential for transactivation of c-jun after UV exposure, whereas activation of ERK2 is required for UV-induced signaling leading to elevated c-jun expression.  相似文献   

3.
4.
Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other PAHs. The mechanism underlying this synergism is not clearly understood. We observed that (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in promotion sensitive mouse epidermal JB6 Cl41 cells at non-cytotoxic concentrations. BPDE also activates AP-1 several folds in AP-1 reporter JB6 cells. Cadmium at non-cytotoxic concentrations inhibits both AP-1 activation and apoptosis in response to BPDE. Since AP-1 is known to be involved in stress-induced apoptosis we investigated whether inhibition of AP-1 by cadmium has any role in the inhibition of BPDE-induced apoptosis. MAP kinases (particularly ERKs, p38 and JNKs) are known to have important role in DNA damage-induced AP-1 activation. We observed that ERK and JNK, but not p38 MAP kinase, are involved in BPDE-induced AP-1 activation. Effect of cadmium on MAP kinases and the effect of inhibition of above three MAP kinases on BPDE-induced AP-1 activation and apoptosis indicate that AP-1 is probably not involved in BPDE-induced apoptosis. Cadmium up-regulates BPDE-activated ERKs and ERK inhibition by U0126 relieves cadmium-mediated inhibition of BPDE-induced apoptosis. We suggest that cadmium inhibits BPDE-induced apoptosis not involving AP-1 but probably through a different mechanism by up-regulating ERK which is known to promote cell survival.  相似文献   

5.
Redox signaling and the MAP kinase pathways   总被引:19,自引:0,他引:19  
The mitogen-activated protein (MAP) kinases are a large family of proline-directed, serine/threonine kinases that require tyrosine and threonine phosphorylation of a TxY motif in the activation loop for activation through a phosphorylation cascade involving a MAPKKK, MAPKK and MAPK, often referred to as the MAP kinase module. Three separate such modules have been identified, based on the TxY motif of the MAP kinase and the dual-specificity kinases that strictly phosphorylate their specific TxY sequence. They are the extracellular signal regulated kinases (ERKs), c-jun N-terminal kinases (JNKs) and p38 MAPKs. The ERKs are mainly associated with proliferation and differentiation while the JNKs and p38MAP kinases regulate responses to cellular stresses. Redox homeostasis is critical for proper cellular function. While reactive oxygen species (ROS) and oxidative stress have been implicated in injury, a rapidly growing literature suggests that a transient increase in ROS levels is an important mediator of proliferation and results in activation of various signaling molecules and pathways, among which the MAP kinases. This review will summarize the role of ROS in MAP kinase activation in various systems, including in macrophages, cells of myeloid origin that play an essential role in inflammation and express a multi-component NADPH oxidase that catalyzes the receptor-regulated production of ROS.  相似文献   

6.
7.
8.
A family of mitogen-activated protein (MAP) kinases comprising the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 MAP kinases are involved in proliferation and apoptosis. However, there are some arguments concerning the role of these kinases in Ag-induced B cell apoptosis. Two of the B lymphoma cell lines (CH31 and WEHI-231) susceptible to anti-IgM-induced apoptosis were used as a model. To address these issues, we examined the kinetics of anti-IgM-induced activation of MAP kinases and established cell lines overexpressing a dominant-negative (dn) mutant form of JNK1 (dnJNK1). Anti-IgM induced a sustained JNK1 activation with a peak at 8 h, with a marginal activation of ERK1/ERK2 in CH31 cells. The sustained JNK1 activation was not a secondary event through a caspase activation. The peak point of the JNK1 activation was just before the onset of a decline in mitochondrial membrane potential, which preceded anti-IgM-induced cell death. Following anti-IgM stimulation, dnJNK1 prevented a decline in mitochondrial membrane potential at 24 h, with a prolonged inhibition up to 72 h in WEHI-231, although it did so only partially during a later time period in CH31. The dnJNK1 cells also demonstrated diminished procaspase-3 activation and a decreased rate of apoptosis upon anti-IgM stimulation, with a concomitant increased arrest in G(1) phase, which could be explained by enhanced levels of cyclin-dependent kinase inhibitor p27(Kip1) protein. Thus, anti-IgM-induced JNK activation might be implicated in cell cycle progression as well as in apoptosis regulation, probably involving p27(Kip1) protein.  相似文献   

9.
To understand the role of redox-sensitive mechanisms in vascular smooth muscle cell (VSMC) growth, we have studied the effect of N-acetylcysteine (NAC), a thiol antioxidant, and diphenyleneiodonium (DPI), a potent NADH/NADPH oxidase inhibitor, on serum-, platelet-derived growth factor BB-, and thrombin-induced ERK2, JNK1, and p38 mitogen-activated protein (MAP) kinase activation; c-Fos, c-Jun, and JunB expression; and DNA synthesis. Both NAC and DPI completely inhibited agonist-induced AP-1 activity and DNA synthesis in VSMC. On the contrary, these compounds had differential effects on agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression. NAC inhibited agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression except for platelet-derived growth factor BB-induced ERK2 activation. In contrast, DPI only inhibited agonist-induced p38 MAP kinase activation and c-Fos and JunB expression. Antibody supershift assays indicated the presence of c-Fos and JunB in the AP-1 complex formed in response to all three agonists. In addition, cotransfection of VSMC with expression plasmids for c-Fos and members of the Jun family along with the AP-1-dependent reporter gene revealed that AP-1 with c-Fos and JunB composition exhibited a higher transactivating activity than AP-1 with other compositions tested. All three agonists significantly stimulated reactive oxygen species production, and this effect was inhibited by both NAC and DPI. Together, these results strongly suggest a role for redox-sensitive mechanisms in agonist-induced ERK2, JNK1, and p38 MAP kinase activation; c-Fos, c-Jun, and JunB expression; AP-1 activity; and DNA synthesis in VSMC. These results also suggest a role for NADH/NADPH oxidase activity in some subset of early signaling events such as p38 MAP kinase activation and c-Fos and JunB induction, which appear to be important in agonist-induced AP-1 activity and DNA synthesis in VSMC.  相似文献   

10.
11.
UVA exposure plays an important role in the etiology of skin cancer. The family of p90-kDa ribosomal S6 kinases (p90(RSK)/MAPKAP-K1) are activated via phosphorylation. In this study, results show that UVA-induced phosphorylation of p90(RSK) at Ser(381) through ERKs and JNKs, but not p38 kinase pathways. We provide evidence that UVA-induced p90(RSK) phosphorylation and kinase activity were time- and dose-dependent. Both PD98059 and a dominant negative mutant of ERK2 blocked ERKs and p90(RSK) Ser(381) phosphorylation, as well as p90(RSK) activity. A dominant negative mutant of p38 kinase blocked UVA-induced phosphorylation of p38 kinase, but had no effect on UVA-induced Ser(381) phosphorylation of p90(RSK) or kinase activity. UVA-induced p90(RSK) phosphorylation and kinase activity were markedly attenuated in JnK1(-/-) and JnK2(-/-) cells. A dominant negative mutant of JNK1 inhibited UVA-induced JNKs and p90(RSK) phosphorylation and kinase activity, but had no effect on ERKs phosphorylation. PD169316, a novel inhibitor of JNKs and p38 kinase, inhibited phosphorylation of p90(RSK), JNKs, and p38 kinase, but not ERKs. However, SB202190, a selective inhibitor of p38 kinase, had no effect on p90(RSK) or JNKs phosphorylation. Significantly, ERKs and JNKs, but not p38 kinase, immunoprecipitated with p90(RSK) when stimulated by UVA and p90(RSK) was a substrate for ERK2 and JNK2, but not p38 kinase. These data indicate clearly that p90(RSK) Ser(381) may be phosphorylated by activation of JNKs or ERKs, but not p38 kinase.  相似文献   

12.
13.
14.
Summary Hyperbaric oxygen (HBO) is increasingly used in a number of areas of medical practice, such as selected problem infections and wounds. The beneficial effects of HBO in treating ischemia-related wounds may be mediated by stimulating angiogenesis. We sought to investigate VEGF, the main angiogenic regulator, regulated by HBO in human umbilical vein endothelial cells (HUVECs). In this study, we found that VEGF was up regulated both at mRNA and protein levels in HUVECs treated with HBO dose- and time-dependently. Since there are several AP-1 sites in the VEGF promoter, and the c-Jun/AP-1 is activated through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and extracellular signal regulated kinase (ERK), we further examined the c-Jun, JNK and ERK that might be involved in the VEGF induced by HBO. The VEGF mRNA induced by HBO was blocked by both PD98059 and SP600125, the ERK and JNK inhibitors respectively. HBO induced phospho-ERK and phospho-JNK expressions within 15 min. We further demonstrated that c-Jun phosphorylation was induced within 60 min of HBO treatment. HBO also induced the nuclear AP-1 binding ability within 30–60 min, but the AP-1 induction was blocked by treatment with either the ERK or JNK inhibitor. To verify that the VEGF expression induced by HBO is through the AP-1 trans-activation and VEGF promoter, both the VEGF promoter and AP-1 driving luciferase activity were found increased by the cells treated with HBO. The c-Jun mRNA, which is also driven by AP-1, was also induced by HBO, and the induction of c-Jun was blocked by ERK and JNK inhibitors. We suggest that VEGF induced by HBO is through c-Jun/AP-1 activation, and through simultaneous activation of ERK and JNK pathways.  相似文献   

15.
16.
17.
18.
Exposure of vascular smooth muscle cells to arginine vasopressin (AVP) increases smooth muscle alpha-actin (SM-alpha-actin) expression through activation of the SM- alpha-actin promoter. The goal of this study was to determine the role of the mitogen-activated protein kinase (MAP kinase) family in regulation of SM-alpha-actin expression. AVP activated all three MAP kinase family members: ERKs, JNKs, and p38 MAP kinase. Inhibition of JNKs or p38 decreased AVP-stimulated SM-alpha-actin promoter activity, whereas inhibition of ERKs had no effect. A 150-base pair region of the promoter containing two CArG boxes was sufficient to mediate regulation by vasoconstrictors. Mutations in either CArG box decreased AVP-stimulated promoter activity. Electrophoretic mobility shift assays using oligonucleotides corresponding to either CArG box resulted in a complex of similar mobility whose intensity was increased by AVP. Antibodies against serum response factor (SRF) completely super-shifted this complex, indicating that SRF binds to both CArG boxes. Overexpression of SRF increased basal promoter activity, but activity was still stimulated by AVP. AVP stimulation rapidly increased SRF phosphorylation. These data indicate that both JNKs and p38 participate in regulation of SM- alpha-actin expression. SRF, which binds to two critical CArG boxes in the promoter, represents a potential target of these kinases.  相似文献   

19.
20.
The importance of transforming growth factor-beta1 (TGF-beta1) in plasminogen activator inhibitor-1 (PAI-1) gene expression has been established, but the precise intracellular mechanisms are not fully understood. Our hypothesis is that the actin cytoskeleton is involved in TGF-beta1/MAPK-mediated PAI-1 expression in human mesangial cells. Examination of the distributions of actin filaments (F-actin), alpha-actinin, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunofluorescence and immunoprecipitation revealed that ERK and JNK associate with alpha-actinin along F-actin and that TGF-beta1 stimulation promote the dissociation of ERK and JNK with F-actin. Disassembly of the actin cytoskeleton inhibited phosphorylation of ERK and JNK and modulated PAI-1 expression and promoter activity under both basal and TGF-beta1-stimulated conditions. Stabilizing actin prevented dephosphorylation of ERK and JNK. ERK and JNK inhibitors and overexpressed dominant negative mutants antagonized the ability of TGF-beta1 to increase PAI-1 expression and promoter activity. Disassembly of F-actin also inhibited AP-1 DNA binding activity as determined by electrophoretic mobility shift assay using AP-1 consensus oligonucleotides derived from human PAI-1 promoter. F-actin stabilization prevented loss of AP-1 DNA binding activity. Therefore, changes in actin cytoskeleton modulate the ability of TGF-beta1 to stimulate PAI-1 expression through a mechanism dependent on the activation of MAPK/AP-1 pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号