首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

2.
A multitarget molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assay for the specific detection of Vibrio cholerae has been developed. The genes encoding the cholera toxin (ctxA), the toxin-coregulated pilus (tcpA; colonization factor), the ctxA toxin regulator (toxR), hemolysin (hlyA), and the 60-kDa chaperonin product (groEL) were selected as target sequences for detection. The beacons for the five different genetic targets were evaluated by serial dilution of RNA from V. cholerae cells. RNase treatment of the nucleic acids eliminated all NASBA, whereas DNase treatment had no effect, showing that RNA and not DNA was amplified. The specificity of the assay was investigated by testing several isolates of V. cholerae, other Vibrio species, and Bacillus cereus, Salmonella enterica, and Escherichia coli strains. The toxR, groEL, and hlyA beacons identified all V. cholerae isolates, whereas the ctxA and tcpA beacons identified the O1 toxigenic clinical isolates. The NASBA assay detected V. cholerae at 50 CFU/ml by using the general marker groEL and tcpA that specifically indicates toxigenic strains. A correlation between cell viability and NASBA was demonstrated for the ctxA, toxR, and hlyA targets. RNA isolated from different environmental water samples spiked with V. cholerae was specifically detected by NASBA. These results indicate that NASBA can be used in the rapid detection of V. cholerae from various environmental water samples. This method has a strong potential for detecting toxigenic strains by using the tcpA and ctxA markers. The entire assay including RNA extraction and NASBA was completed within 3 h.  相似文献   

3.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

4.
多重实时PCR检测产毒素性霍乱弧菌和副溶血弧菌   总被引:3,自引:0,他引:3  
设计引物和探针,优化多重实时PCR条件,以同时检测霍乱弧菌霍乱毒素基因ctxA、副溶血弧菌种特异性基因gyrB和耐热肠毒素基因tdh。该多重实时PCR方法检测产毒素性的O1群(3株)和O139群(44株)霍乱弧菌菌株、不产毒素的O1群(12株)和O139群(6株)及非O1非O139群(7株)霍乱弧菌菌株的ctxA,阳性和阴性结果与普通PCR检测结果100%符合;检测副溶血弧菌种特异性gyrB,116株副溶血弧菌均阳性,而9株其它细菌和72株霍乱弧菌均阴性;检测tdh的阳性和阴性结果也与普通PCR结果完全一致。另外还建立了检测副溶血弧菌菌株trh1和trh2的单重实时PCR方法。  相似文献   

5.
A multiplex nested PCR method for detection of Vibrio cholerae O1 using a single tube was developed (MSTNPCR). Firstly, single-tube nested PCR (STNPCR) with primers directed to ctxA gene was standardized, and its detection limit was compared to simple PCR and two-step nested PCR. Secondly, primers directed to rfbN gene were added to the reaction. The detection limit of the multiplex reaction was determined using V. cholerae O1 DNA and V. cholerae O1 grown in alkaline peptone water (APW). STNPCR was shown to be approximately 100-fold more sensitive than simple PCR and 10 times less sensitive than two-step nested PCR. This drawback is compensated by a lower risk of cross-contamination. The addition of a second target did not impair the detection limit of STNPCR (as little as 1 pg of V. cholerae O1 DNA detected). MSTNPCR could specifically detect up to three V. cholerae O1 cells or colony forming units (cfu) directly from the APW growth. A diagnostic kit consisting of a set of microtubes having the inner primers fixed onto the inside of the tube cap and a set of tubes containing the reaction mixture was evaluated for stability, and it proved to be stable for five months at -20 degrees C. Therefore, MSTNPCR would be useful in the detection of V. cholerae O1 directly from environmental waters in cholera endemic areas and in complementing the identification of toxigenic strains isolated by culture.  相似文献   

6.
Polymerase chain reaction (PCR) detected the presence of various genes associated with virulence in genome of strains V. cholerae eltor isolated in Turkmenistan territory during epidemic and epidemic-free perios. It was found that a complete set of virulence genes (ctxA+, tcpA+ and toxR+) contained strains isolated from patients, carriers and environment only in cholera epidemics. Strains isolated from the environment in the period free of epidemics did not contain ctxA and tcpA in 78.2% of cases, but 5.2% of the strains carried a complete set of virulence genes. There were also nontoxigenic strains containing genes tcpA and toxR. Such strains were isolated from the environment (16.6%) and vibrion carriers (42.9%). Isolated were also strains V.cholerae eltor carrying bacteriophage CTX phi with incomplete set of virulence genes and having genotype ctxA-, ace+ and zot+. Almost all the strains ctxA-, tcpA+ carry attRS1-site in genome. This shows that such strains may transform into toxigenic as a result of infection with bacteriophage CTX phi.  相似文献   

7.
Vibrio cholerae is a free-living bacterium found in water and in association with plankton. V. cholerae non-O1/non-O139 strains are frequently isolated from aquatic ecosystems worldwide. Less frequently isolated are V. cholerae O1 and V. cholerae O139, the aetiological agents of cholera. These strains have two main virulence-associated factors, cholera toxin (CT) and toxin co-regulated pilus (TCP). By extracting total DNA from aquatic samples, the presence of pathogenic strains can be determined quickly and used to improve a microbiological risk assessment for cholera in coastal areas. Some methods suggested for DNA extraction from water samples are not applicable to all water types. We describe here a method for DNA extraction from coastal water and a multiplex polymerase chain reaction (PCR) for O1 and O139 serogroups. DNA extraction was successfully accomplished from 117 sea water samples collected from coastal areas of Perú, Brazil and the USA. DNA concentration in all samples varied from 20 ng to 480 micro g micro l-1. The sensitivity of the DNA extraction method was 100 V. cholerae cells in 250 ml of water. The specificity of multiplex O1/O139 PCR was investigated by analysing 120 strains of V. cholerae, Vibrio and other Bacteria species. All V. cholerae O1 and O139 tested were positive. For cholera surveillance of aquatic environments and ballast water, total DNA extraction, followed by V. cholerae PCR, and O1/O139 serogroup and tcpA/ctxA genes by multiplex PCR offers an efficient system, permitting risk analysis for cholera in coastal areas.  相似文献   

8.
A pit-stop semi-nested PCR assay for the detection of toxigenic Vibrio cholerae in environmental water samples was developed and its performance evaluated. The PCR technique amplifies sequences within the cholera toxin operon specific for toxigenic V. cholerae. The PCR procedure coupled with an enrichment culture detected as few as four V. cholerae organisms in pure culture. Treated sewage, surface, ground and drinking water samples were seeded with V. cholerae and following enrichment, a detection limit of as few as 1 V. cholerae cfu ml(-1) was obtained with amplification reactions from crude bacterial lysates. The proposed method, which includes a combination of enrichment, rapid sample preparation and a pit-stop semi-nested PCR, could be applicable in the rapid detection of toxigenic V. cholerae in environmental water samples.  相似文献   

9.
Specific oligonucleotide primers were chosen for identifying the fragments of the four major virulence genes of V. cholerae eltor (ctxA, tcpA, toxR, and hap) using the polymerase chain reaction (PCR). In order to estimate the efficiency of complex PCR testing of V. cholerae for evaluation of their epidemiological significance, a collection of 80 V. cholerae eltor strains with known virulence was selected, whose most important specific features had been studied previously. The hap was appropriate species-specific gene making it possible to detect V. cholerae strains regardless of their virulence. The most complete and objective data for evaluating the epidemic significance can be obtained by detecting the presence of three virulence genes (ctxA, tcpA, and toxR) in their chromosome. The prevalence of the above four genes in various V. cholerae strains isolated from the environment during epidemic and non-epidemic periods was studied.  相似文献   

10.
The role of biofilm as a microenvironment of plankton-associated Vibrio cholerae was investigated using plexiglass as a bait. A total of 72 biofilm samples were tested using culture, direct fluorescent antibody (DFA) and molecular techniques following standard procedures. Culturable V. cholerae (smooth and rugose variants) were isolated from 33% of the samples. V. cholerae O1 were detected by FA technique throughout the year except April and June. All V. cholerae O1 isolates were positive for tcpA, ctxA and ace genes while V. cholerae non-O1, non-O139 isolates lacked these genes. V. cholerae O1 (both Inaba and Ogawa) strains had identical ribotype pattern (R1), but V. cholerae non-O1, non-O139 had different ribotype patterns. All V. cholerae O1 strains were resistant to vibrio-static compound (O/129). All V. cholerae O1 except one were resistant to trimethoprime-sulphamethoxazole, streptomycin, nalidixic acid and furazolidone but sensitive to ciprofloxacin, and tetracycline. This study indicates that plexiglass can act as a bait to form biofilm, a microenvironment that provides shelter for plankton containing V. cholerae in the aquatic environment of Bangladesh.  相似文献   

11.
A multiplex PCR assay was developed for the detection of toxigenic and pathogenic V. cholerae from direct water sources using specific primers targeting diverse genes, viz. outer membrane protein (ompW), cholera toxin (ctxB), ORF specific for O1 (rfbG), zonula occludens (zot) and toxin co-regulated pilus (tcpB); among these genes, ompW acts as internal control for V. cholerae, the ctx gene as a marker for toxigenicity and tcp for pathogenicity. The sensitivity of multiplex PCR was 5 x 10(4) V. cholerae cells per reaction. The procedure was simplified as direct bacterial cells were used as template and there was no need for DNA extraction. The assay was specific as no amplification occurred with the other bacteria used. Toxigenic V. cholerae were artificially spiked in different water samples, filtered through a 0.45 microm membrane, and the filters containing bacteria were enriched in APW for 6 h. PCR following filtration and enrichment could detect as little as 8 V. cholerae cells per mL in different spiked water samples. Various environmental potable water samples were screened for the presence of V. cholerae using this assay procedure. The proposed method is rapid, sensitive and specific for environmental surveillance for the presence of toxigenic-pathogenic and nonpathogenic V. cholerae.  相似文献   

12.
Here, we report on the characterization of 22 clinical toxigenic V. cholerae non-O1/non-O139 strains isolated in the Middle Asia (Uzbekistan) in 1971–1990. PCR analysis has revealed that these strains contain the main virulence genes such as ctxA, zot, ace (CTXφ); rstC (RS1φ); tcpA, toxT, aldA (pathogenicity island VPI), but they lack both pandemic islands VSP-I and VSP-II specific to epidemic strains of O1 serogroup of El Tor biotype and O139 serogroup. Only two of the twenty two toxigenic strains have tcpA gene of El Tor type, one strain has tcpA gene of classical type, while nineteen other strains carry a new variant of this gene, designated as tcpA uzb. Nucleotide sequences analysis of virulence genes in toxigenic V. cholerae non-O1/non-O139 strains from Uzbekistan showed that they differ significantly from the sequences of these genes in epidemic O1 and O139 strain indicating that they belong to a separate line of evolution of virulent V. cholerae strains. For the first time it is shown that V. cholerae non-O1/non-O139 toxigenic strains of different serogroups may belong to the same clone.  相似文献   

13.
Seawater and plankton samples were collected over a period of 17 months from November 1998 to March 2000 along the coast of Peru. Total DNA was extracted from water and from plankton grouped by size into two fractions (64 micro m to 202 micro m and >202 micro m). All samples were assayed for Vibrio cholerae, V. cholerae O1, V. cholerae O139, and ctxA by PCR. Of 50 samples collected and tested, 33 (66.0%) were positive for V. cholerae in at least one of the three fractions. Of these, 62.5% (n = 32) contained V. cholerae O1; ctxA was detected in 25% (n = 20) of the V. cholerae O1-positive samples. None were positive for V. cholerae O139. Thus, PCR was successfully employed in detecting toxigenic V. cholerae directly in seawater and plankton samples and provides evidence for an environmental reservoir for this pathogen in Peruvian coastal waters.  相似文献   

14.
The presence of three major virulence genes toxR, tcpA and ctxA as well as expression of several putative virulence factors were compared in 12 Vibrio cholerae O139 and non-O1,non-O139 strains of clinical and environmental origin. All the strains possessed the gene encoding the regulatory protein TOXR. None of the non-O1, non-O139 strains as well as one of the O139 environmental strains carried the genes for ctxA and tcpA. Statistically significant differences in hemagglutinin and hemolysin production were observed amongst the strains depending on the source of their isolation. Expression of extracellular enzymes such as protease, elastase, neuraminidase, phospholipase A and phospholipase C, however, did not vary significantly from the groups of strains isolated from different sources.  相似文献   

15.
Toxigenic Vibrio cholerae, the etiological agent of cholera, is a natural inhabitant of the marine environment and causes severe diarrheal disease affecting thousands of people each year in developing countries. It is the subject of extensive testing of shrimp produced and exported from these countries. We report the development of a real time PCR (qPCR) assay to detect the gene encoding cholera toxin, ctxA, found in toxigenic V. cholerae strains. This assay was tested against DNA isolated from soil samples collected from diverse locations in the US, a panel of eukaryotic DNA from various sources, and prokaryotic DNA from closely related and unrelated bacterial sources. Only Vibrio strains known to contain ctxA generated a fluorescent signal with the 5' nuclease probe targeting the ctxA gene, thus confirming the specificity of the assay. In addition, the assay was quantitative in pure culture across a six-log dynamic range down to <10 CFU per reaction. To test the robustness of this assay, oysters, aquatic sediments, and seawaters from Mobile Bay, AL, were analyzed by qPCR and traditional culture methods. The assay was applied to overnight alkaline peptone water enrichments of these matrices after boiling the enrichments for 10 min. Toxigenic V. cholerae strains were not detected by either qPCR or conventional methods in the 16 environmental samples examined. A novel exogenous internal amplification control developed by us to prevent false negatives identified the samples that were inhibitory to the PCR. This assay, with the incorporated internal control, provides a highly specific, sensitive, and rapid detection method for the detection of toxigenic strains of V. cholerae.  相似文献   

16.
AIMS: To determine the presence of Vibrio cholerae in different areas of Argentina in three sample types, to determine the composition of planktonic communities in areas at which this pathogen was detected and to characterize the virulence properties and antimicrobial resistance of the recovered environmental isolates. METHODS AND RESULTS: Water and plankton samples were collected in marine, brackish and freshwater environments. Vibrio cholerae non-O1, non-O139 was isolated in 36.1% of the samples analysed. The micro-organism was detected in freshwater but not in marine or brackish samples. No relationship was found between isolation of V. cholerae and presence of any species of plankton. All the isolates presented very similar virulence profiles by PCR, lacking ctxA and tcpA El Tor and containing hlyA (98.7%), rtxA (99.0%), toxR (98.7%) and stn-sto (1.9%). Resistance to ampicillin was found in both Tucumán (21%) and Buenos Aires isolates (45%). CONCLUSIONS: We identified two geographic areas in Argentina where V. cholerae was present: freshwaters of the rivers from Tucumán and the Río de la Plata. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification of V. cholerae strains in the environment, carrying both virulence factors and resistance to antimicrobial agents, highlight the need for a continuous and active surveillance of this pathogen.  相似文献   

17.
Multiplex real-time PCR detection of Vibrio cholerae   总被引:10,自引:0,他引:10  
Cholera is an important enteric disease, which is endemic to different regions of the world and has historically been the cause of severe pandemics. Vibrio cholerae is a natural inhabitant of the aquatic environment and the toxigenic strains are causative agents of potentially life-threatening diarrhoea. A multiplex, real-time detection assay was developed targeting four genes characteristic of potentially toxigenic strains of V. cholerae, encoding: repeat in toxin (rtxA), extracellular secretory protein (epsM), mannose-sensitive pili (mshA) and the toxin coregulated pilus (tcpA). The assay was developed on the Cepheid Smart Cycler using SYBR Green I for detection and the products were differentiated based on melting temperature (Tm) analysis. Validation of the assay was achieved by testing against a range of Vibrio and non-Vibrio species. The detection limit of the assay was determined to be 10(3) CFU using cells from pure culture. This assay was also successful at detecting V. cholerae directly from spiked environmental water samples in the order of 10(4) CFU, except from sea water which inhibited the assay. The incorporation of a simple DNA purification step prior to the addition to the PCR increased the sensitivity 10 fold to 10(3) CFU. This multiplex real-time PCR assay allows for a more reliable, rapid detection and identification of V. cholerae which is considerably faster than current conventional detection assays.  相似文献   

18.
Vibrio cholerae strains isolated from patient, food and environmental sources in Taiwan and reference V. cholerae strains were examined by repetitive element sequence-based PCR (rep-PCR). Specimens from broth cultures were used directly in the PCR mixture with three different primers. The PCR fingerprinting profiles of toxigenic 01 isolates were not only homogeneous with primers from enterobacterial repetitive intergenic consensus (ERIC) sequences, but also allowed the differentiation from non-toxigenic O1 and non-O1 strains. Toxigenic 01 strains were further differentiated into El Tor and classical biotypes with primers designed from ERIC-related sequences of V. cholerae. Primers from the other V. cholerae repetitive DNA sequences, VCR, separated toxigenic El Tor strains into six groups and a unique pattern was also obtained in 16 isolates from imported cases of cholera and imported seafood. The results indicated that rep-PCR can be used to identify and differentiate different toxigenic 01, non-toxigenic 01 and non-O1 V. cholerae isolates.  相似文献   

19.
The members of the genus Vibrio include harmless aquatic strains as well as strains capable of causing epidemics of cholera. Diarrhoea caused by Vibrio cholerae is attributed to cholerae enterotoxin (CT) codified by the ctx operon and regulated by a number of virulence genes such as toxT, toxR and toxS. Fifty-two Vibrio strains were isolated from different aquatic environments in and around Sardinia and searched by PCR for the presence of ctxA, zot, ace, toxR, toxS, toxT, tcpA and vpi virulence genes in the genomes of the isolates. The toxR operon was found in 27 Vibrio alginolyticus strains out of 42 analysed, in three out of four V. cholerae non-O1 strains and in three Vibrio parahaemolyticus isolates. A positive amplification for the virulence pathogenic island (vpi) was produced by five V. alginolyticus strains. Finally, the ace expected amplification fragment was found in two V. alginolyticus isolates whereas the amplification with zot primers produced the expected fragment in one V. alginolyticus isolate. Differentiation of these strains with a PCR fingerprinting technique revealed no association between the presence of virulence genes and a particular fingerprinting pattern. Although most Vibrio species are considered non-pathogenic or only potentially harmful to humans, the finding of V. cholerae virulence genes in other members of the genus Vibrio, and the recent reports of the creation and evolution of pandemic strains of V. cholerae, may give a new perspective to the significance of these results.  相似文献   

20.
A multiplex polymerase chain reaction (PCR) was developed to identify cholera toxin-producing Vibrio cholerae and to biotype V. cholerae O1. Enterotoxin-producing V. cholerae strains were identified with a primer pair that amplified a fragment of the ctxA2-B gene. Vibrio cholerae O1 strains were simultaneously differentiated into biotypes with three primers specified for the hlyA gene in the same reaction. The hlyA amplicon in the multiplex PCR serves as an internal control when testing toxin-producing strains, as hlyA gene sequences exist in all tested V. cholerae strains. Enrichment of V. cholerae present on oysters for 6 h in alkaline peptone water before detection by a nested PCR with internal primers for ctxA2-B gene yielded a detection limit lower than 3 colony-forming units (cfu) per gram of food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号