首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural alterations of chromosomes are often found in wheat-rye hybrids. In the majority of cases modifications are observed for rye chromosomes, yet chromosome aberration cases are described for wheat, including the progeny of Triticum aestivum disomic and monosomic addition lines. Since wheat-rye substitution and translocation lines are the source of rye chromatin in wheat breeding programs, the information on possible chromosome changes in the genomes of introgressive forms is important. Chromosome behavior in F1 meiosis and chromosomal composition of F2 karyotypes for double monosomics 1Rv-1A were studied by applying C-banding, genomic in situ hybridisation (GISH) using rye genomic DNA, and sequential in situ hybridization using repetitive sequences pAs1, pSc119.2 and centromere specific pAet-06 as probes. The double monosomics 1Rv-1A were obtained by crossing of disomic substitution line with chromosome 1A replaced by Secale cereale 1Rv in the bread wheat Saratovskaya 29 (S29) background with S29. The results indicated a high frequency of bipolar chromosome 1Rv orientation, as compared to 1A, at metaphase I (MI) (58.6 and 34.7 % of meiocytes, respectively), and, at anaphase I (AI), chromatid segregation of 1Rv compared to 1A (70.53 and 32.14 % of meiocytes, respectively). In few cases desynapsis of wheat homologues was observed, at AI, the chromosomes randomly distributed between the poles or underwent chromatid segregation. At AI, the two wheat homologues separated onto sister chromatids in 10.89 % of cells.The plants F2 karyotypes were marked with aneuploidy not only of chromosomes 1A and 1Rv, but also of 1D, 2D, 3D, 3B, 3A, 4A, 6D, 6B, 6A, and 7D. Structural changes were observed for the chromosomes of the first homoeologous group (1Rv, 1A, 1D, 1B), as well as for 2B, 5D, 6B, and 7B. The chromosomes 1Rv and 6B often demonstrated aberrations. The types of aberrations were centromeric break, deletions of various sizes, and a changed repeat pSc119.2 localization pattern.  相似文献   

2.
Summary In a 6-year period 128 patients with supernumerary autosomes were identified in our laboratory. The majority had primary trisomy, but 19 (15%) had extra, unusual chromosomes, not just a normal chromosome present in an extra copy. Of these, 18 were complex and did not resemble any one part of the standard chromosome complement. There was a preponderance of females among the 19 cases. Chromosome analysis of the parents in the 14 most recent cases revealed maternal chromosome abnormalities in 11 (79%). Of these 11, eight mothers had balanced reciprocal translocations; nondisjunction led to the smaller of their translocation chromosomes being passed on as the supernumerary chromosome in their offspring. Thus, nondisjunction of maternal translocations accounts for a major proportion of the unusual supernumerary chromosomes found by our laboratory. Advanced maternal age was noted in this group of mothers. Three mothers had supernumerary chromosomes themselves. We conclude that unusual supernumerary chromosomes (1) are not rare among patients referred for chromosome studies; (2) are generally not simple products of breakage; (3) are very frequently the result of malsegregation of a balanced maternal reciprocal translocation; and (4) are very difficult to characterize unless a balanced parental translocation is identified. Parental karyotypes should be obtained whenever a patient has an extra, unusual chromosome.  相似文献   

3.
Transmission of chromosome 5R of rye (Secale cereale L.) and chromosome 5D of common wheat (Triticum aestivum L.) through gametes of 5R5D dimonosomics (2n = 42, 20W″ + 5R′ + 5D′) was studied. Chromosome 5R was found to have lower competitiveness as compared to 5D. Gametes with the rye chromosome were two times less often involved in the formation of a progeny. The combined frequency of the karyotypes of wheat (5D5D) and wheat monosomics (5D) was 11.6-fold higher than the frequency of the karyotypes of substitution lines (5R5R) and monosomics for the rye chromosome (5R). The karyotypes of 10.38% of hybrid plants had aberrant 5R chromosomes with different translocations formed as a result of breakages in the centromere and in the proximal region of the long arm. Telocentrics for the short arm t5RS, i5RS isochromosomes, and chromosomes with a terminal deletion T5RS.5RL-del were identified. The absence of amplification of SSR markers mapped on 5RS and the detection of PCR products for a number of 5RL markers (including the genome-specific rye marker Xrms115) permitted nine plants carrying only the long arm of chromosome 5R to be revealed. Since t5RL telocentrics were not detected by the cytological analysis, the results obtained allow us to suggest the presence of small intercalary translocations of the long arm of chromosome 5R in chromosome 5D or in other wheat chromosomes.  相似文献   

4.
孙仲平  王占斌  徐香玲  李集临 《遗传学报》2004,31(11):1268-1274
将中国春-黑麦(1R-7R)二体附加系与中国春-2C(Aegilops cylindrica)二体附加系杂交,获得F1,对F1体细胞染色体进行C分带鉴定和花粉母细胞减数分裂行为的观察与分析,发现减数分裂行为异常。对自交获得的430株F2进行单株染色体C分带和荧光原位分子杂交鉴定,检测到易位、缺失、等臂染色体、双着丝点染色体等染色体畸变类型。此外还检测到2C与小麦2A、2B、2D染色体的二体或单体自发代换系。杂交F。染色体畸变的规律与频率如下:研究共得到含黑麦染色体的变异22株,变异频率为5,1%。其中含黑麦染色体的易位系为10株,占2,3%;缺失12株,占2.79%;黑麦的等臂染色体3株,占O.7%。易位染色体既有含小麦着丝点的(大部分),也含有黑麦着丝点的(仅1例)。黑麦的染色体畸变中,发生于不同同祖群的频率不同,1R为5个,2R为3个;3R为1个;4R为3个;5R为6个;6R为4个。易位多为端部易位。共鉴定出小麦的缺失系54株,其中A基因组有27个,占6.27%;B基因组有20个,占4,65%;D基因组有7个,占1.66%。对杀配子染色体对小麦及黑麦不同同祖群染色体作用的差异性及作用特点进行了探讨。  相似文献   

5.
Zhou WC  Kolb FL  Bai GH  Domier LL  Yao JB 《Hereditas》2002,137(2):81-89
Two sets of substitution lines were developed by crossing individual monosomic lines of Chinese Spring (recipient) with scab (Fusarium graminearum) resistant cultivar Sumai 3 (donor) and then using the monosomics as the recurrent male parent for four backcrosses (without selfing after each backcross). The disomic substitution lines were separated from selfed BC4F2 plants. Chromosome specific SSR markers were analyzed for polymorphism between Sumai 3 and Chinese Spring. Polymorphic markers were used to identify substitution lines for specific chromosomes. Based on the specific SSR markers, chromosome substitutions occurred in thirty-six lines, and six lines segregated alleles from the two parents or were homozygous for the allele from Chinese Spring. These substitution lines were used to evaluate Type II (spread within the head) and Type V (deoxynivalenol accumulation within kernels) scab resistance. The objective was to use the substitution lines to evaluate the effect of individual chromosomes of Sumai 3 on Type 11 and Type V scab resistance in the greenhouse. Significant differences in Type II scab resistance and deoxynivalenol (DON) levels among different Chinese Spring (Sumai 3) substitution lines were detected. Positive chromosome substitution effects on Type II scab resistance were found on chromosomes 2B, 3B. 6B, and 7A from Sumai 3. Chromosomes 3B and 7A also reduced DON accumulation within the kernels, while chromosomes IB, 2D, and 4D from Sumai 3 increased DON concentration. Chromosome 7A from Sumai 3 had the largest effect on resistance to scab spread and DON accumulation. Additional research is in progress on the scab resistance conferred by chromosome 7A.  相似文献   

6.
A cytogenetic study of bone marrow aspirate from 32 patients with different types of myelodysplastic syndrome (MDS) has been carried out. The patients were from eight regions of Ukraine. Chromosome deletions prevailed in the spectrum of karyotype changes. The largest number of chromosome abnormalities was revealed in patients with a refractory anemia with an excess of blasts (66.6% of cases). Chromosomal changes that involved three or more chromosomes occurred among 27% of all karyotype changes examined by us. Transformation of myelodysplastic syndrome to acute myeloid leukemia (AML) was found in 5 patients (45.4% of the cases) among 11 patients with abnormal karyotypes. We propose that cytogenetic confirmation of increased apoptosis in the bone marrow from the myelodysplastic syndrome patients is a phenomenon of chromosome fragmentation. The risk of transformation of myelodysplastic syndrome to acute myeloid leukemia was measured with the use of a new international score system, IPSS.  相似文献   

7.
Maternal and paternal homologues of many chromosome types can be differentiated on the basis of their peak position in Hoechst 33258 versus chromomycin A3 bivariate flow karyotypes. We demonstrate here the magnitude of DNA content differences among normal chromosomes of the same type. Significant peak-position differences between homologues were observed for an average of four chromosome types in each of the karyotypes of 98 different individuals. The frequency of individuals with differences in homologue peak positions varied among chromosome types: e.g., chromosome 15, 61%; chromosome 3, 4%. Flow karyotypes of 33 unrelated individuals were compared to determine the range of peak position among normal chromosomes. Chromosomes Y, 21, 22, 15, 16, 13, 14, and 19 were most heteromorphic, and chromosomes 2-8 and X were least heteromorphic. The largest chromosome 21 was 45% larger than the smallest 21 chromosome observed. The base composition of the variable regions differed among chromosome types. DNA contents of chromosome variants determined from flow karyotypes were closely correlated to measurements of DNA content made of gallocyanin chrome alum-stained metaphase chromosomes on slides. Fluorescence in situ hybridization with chromosome-specific repetitive sequences indicated that variability in their copy number is partly responsible for peak-position variability in some chromosomes. Heteromorphic chromosomes are identified for which parental flow karyotype information will be essential if de novo rearrangements resulting in small DNA content changes are to be detected with flow karyotyping.  相似文献   

8.
利用普通压片法对3个引进彩色马蹄莲(Zantedeschia hybrid)品种的染色体数与核型进行了分析。结果表明:所试验品种染色体数均为2n=32。染色体形态比较一致,多是由中部(m)以及近中部(sm)着丝粒染色体组成。其中,‘Allure’为2n=2x=32=14m(2SAT)+2sm,‘Cupdio’的核型公式为2n=2x=32=14m+2sm,Odessa的核型公式为2x=32=1M+15m(1SAT)。3个品种核型不对称系数分别为56.72%,56.25%和56.38%,核型分类显示其均为1A型。  相似文献   

9.
Kota RS  Dvorak J 《Genetics》1988,120(4):1085-1094
A massive restructuring of chromosomes was observed during the production of a substitution of chromosome 6B(s) from Triticum speltoides (Tausch) Gren. ex Richter for chromosome 6B of Chinese Spring wheat (Triticum aestivum L.). Deletions, translocations, ring chromosomes, dicentric chromosomes and a paracentric inversion were observed. Chromosome rearrangements occurred in both euchromatic and heterochromatic regions. Chromosome rearrangements were not observed either in the amphiploid between Chinese Spring and T. speltoides or in Chinese Spring. No chromosome rearrangements were observed in the backcross derivatives; however, after self-pollination of a monosomic substitution (2n = 41) of chromosome 6B(s) for wheat chromosome 6B, 49 of the 138 plants carried chromosome aberrations. Chromosome rearrangements were observed in both wheat and T. speltoides chromosomes. The frequency of chromosome rearrangements was high among the B-genome chromosomes, moderate among the A-genome chromosomes, and low among the D-genome chromosomes. In the B genome, the rearrangements were nonrandom, occurring most frequently in chromosomes 1B and 5B. Chromosome rearrangements were also frequent for the 6B(s) chromosome of T. speltoides. An intriguing aspect of these observations is that they indicate that wheat genomes can be subject to uneven rates of structural chromosome differentiation in spite of being in the same nucleus.  相似文献   

10.
李海凤  刘慧萍  戴毅  黄帅  张军  高勇  陈建民 《遗传》2016,38(11):1020-1029
通过细胞学方法和染色体特异分子标记鉴定六倍体小偃麦(AABBEE)与硬粒小麦(AABB)杂交的自交后代F2和F3植株,探讨长穗偃麦草染色体在硬粒小麦背景中世代间的传递特征,并筛选硬粒小麦-长穗偃麦草E染色体附加系。对218个F2单株染色体数检测表明,2n=28植株占41.7%,2n=29植株占18.3%,其余40.0%植株的染色体数在2n=31~42范围内。分子标记鉴定表明,在F2代2n=29单体附加植株中,不同的长穗偃麦草染色体传递率之间存在明显差异,1E传递率最高,3E和6E传递率最低。在F2代2n=30单株中,1E、4E、7E和5E染色体相互组合产生的双单体多,6E参与组合较少,未检测到2E或3E与其他染色体的组合单株。在1E~7E单体附加株自交后代F3中,E染色体传递率变化范围为9.1%~27.5%,1E传递率最高,6E传递率最低,与F2的传递率一致。从F3代中选育出1E~7E单体附加及少数二体附加,所有单体附加均可育。这些附加E染色体材料将对小麦代换系和易位系的创制提供有益的中间材料。  相似文献   

11.
We report the identification and characterization of the first supernumerary ring chromosome 10 containing a considerable proportion of 10q euchromatin by microdissection and reverse painting in a female patient presenting with short stature. Fluorescence in situ hybridization studies showed that the marker chromosome originates from chromosome 10 and includes the euchromatic bands p11.2 and q11.2. The supernumerary marker chromosome 10 was found in 14% of the peripheral blood lymphocytes analyzed. This constitutional mosaic could be confirmed in oral mucosa cells as a second cell system (16%) by interphase FISH using an alphoid centromeric probe for chromosome 10. Parental karyotypes were normal, uniparental disomy for the normal chromosomes 10 could be excluded by microsatellite analysis. The karyotype of the patient detected in peripheral blood cells can be described as mos 47,XX,+mar.rev ish r(10)(p11.2q11.2)(wcp10+,cep10+)/46,XX.  相似文献   

12.
Aneuploidy results from nondisjunction of chromosomes in meiosis and is the leading cause of developmental disabilities and mental retardation in humans. Therefore, understanding aspects of chromosome segregation in a genetic model is of value. Mice heterozygous for a (2.8) Robertsonian translocation were intercrossed with chromosomally normal mice and Chromosome 2 was genotyped for number and parental origin in 836 individuals at 8.5 dpc. The frequency of nondisjunction of this Robertsonian chromosome is 1.58%. Trisomy of Chromosome 2 with two maternally derived chromosomes is the most developmentally successful aneuploid karyotype at 8.5 dpc. Trisomy of Chromosome 2 with two paternally derived chromosomes is developmentally delayed and less frequent than the converse. Individuals with maternal or paternal uniparental disomy of Chromosome 2 were not detected at 8.5 dpc. Nondisjunction events were distributed randomly across litters, i.e., no evidence for clustering was found. Transmission ratio distortion is frequently observed in Robertsonian chromosomes and a bias against the transmission of the (2.8) Chromosome was detected. Interestingly, this was observed for female and male transmitting parents.  相似文献   

13.
Autism is characterized by impairments in reciprocal communication and social interaction and by repetitive and stereotyped patterns of activities and interests. Evidence for a strong underlying genetic predisposition comes from twin and family studies, although susceptibility genes have not yet been identified. A whole-genome screen for linkage, using 83 sib pairs with autism, has been completed, and 119 markers have been genotyped in 13 candidate regions in a further 69 sib pairs. The addition of new families and markers provides further support for previous reports of linkages on chromosomes 7q and 16p. Two new regions of linkage have also been identified on chromosomes 2q and 17q. The most significant finding was a multipoint maximum LOD score (MLS) of 3.74 at marker D2S2188 on chromosome 2; this MLS increased to 4.80 when only sib pairs fulfilling strict diagnostic criteria were included. The susceptibility region on chromosome 7 was the next most significant, generating a multipoint MLS of 3.20 at marker D7S477. Chromosome 16 generated a multipoint MLS of 2.93 at D16S3102, whereas chromosome 17 generated a multipoint MLS of 2.34 at HTTINT2. With the addition of new families, there was no increased allele sharing at a number of other loci originally showing some evidence of linkage. These results support the continuing collection of multiplex sib-pair families to identify autism-susceptibility genes.  相似文献   

14.
This study evaluates the potential of flow cytometry for chromosome sorting in two wild diploid wheats Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata. Flow karyotypes obtained after the analysis of DAPI-stained chromosomes were characterized and content of chromosome peaks was determined. Peaks of chromosome 1U could be discriminated in flow karyotypes of Ae. umbellulata and Ae. biuncialis and the chromosome could be sorted with purities exceeding 95%. The remaining chromosomes formed composite peaks and could be sorted in groups of two to four. Twenty four wheat SSR markers were tested for their position on chromosomes of Ae. umbellulata and Ae. comosa using PCR on DNA amplified from flow-sorted chromosomes and genomic DNA of wheat-Ae. geniculata addition lines, respectively. Six SSR markers were located on particular Aegilops chromosomes using sorted chromosomes, thus confirming the usefulness of this approach for physical mapping. The SSR markers are suitable for marker assisted selection of wheat-Aegilops introgression lines. The results obtained in this work provide new opportunities for dissecting genomes of wild relatives of wheat with the aim to assist in alien gene transfer and discovery of novel genes for wheat improvement.  相似文献   

15.
Hordeum californicum(2n=2x=14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chinese Spring(CS)eH. californicum amphidiploid(2n=6x=56, AABBDDHH) was established. By genomic in situ hybridization(GISH) and multicolor fluorescent in situ hybridization(FISH) using repetitive DNA clones(pTa71, pTa794 and pSc119.2) as probes, the H. californicum chromosomes could be differentiated from each other and from the wheat chromosomes unequivocally. Based on molecular karyotype and marker analyses, 12 wheatealien chromosome lines, including four disomic addition lines(DAH1, DAH3, DAH5 and DAH6), five telosomic addition lines(MtH7L,MtH1 S, MtH1 L, DtH6 S and DtH6L), one multiple addition line involving H. californicum chromosome H2, one disomic substitution line(DSH4) and one translocation line(TH7S/1BL), were identified from the progenies derived from the crosses of CSeH. californicum amphidiploid with common wheat varieties. A total of 482 EST(expressed sequence tag) or SSR(simple sequence repeat) markers specific for individual H. californicum chromosomes were identified, and 47, 50, 45, 49, 21, 51 and 40 markers were assigned to chromosomes H1, H2, H3, H4, H5, H6 and H7, respectively. According to the chromosome allocation of these markers, chromosomes H2,H3, H4, H5, and H7 of H. californicum have relationship with wheat homoeologous groups 5, 2, 6, 3, and 1, and hence could be designated as 5Hc, 2Hc, 6Hc, 3Hcand 1Hc, respectively. The chromosomes H1 and H6 were designated as 7Hcand 4Hc, respectively, by referring to SSR markers located on rye chromosomes.  相似文献   

16.
Genomic imprinting: normal complementation of murine chromosome 16   总被引:1,自引:0,他引:1  
Parental imprinting effects for chromosome 16 were investigated using disomic animals which were obtained by mating (Rb32Lub x Rb2H) F1 mice. Two allelic forms of the enzyme CuZn-superoxide dismutase, Sod-1a and Sod-1c, were used to identify maternally or paternally disomic animals. Both types of disomic animals were found with the expected frequencies and did not visibly differ from one another or from non-disomic animals. These results indicate that the genomic imprinting mechanism either does not act on chromosome 16, or, if it does, does not do so in a manner which affects normal development.  相似文献   

17.
Based on the cross (Triticum aestivum L. x Secale cereale L.) x T. aestivum L., wheat-rye substitution lines (2n = 42) were produced with karyotypes containing, instead of a pair of homologous wheat chromosomes, a homeologous pair of rye chromosomes. The chromosome composition of these lines was described by GISH and C-banding methods, and SSR analysis. The results of genomic in situ hybridization demonstrated that karyotype of these lines included one pair of rye chromosomes each and lacked wheat--rye translocations. C-banding and SSR markers were used to identify rye chromosomes and determine the wheat chromosomes at which the substitution occurred. The lines were designated 1R(1D), 2R(2D)2, 2R(2D)3, 3R(3B), 6R(6A)2. The chromosome composition of lines IR(1A), 2R(W)1, 5R(W), 5R(5A), and 6R(W)1, which were earlier obtained according to the same scheme for crossing, was characterized using methods of telocentric analysis, GISH, C-banding, and SSR analysis. These lines were identified as 1R(1A), 2R(2D)1, 5R(5D), 5R(5A), and 6R(6A)1, C-banding of chromosomes belonging to line 1R(1A) revealed the presence of two translocated chromosomes (3DS.3DL-del. and 4AL.W) during simultaneous amplification of SSR markers located on 3DL and 4AS arms. The "combined" long arm of the newly derived chromosome 4A is assumed to be formed from the long arm of chromosome 4AS itself and a deleted segment 3DL. All examined lines are cytologically stable, except for 3R(3B), which does not affect the stability of rye 3R chromosome transfer. Chromosome identification and classification of the lines will permit them to be models for genetic studies that can be used thereafter as promising "secondary gene pools" for the purpose of plant breeding.  相似文献   

18.
Chromosome numbers and karyotypes of 13 populations of six Oxytropis species (Fabaceae) from the Qinghai Tibetan Plateau, China, were presented. The chromosome numbers and karyotypes in O.ochrocephala, O.tatarica, O.kansuensis and O.humifusa (2n=16) were reported for the first time. B chromosomes were found from O.stracheyana (2n=48). The basic chromosome number of x=8 is confirmed for the genus. The available chromosomal data indicate that polyploidy may have played an important role in the evolution of the genus, with the incidence of polyploidy in the genus reaching 58%. However, our results indicated that among the populations here examined only one was a hexaploid with 2n=48. Such a chromosomal pattern indicates that the karyotypic repatterning at the diploid level seems to be the predominant feature of chromosomal evolution in the Oxytropis species from the Qinghai Tibetan Plateau, and that sympatric speciation via hybridization and polyploidization has played a minor role in the species diversification of the genus from this area.  相似文献   

19.
鹅观草(Roegneria kamoji,2n=42,SSHHYY)是小麦异源六倍体野生近缘种,对小麦赤霉病具有良好抗性,是改良小麦赤霉病抗性的重要遗传资源。通过远缘杂交,将鹅观草第一部分同源群染色体上的抗赤霉病基因Fhb6导入普通小麦。由于第一部分同源群染色体包含1S、1H和1Y三条染色体,为研究这些同源染色体对小麦赤霉病抗性的影响,筛选出4个鹅观草第一部分同源群染色体特异分子标记,通过PCR扩增鹅观草属不同野生种的基因组DNA,明确了抗赤霉病Fhb6基因位于鹅观草1Y#1染色体。进一步利用分子细胞遗传学技术从中国春与鹅观草的后代中选育出5份涉及鹅观草1Y#2和1S#2染色体的渗入系材料。其中:21RK?1为二体异代换系DS1Y#2(1A),21RK?2为二体异代换系DS1S#2(1D),21RK?3为二体异附加系DA1S#2,21RK?4为1S#2和TW·1S#2S的双单体附加系,21RK?5为纯合TW·1S#2S易位系。这些新种质为小麦抗赤霉病基因的发掘及遗传改良奠定了基础。  相似文献   

20.
Electrophoretic patterns of malate dehydrogenase (Mdh), alcohol dehydrogenase (Adh), and 6-phosphogluconate dehydrogenase (Pgd) of Zea mays L. × Tripsacum dactyloides L. hybrids and their parents were compared. The components of enzymes specific to T. dactyloides may be used as markers to identify the following T. dactyloides chromosomes in the hybrids: Tr 16 (Mdh 2 and Pdg 1), Tr 7, and/or Tr 13 (Adh 2). The isozymes of Mdh 2 are supposed as a possible biochemical marker to evaluate the introgression of genes, determining an apomictic mode of reproduction from T. dactyloides (localized on Tripsacum 16 chromosome) into Z. mays. The isozymes may be used as markers for the identification of maize chromosomes 1 and 6 in the hybrids as well. Chromosome count taken on the examined hybrids showed the addition of 9 to 13 chromosomes of T. dactyloides to maize chromosome complement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号