首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that nitric oxide (NO) is a key modulator of both baroreceptor and exercise pressor reflex afferent signals processed within the nucleus tractus solitarius (NTS). However, studies investigating the independent effects of NO within the NTS on the function of each reflex have produced inconsistent results. To address these concerns, the effects of microdialyzing 10 mM L-arginine, an NO precursor, and 20 mM N(G)-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, into the NTS on baroreceptor and exercise pressor reflex function were examined in 17 anesthetized cats. Arterial baroreflex regulation of heart rate was quantified using vasoactive drugs to induce acute changes in mean arterial pressure (MAP). To activate the exercise pressor reflex, static hindlimb contractions were induced by electrical stimulation of spinal ventral roots. To isolate the exercise pressor reflex, contractions were repeated after barodenervation. The gain coefficient of the arterial cardiac baroreflex was significantly different from control (-0.24 +/- 0.04 beats.min(-1).mmHg(-1)) after the dialysis of L-arginine (-0.18 +/- 0.02 beats.min(-1).mmHg(-1)) and L-NAME (-0.29 +/- 0.02 beats.min(-1).mmHg(-1)). In barodenervated animals, the peak MAP response to activation of the exercise pressor reflex (change in MAP from baseline, 39 +/- 7 mmHg) was significantly attenuated by the dialysis of L-arginine (change in MAP from baseline, 29 +/- 6 mmHg). The results demonstrate that NO within the NTS can independently modulate both the arterial cardiac baroreflex and the exercise pressor reflex. Collectively, these findings provide a neuroanatomical and chemical basis for the regulation of baroreflex and exercise pressor reflex function within the central nervous system.  相似文献   

2.
The role of thermoregulatory background in the baroreceptor reflex control of the tail circulation was investigated 1) in anesthetized rats with a constant flow technique and 2) in conscious rats by measuring tail blood flow (venous occlusion plethysmography). In series I, during normothermia, systemic intravenous phenylephrine infusion increased mean arterial pressure (MAP) by 61.0 +/- 3.6 mmHg and induced a reflex decrease in tail perfusion pressure (TPP) from 105.0 +/- 6.3 to 84.2 +/- 4.4 mmHg (P less than 0.005). Hyperthermia decreased TPP to 66.5 +/- 5.1 mmHg (P less than 0.001) and abolished the TPP response to increased MAP (P greater than 0.05). Increases in MAP via systemic infusion of whole blood caused reductions in TPP during normothermia but failed to reduce TPP further during hyperthermia. Graded decreases in MAP during both normothermia and hyperthermia caused tail vasoconstriction. The increase in TPP was greater (P less than 0.025) during hyperthermia. In series II, conscious animals showed similar responses to hemorrhage. Graded decreases in MAP produced graded decreases in tail vascular conductance (TVC, ml.100 ml-1.min-1.100 mmHg-1). The slope of the TVC-MAP relationship averaged 0.011 +/- 0.003 TVC U/mmHg during normothermia and was markedly steeper (P less than 0.01) during hyperthermia (1.99 +/- 0.39 TVC U/mmHg). Thus the participation of the cutaneous vasculature of the rat in baroreceptor reflexes depends on thermal status, probably through the level of background sympathetic vasoconstrictor nerve activity.  相似文献   

3.
Recent studies have shown that angiotensin-converting enzyme (ACE) inhibitors attenuate endothelin-1 (ET-1)-induced hypertension, but the mechanisms for this effect have not been clarified. Initial experiments were conducted to contrast the effect of the ACE inhibitor enalapril, the combined ACE-neutral endopeptidase inhibitor omapatrilat, and the angiotensin II receptor antagonist candesartan on the hypertensive and renal response to ET-1 in anesthetized Sprague-Dawley rats. Acute intravenous infusion of ET-1 (10 pmol x kg(-1) x min(-1)) for 60 min significantly increased mean arterial pressure (MAP) from 125 +/- 8 to 145 +/- 8 mmHg (P < 0.05) and significantly decreased glomerular filtration rate (GFR) from 0.31 +/- 0.09 to 0.13 +/- 0.05 ml x min(-1) x 100 g kidney wt(-1). Pretreatment with enalapril (10 mg/kg iv) before ET-1 infusion inhibited the increase in MAP (121 +/- 4 vs. 126 +/- 4 mmHg) before and during ET-1 infusion, respectively (P < 0.05) without blocking the effect of ET-1 on GFR. In contrast, neither omapatrilat (30 mg/kg) nor candesartan (10 mg/kg) had any effect on ET-1-induced increases in MAP or decreases in GFR. To determine whether the effect of enalapril was due to the decrease in angiotensin II or increase in kinin formation, rats were given REF-000359 (1 mg/kg iv), a selective B(2) receptor antagonist, with or without enalapril before ET-1 infusion. REF-000359 completely blocked the effect of enalapril on ET-1 infusion (MAP was 117 +/- 5 vs. 135 +/- 5 mmHg before and during ET-1 infusion, respectively, P < 0.05). REF-000359 alone had no effect on the response to ET-1 infusion (MAP was 117 +/- 4 vs. 144 +/- 4 mmHg before and during ET-1 infusion, respectively, P < 0.05). REF-000359 with or without enalapril had no significant effect on the ability of ET-1 infusion to decrease GFR. These findings support the hypothesis that decreased catabolism of bradykinin and its subsequent vasodilator activity oppose the actions of ET-1 to increase MAP.  相似文献   

4.
Bradykinin (BK) is a peptide known to activate afferent nerve fibers from the kidney and elicit reflex changes in the cardiovascular system. The present study was specifically designed to test the hypothesis that bradykinin B2 receptors mediated the pressor responses elicited during intrarenal bradykinin administration. Pulsed Doppler flow probes were positioned around the left renal artery to measure renal blood flow (RBF). A catheter, to permit selective intrarenal administration of BK, was advanced into the proximal left renal artery. The femoral artery was cannulated to measure mean arterial pressure (MAP). MAP, heart rate (HR), and RBF were recorded from conscious unrestrained rats while five-point cumulative dose-response curves during an intrarenal infusion of BK (5-80 microg x kg(-1) x min(-1)) were constructed. Intrarenal infusion of BK elicited dose-dependent increases in MAP (maximum pressor response, 26+/-3 mmHg), accompanied by a significant tachycardia (130+/-18 beats/min) and a 28% increase in RBF. Ganglionic blockade abolished the BK-induced increases in MAP (maximum response, -6+/-5 mmHg), HR (maximum response 31+/-14 beats/min), and RBF (maximum response, 7+/-2%). Selective intrarenal B2-receptor blockade with HOE-140 (50 microg/kg intrarenal bolus) abolished the increases in MAP and HR observed during intrarenal infusion of BK (maximum MAP response, -2+/-3 mmHg; maximum HR response, 15+/-11 beats/min). Similarly, the increases in RBF were prevented after HOE-140 treatment. In fact, after HOE-140, intrarenal BK produced a significant decrease in RBF (22%) at the highest dose of BK. Results from this study show that the cardiovascular responses elicited by intrarenal BK are mediated predominantly via a B2-receptor mechanism.  相似文献   

5.
We have previously reported that both skeletal muscle receptor and arterial baroreceptor afferent inputs activate neurons in the dorsolateral (DL) and lateral regions of the midbrain periaqueductal gray (PAG). In this study, we determined whether the excitatory amino acid glutamate (Glu) is released to mediate the increased activity in these regions. Static contraction of the triceps surae muscle for 4 min was evoked by electrical stimulation of the L7 and S1 ventral roots in cats. Activation of arterial baroreceptor was induced by intravenous injection of phenylephrine. The endogenous release of Glu from the PAG was recovered with the use of a microdialysis probe. Glu concentration was measured by the HPLC method. Muscle contraction increased mean arterial pressure (MAP) from 98 +/- 10 to 149 +/- 12 mmHg (P < 0.05) and increased Glu release in the DL and lateral regions of the middle PAG from 0.39 +/- 0.10 to 0.73 +/- 0.12 microM (87%, P < 0.05) in intact cats. After sinoaortic denervation and vagotomy were performed, contraction increased MAP from 95 +/- 12 to 158 +/- 15 mmHg, and Glu from 0.34 +/- 0.08 to 0.54 +/- 0.10 microM (59%, P < 0.05). The increases in arterial pressure and Glu were abolished by muscle paralysis. Phenylephrine increased MAP from 100 +/- 13 to 162 +/- 22 mmHg and increased Glu from 0.36 +/- 0.10 to 0.59 +/- 0.18 microM (64%, P < 0.05) in intact animals. Denervation abolished this Glu increase. Summation of the changes in Glu evoked by muscle receptor and arterial baroreceptor afferent inputs was greater than the increase in Glu produced when both reflexes were activated simultaneously in intact state (123% vs. 87%). These data demonstrate that activation of skeletal muscle receptors evokes release of Glu in the DL and lateral regions of the middle PAG, and convergence of afferent inputs from muscle receptors and arterial baroreceptors in these regions inhibits the release of Glu. These results suggest that the PAG is a neural integrating site for the interaction between the exercise pressor reflex and the arterial baroreceptor reflex.  相似文献   

6.
Captopril attenuates reflex adrenergic response in essential hypertension   总被引:1,自引:0,他引:1  
O Mohara  Y Masuyama 《Life sciences》1991,48(2):203-207
An attenuation of adrenergic activity during the inhibition of endogenous angiotensin II formation was evaluated by determining plasma norepinephrine concentration after a single oral administration of captopril compared to that after nifedipine in essential hypertension. Captopril produced a fall in mean arterial pressure (-24 +/- 2 mmHg, p less than 0.01) which magnitude was the same as that gained by nifedipine (-22 +/- 3 mmHg, p less than 0.01). Reflex tachycardia due to hypotension was produced (+13 +/- 1 beats/min, p less than 0.01) after nifedipine but not after captopril (-1 +/- 2 beats/min, p greater than 0.05). Although the enhancement of plasma renin activity induced by captopril (+1.54 +/- 0.56 ng/ml/hr, p less than 0.05) was similar (p greater than 0.05) to that by nifedipine (+1.44 +/- 0.47 ng/ml/hr, p less than 0.05), plasma norepinephrine concentration increased less (p less than 0.01) after captopril (+100 +/- 23 ng/ml, p less than 0.05) than after nifedipine (+283 +/- 51 ng/ml, p less than 0.05). Thus, the diminished adrenergic activity is a likely candidate for the abolished reflex tachycardia after the inhibition of angiotensin I converting enzyme activity by captopril in essential hypertension.  相似文献   

7.
Lesions of the lateral parabrachial nucleus (LPBN) impair blood pressure recovery after hypotensive blood loss (Am J Physiol Regul Integr Comp Physiol 280: R1141, 2001). This study tested the hypothesis that posthemorrhage blood pressure recovery is mediated by activation of neurons, located in the ventrolateral aspect of the LPBN (VL-LPBN), that initiates blood pressure recovery by restoring sympathetic vasomotor drive. Hemorrhage experiments (16 ml/kg over 22 min) were performed in unanesthetized male Sprague-Dawley rats prepared with bilateral ibotenate lesions or guide cannulas directed toward the external lateral subnucleus of the VL-LPBN. Hemorrhage initially decreased mean arterial pressure (MAP) from approximately 100 mmHg control to 40-50 mmHg, and also decreased heart rate. In animals with sham lesions, MAP returned to 84 +/- 4 mmHg by 40 min posthemorrhage, and subsequent autonomic blockade with hexamethonium reduced MAP to 53 +/- 2 mmHg. In contrast, animals with VL-LPBN lesions remained hypotensive at 40 min posthemorrhage (58 +/- 4 mmHg) and hexamethonium had no effect on MAP, implying a deficit in sympathetic tone. VL-LPBN lesions did not alter the renin response or the effect of vasopressin V1 receptor blockade after hemorrhage. Posthemorrhage blood pressure recovery was also significantly delayed by VL-LPBN infusion of the ionotropic glutamate receptor antagonist kynurenic acid. Both VL-LPBN lesions and VL-LPBN kynurenate infusion caused posthemorrhage bradycardia to be significantly prolonged. Bradycardia was reversed by hexamethonium or atropine, but did not contribute to posthemorrhage hypotension. Taken together, these data support the hypothesis that stimulation of VL-LPBN glutamate receptors mediates spontaneous blood pressure recovery by initiating restoration of sympathetic vasomotor drive.  相似文献   

8.
Hypertension (mean arterial pressure, (MAP) 131 +/- 3 mmHg) developed in 18 dogs 4 weeks after left nephrectomy, deoxycorticosterone acetate (DOCA), 5 mg/kg sc twice weekly), and 0.5% NaCl drinking solution. This can be compared with MAP (95 +/- 7 mmHg) of 13 dogs with nephrectomy alone and MAP (86 +/- 4 mmHg) of dogs without nephrectomy. The two-compartment model of the circulation revealed no differences in systemic vascular compliance, compartmental compliance, or flow distribution to the compartments. However, the time constant for venous return for the compartment with the rapid time constant was increased from 0.05 +/- 0.004 min in control animals to 0.07 +/- 0.006 min in the nephrectomy alone group and 0.09 +/- 0.008 min in the hypertensive group (p less than 0.001), as a result of an increase in venous resistance. Arteriolar resistance in this compartment was also increased in the hypertensive animals, as was the mean circulatory filling pressure and overall resistance to venous return. Nifedipine (0.025-0.05 mg/kg) reduced MAP by 15% in the nephrectomy alone group and by 22% in the hypertensive group, with reduction in arteriolar resistance only in the fast time constant compartment. In the slow time constant compartment, arteriolar resistance was increased by more than 100% and flow decreased by more than 50% after nifedipine. Unilateral nephrectomy, DOCA, plus NaCl resulted in hypertension by increasing arteriolar resistance in a vascular compartment with a fast time constant for venous return. Nifedipine countered this effect by inducing arteriolar vasodilation in this compartment. In addition, nifedipine reduced the mean circulatory filling pressure and overall resistance to venous return.  相似文献   

9.
Nitric oxide does not contribute to the hypotension of heatstroke.   总被引:3,自引:0,他引:3  
The purpose of this study was to determine whether nitric oxide (NO) contributes to the hypotensive state induced by prolonged environmental heat (EH) stress. Ketamine-anesthetized rats were instrumented for the measurement of arterial blood pressure, electrocardiogram, and temperature at four sites. Rats were exposed to EH (ambient temperature, 40 +/- 1 degrees C) until mean arterial blood pressure (MAP) decreased to 75 mmHg, which was arbitrarily defined as the induction of heatstroke. In addition to cardiovascular and temperature measurements, the time required to reach this MAP end point and the subsequent survival time were measured. In three separate experimental series, the competitive NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) was administered (0, 10, or 100 mg/kg) either before, during (30 min after initiation of EH), or immediately after EH. L-NAME administered at any of these times transiently increased MAP. L-NAME infusion either before or during EH did not alter the EH time required to decrease MAP to 75 mmHg, but L-NAME pretreatment did decrease the colonic temperature at which this MAP end point was reached. L-NAME infusion before or after EH did not affect subsequent survival time, but L-NAME administered during EH significantly decreased survival time. The administration of L-NAME at any time point, therefore, did not prove beneficial in either preventing or reversing heatstroke. Taken together, these data suggest that NO does not mediate the hypotension associated with heatstroke.  相似文献   

10.
The peripheral mechanisms responsible for pressor response produced by microinjections of baclofen (GABA(B) agonist) into the nucleus tractus solitarii (NTS) of conscious rats were studied. Bilateral microinjections of baclofen (10-1,000 pmol/100 nl) produced a dose-related increase in mean arterial pressure (MAP) and heart rate. The maximal response was observed after 15 min. Intravenous injection of prazosin decreased MAP to control levels. Subsequent treatment with Manning compound (vasopressin receptor antagonist; iv) produced an additional decrease in MAP. In a different group of rats, vasopressin antagonist was injected first and MAP was significantly decreased; however, it remained elevated compared with prebaclofen injection levels. Subsequent treatment with prazosin abolished the baclofen-induced pressor response. Reductions in baclofen-induced pressor response with prazosin treatment were followed by a reflex tachycardia in animals that received a 100 pmol/100 nl dose of baclofen. The tachycardia was not observed with a dose of 1,000 pmol/100 nl. The pressor response induced by microinjection of baclofen into the NTS of conscious rats may be produced by both increases in sympathetic tonus and vasopressin release.  相似文献   

11.
Little is known about the effects of common antihypertensive drugs in obese, insulin-resistant females. Nine-month-old obese female SHHF/Mcc-fncp rats that received either nifedipine, a calcium channel antagonist, or enalapril, an angiotensin-converting-enzyme inhibitor, for three months were compared with untreated SHHF/Mcc-facp rats (controls). After one month, nifedipine significantly decreased body weight in obese females compared to either enalapril or controls. After three months of treatment, total, abdominal, and subcutaneous fat masses were decreased in obese females given nifedipine compared to either enalapril or controls. Enalapril treatment was associated with a redistribution of fat mass from abdominal to subcutaneous depots. Nifedipine reduced plasma triglyceride and fasting glucose levels and improved insulin response to an oral glucose load in obese females, whereas enalapril did not appear to affect glycemic control. Systolic pressure was not significantly decreased until after two months of treatment with nifedipine or three months of treatment with enalapril in obese females and may have coincided with improvement in insulin-resistance. Similarly, plasma atrial natriuretic peptide concentrations were significantly lower in obese females given nifedipine. To determine how obese males responded to a calcium channel antagonist, six-month-old obese male SHHF/Mcc-facp rats were treated for three months with either nifedipine or placebo (controls). Nifedipine-treated obese males showed a mild but significant decrease in weight gain that was due to a decrease in fat deposition in both subcutaneous and abdominal depots and systolic blood pressure was significantly reduced after one month of treatment. Nifedipine did not affect other plasma biochemical parameters in obese males. In conclusion, nifedipine improved systolic pressure and glycemic control in obese female SHHI;/Mcc-facp rats, effects that may be associated with a marked loss in body weight and fat mass and improved lipid metabolism. Nifedipine-treated obese males exhibited only a diminished weight gain that was not associated with changes in diabetic characteristics.  相似文献   

12.
The effects of TA-3090 (clentiazem) and nifedipine on basal sympathoadrenal activity and on the adrenal medullary response during splanchnic nerve stimulation were studied in dogs anesthetized with sodium pentobarbital. Plasma concentrations of epinephrine and norepinephrine were measured in aortic and adrenal venous blood before and after acute administration of the drugs, as well as during left splanchnic nerve stimulation before and after administration of drugs. Following intravenous injections, TA-3090 (30, 100, and 300 micrograms/kg) did not affect basal circulating catecholamine levels, whereas nifedipine (10, 30, and 100 micrograms/kg) markedly increased aortic epinephrine and norepinephrine concentrations in a dose-dependent manner in correlation with progressive decreases in mean arterial pressure. The changes in aortic epinephrine and norepinephrine concentrations were inversely related to those in mean arterial pressure (r = 0.603, p < 0.01; r = 0.536, p < 0.01; respectively). In response to direct splanchnic nerve stimulation (2 Hz, 2 ms, 1 min, 12 V), adrenal venous epinephrine and norepinephrine concentrations significantly increased, with a high degree of reproducibility. The catecholamine responses to splanchnic nerve stimulation were not affected by either TA-3090 or nifedipine at any dose tested. The present results suggest that the increases in circulating catecholamine levels following nifedipine administration are due to baroreflex activation secondary to the drug-induced hypotension. The study indicates that both TA-3090 and nifedipine did not significantly affect L-type Ca2+ channels related to catecholamine release in the adrenal medulla under the present experimental conditions.  相似文献   

13.
R Singh  M K Ticku 《Life sciences》1987,40(10):1017-1026
This study was conducted to investigate the effects of centrally administered baclofen on blood pressure and heart rate in conscious spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Administration of baclofen (1.0 microgram/kg) into the lateral cerebral ventricle (icv) produced an increase in mean arterial pressure (MAP) in both SHR and WKY rats. The increase in MAP was significantly lower in SHR (13 +/- 3 mmHg) when compared with WKY (27 +/- 5 mmHg). The changes in heart rate (HR) were variable, from no change to a very small increase and did not differ significantly between SHR and WKY rats. The ability of baclofen to interfere with baroreceptor reflexes was also tested in separate experiments. In SHR, icv injection of baclofen (1.0 microgram/kg) significantly suppressed the pressor response and bradycardia evoked by phenylephrine 3.0 micrograms/kg iv, whereas in WKY, the pressor and HR responses to similar injections of phenylephrine were not affected by icv baclofen. Similarly, baclofen treatment modified hypotensive response and reflex tachycardia induced by nitroprusside (10.0 micrograms/kg) iv in SHR but not in WKY rats. Administration of sympathetic ganglionic blocker hexamethonium (HEX; 25 mg/kg) iv produced an equivalent decrease in MAP between SHR and WKY following icv injection of baclofen (1.0 microgram/kg). These results suggest that the effects of baclofen on the baroreceptor reflexes in SHR may not be mediated by a change in peripheral sympathetic tone.  相似文献   

14.
The neuromodulatory effect of NO on glutamatergic transmission has been studied in several brain areas. Our previous single-cell studies suggested that NO facilitates glutamatergic transmission in the nucleus of the solitary tract (NTS). In this study, we examined the effect of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) on glutamatergic and reflex transmission in the NTS. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) from Inactin-anesthetized Sprague-Dawley rats. Bilateral microinjections of L-NAME (10 nmol/100 nl) into the NTS did not cause significant changes in basal MAP, HR, or RSNA. Unilateral microinjection of (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 pmol/100 nl) into the NTS decreased MAP and RSNA. Fifteen minutes after L-NAME microinjections, AMPA-evoked cardiovascular changes were significantly reduced. N-methyl-D-aspartate (NMDA, 0.5 pmol/100 nl) microinjection into the NTS decreased MAP, HR, and RSNA. NMDA-evoked falls in MAP, HR, and RSNA were significantly reduced 30 min after L-NAME. To examine baroreceptor and cardiopulmonary reflex function, L-NAME was microinjected at multiple sites within the rostro-caudal extent of the NTS. Baroreflex function was tested with phenylephrine (PE, 25 microg iv) before and after L-NAME. Five minutes after L-NAME the decrease in RSNA caused by PE was significantly reduced. To examine cardiopulmonary reflex function, phenylbiguanide (PBG, 8 microg/kg) was injected into the right atrium. PBG-evoked hypotension, bradycardia, and RSNA reduction were significantly attenuated 5 min after L-NAME. Our results indicate that inhibition of NOS within the NTS attenuates baro- and cardiopulmonary reflexes, suggesting that NO plays a physiologically significant neuromodulatory role in cardiovascular regulation.  相似文献   

15.
We tested the hypothesis that there is a topographical sympathetic activation in rats submitted to experimental cirrhosis. Baseline renal (rSNA) and splanchnic (sSNA) sympathetic nerve activities were evaluated in anesthetized rats. In addition, we evaluated main arterial pressure (MAP), heart rate (HR), and baroreceptor reflex sensitivity (BRS). Cirrhotic Wistar rats were obtained by bile duct ligation (BDL). MAP and HR were measured in conscious rats, and cardiac BRS was assessed by changes in blood pressure induced by increasing doses of phenylephrine or sodium nitroprusside. The BRS and baseline for the control of sSNA and rSNA were also evaluated in urethane-anesthetized rats. Cirrhotic rats had increased baseline sSNA (BDL, 102 vs control, 58 spikes/s; p<0.05), but no baseline changes in the rSNA compared to controls. These data were accompanied by increased splanchnic BRS (p<0.05) and decreased cardiac (p<0.05) and renal BRS (p<0.05). Furthermore, BDL rats had reduced basal MAP (BDL, 93 vs control, 101 mmHg; p<0.05) accompanied by increased HR (BDL, 378 vs control, 356; p<0.05). Our data have shown topographical sympathetic activation in rats submitted to experimental cirrhosis. The BDL group had increased baseline sSNA, independent of dysfunction in the BRS and no changes in baseline rSNA. However, an impairment of rSNA and HR control by arterial baroreceptor was noted. We suggest that arterial baroreceptor impairment of rSNA and HR is an early marker of cardiovascular dysfunction related to liver cirrhosis and probably a major mechanism leading to sympathoexcitation in decompensated phase.  相似文献   

16.
17.
Studies were undertaken with adult male rats to test the hypothesis that euglycemic hyperinsulinemia would alter mean arterial blood pressure (MAP) and heart rate (HR) relationships by activation of the sympathetic nervous system. Conscious rats were infused either with insulin or control vehicle (0, 0.47, 1.5, 4.7, 15.0 mU.kg-1.min-1) for 75 min before injection of hexamethonium. Compared with the control period, insulin infusion significantly increased MAP by 7.1 +/- 0.1, 12.7 +/- 2.0, and 19.7 +/- 0.3 (SE) mmHg and HR by 44 +/- 8.4, 66 +/- 10.3, and 95 +/- 6.3 beats/min, respectively, during the three highest rates of infusion. The dose-dependent increases in MAP and HR were due to increases in the activity of hexamethonium-sensitive pathways. In chemically sympathectomized rats, insulin infusion did not produce a significant increase in either MAP or HR. The influence of exogenous norepinephrine on MAP and HR was also studied after insulin infusion. Compared with the insulin-vehicle infusion, insulin infusion significantly depressed (P less than 0.05) the norepinephrine dose-response increase in MAP. In addition, isolated smooth muscle strips were studied to determine the influence of insulin on their in vitro responses to increasing doses of norepinephrine. Although insulin did not alter contractility, it significantly (P less than 0.05) decreased the sensitivity of the vascular strips to norepinephrine. Collectively, the data from these euglycemic experiments indicated that infusions of insulin caused increases in HR and MAP because of activation of the sympathetic nervous system, even though the responsiveness of the vascular smooth muscle was depressed.  相似文献   

18.
Relationship between serum ACE activity and mean blood pressure (MAP) after administration of a single oral dose of the ACE inhibitor enalapril 10 and 20 mg tablets was investigated in 19 Iranian normotensive male subjects. Enalapril at doses, which maximally inhibit ACE activity, reduced MAP dose dependently. The t(max) of ACE inhibition decreased significantly by increasing the enalapril doses, but t(max) of MAP reduction did not change by increasing the dose. The AUC (area under the curve) of ACE inhibition versus time was significantly larger in 20 mg enalapril group compare to 10mg enalapril group (p<0.001). A significant correlation was found between log of residual ACE activity and MAP (r=0.4927; p<0.001). It is concluded that in Iranian normal subjects, after administration of a single oral dose of enalapril, MAP related to residual ACE activity.  相似文献   

19.
Pregnancy is associated with blunted reflex responses to cardiac and arterial baroreceptor stimulation. We tested the hypothesis that arterial baroreceptor afferent discharge is attenuated in response to a pressure stimulus in pregnant rats. Multifiber aortic depressor nerve activity (ADNA), mean arterial pressure (MAP), and heart rate were measured in anesthetized (pentobarbital sodium, 35 mg/kg ip) late-pregnant and virgin rats in response to increases ?phenylephrine (PE), 1.5-24 microg. kg(-1). min(-1) and 1-16 microg/kg and decreases ?sodium nitroprusside (SNP), 5-80 microg. kg(-1). min(-1) and 0.05-16 microg/kg in MAP. Resting MAP was lower in pregnant rats, but changes in MAP were similar to those in virgin rats during both PE and SNP administration. ADNA was significantly attenuated in pregnant animals during both PE and SNP infusions (P < 0.05) due to a more rapid adaptation to the pressure stimulus. Bolus drug administration evoked similar changes in MAP and ADNA in both groups; however, the maximum decrease in ADNA was achieved at the lowest dose of SNP in pregnant rats. Thus baroreceptor afferent discharge is attenuated in pregnant rats, and this involves a more rapid adaptation to a pressure stimulus.  相似文献   

20.
The objective of the present study was to evaluate the baroreflex and the autonomic control of heart rate (HR) in renovascular hypertensive mice. Experiments were carried out in conscious C57BL/6 (n = 16) mice 28 days after a 2-kidney 1-clip procedure (2K1C mice) or a sham operation (sham mice). Baroreflex sensitivity was evaluated by measuring changes in heart rate (HR) in response to increases or decreases in mean arterial pressure (MAP) induced by phenylephrine or sodium nitroprusside. Cardiac autonomic tone was determined by use of atropine and atenolol. Basal HR and MAP were significantly higher in 2K1C mice than in sham mice. The reflex tachycardia induced by decreases in MAP was greatly attenuated in 2K1C mice compared with sham mice. Consequently, the baroreflex sensitivity was greatly decreased (2.2 +/- 0.4 vs. 4.4 +/- 0.3 beats x min(-1) x mmHg(-1)) in hypertensive mice compared with sham mice. The reflex bradycardia induced by increases in MAP and the baroreflex sensitivity were similar in both groups. Evaluation of autonomic control of HR showed an increased sympathetic tone and a tendency to a decreased vagal tone in 2K1C mice compared with that in sham mice. 2K1C hypertension in mice is accompanied by resting tachycardia, increased predominance of the cardiac sympathetic tone over the cardiac vagal tone, and impairment of baroreflex sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号