首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pure L-threonine dehydrogenase from Escherichia coli is a tetrameric protein (Mr = 148,000) with 6 half-cystine residues/subunit; its catalytic activity as isolated is stimulated 5-10-fold by added Mn2+ or Cd2+. The peptide containing the 1 cysteine/subunit which reacts selectively with iodoacetate, causing complete loss of enzymatic activity, has been isolated and sequenced; this cysteine residue occupies position 38. Neutron activation and atomic absorption analyses of threonine dehydrogenase as isolated in homogeneous form now show that it contains 1 mol of Zn2+/mol of enzyme subunit. Removal of the Zn2+ with 1,10-phenanthroline demonstrates a good correlation between the remaining enzymatic activity and the zinc content. Complete removal of the Zn2+ yields an unstable protein, but the native metal ion can be exchanged by either 65Zn2+, Co2+, or Cd2+ with no change in specific catalytic activity. Mn2+ added to and incubated with the native enzyme, the 65Zn2(+)-, the Co2(+)-, or the Cd2(+)- substituted form of the enzyme stimulates dehydrogenase activity to the same extent. These studies along with previously observed structural homologies further establish threonine dehydrogenase of E. coli as a member of the zinc-containing long chain alcohol/polyol dehydrogenases; it is unique among these enzymes in that its activity is stimulated by Mn2+ or Cd2+.  相似文献   

2.
Isolation of Ca2+, Mg2+-dependent nuclease from calf thymus chromatin   总被引:1,自引:0,他引:1  
Ca2+,Mg2+-dependent nuclease was isolated from calf thymus chromatin by stepwise chromatography on DEAE-Sepharose, CM-Sephadex and DNA-Sepharose. The enzyme was purified more than 700-fold. SDS-PAGE electrophoresis revealed one protein band possessing an enzymatic activity. The molecular mass of the nuclease as determined by gel filtration is 25700 Da, that determined by 12% SDS polyacrylamide gel electrophoresis is 28,000 Da. In the presence of various ions the enzyme activity decreases in the following order: (Ca2+ + Mn2+) greater than (Ca2+ + Mg2+) greater than Mn2+; the pH optimum is at 8.0. In media with Mg2+, Ca2+, Co2+ and Zn2+ the nuclease is inactive. Some other properties of the enzyme are described.  相似文献   

3.
The mechanism of activation of the latent human neutrophil gelatinase by urea has been studied in greater detail. After dialysis of the latent gelatinase against increasing concentrations of urea a considerable increase of its activity was observed. Moreover, the results indicate a progressive conversion of the latent 94,000 Da gelatinase into a proteolytically active fragment of 80,000 Da, which was subsequently processed to a few species of lower molecular mass inactive against gelatin. This conversion was completely inhibited by EDTA, suggesting an autocatalytic reaction. The inhibition was reversed by Zn2+ or Co2+. Thus, urea alters both the enzymatic and physical characteristics of the latent gelatinase which suggests that conformational changes may induce autoactivation of the latent enzyme.  相似文献   

4.
We have identified and partially characterized several gelatinase activities associated with the sea urchin extraembryonic matrix, the hyaline layer. A previously identified 41-kDa collagenase/gelatinase activity was generally not found to be associated with isolated hyaline layers but was dissociated from the surface of 1-h-old embryos in the absence of Ca2+ and Mg2+. While hyaline layers, freshly prepared from 1-h-old embryos, were devoid of any associated gelatinase activities, upon storage at 4 degrees C for 4 days, a number of gelatin-cleavage activities appeared. Comparative analysis of these activities with the 41-kDa collagenase/gelatinase revealed that all species were inhibited by ethylenediamine tetraacetic acid but were refractory to inhibition with the serine protease inhibitors, phenylmethyl sulfonyl fluoride and benzamidine. In contrast, the largely Zn2+ specific chelator 1,10-phenanthroline had markedly different effects on the gelatinase activities. While several of the storage-induced, hyaline-layer-associated gelatinase activities were inhibited, the 41-kDa collagenase/gelatinase was refractory to inhibition as was a second gelatinase species with an apparent molecular mass of 45 kDa. We also examined the effects of a series of divalent metal ions on the gelatin-cleavage activities. In both qualitative and quantitative assays, Ca2+ was the most effective activator while Mn2+, Cu2+, Cd2+, and Zn2+ were all inhibitory. In contrast, Mg2+ had a minimal inhibitory effect on storage-induced gelatinase activities but significantly inhibited the 41-kDa collagenase/gelatinase. These results identify several distinct gelatin-cleavage activities associated with the sea urchin extraembryonic hyaline layer and point to diversity in the biochemical nature of these species.  相似文献   

5.
Alkaline phosphatase was purified from bovine polymorphonuclear neutrophils by butanol extraction and a combination of ion exchange, gel filtration and affinity chromatography. The enzyme was partially purified 2300-fold with a 4.7% yield and a sp. act. of 206 units/mg of protein. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a single activity band with the mol. wt of 165,000. The pH optima for the enzyme were 10.0 with p-nitrophenylphosphate and phenylphosphate and were 9.0 when beta-glycerophosphate, AMP and ADP were used. The enzyme was activated by Mg2+, Mn2+, Co2+ and Ni2+ but was inhibited by Zn2+. The enzyme was inhibited by EDTA and the EDTA-inactivated enzyme was reactivated by Mg2+, Mn2+ and Co2+ but not Zn2+.  相似文献   

6.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on deoxyuridine 5′-triphosphatase (dUTPase) in the cytosol of rat liver was investigated. Addition of Ca2+ up to 5.0 μM to the enzyme reaction mixture caused a significant decrease of dUTPase activity, while Zn2+, Cd2+, Co2+, Al3+, Mn2+ and Ni2+ (10 μM) did not have an appreciable effect. The Ca2+-induced decrease of dUTPase activity was reversed by the presence of regucalcin; the effect was complete at 1.0 μM of the protein. Regucalcin had no effect on the basal activity of the enzyme. Meanwhile, the reversible effect of regucalcin on the Ca2+ (10 μM)-induced decrease of dUTPase activity was not altered by the coexistence of Cd2+ or Zn2+ (10 μM). The present data suggest that liver cytosolic dUTPase is uniquely regulated by Ca2+ of various metals, and that the Ca2+ effect is reversed by regucalcin.  相似文献   

7.
To study the mechanisms of activation of human neutrophil gelatinase, the enzyme has been purified using a combination of chromatography on a DEAE-Sephacel and a gelatin-peptide-Sepharose column. On reducing SDS-polyacrylamide-gel electrophoresis the purified gelatinase ran as a single band of about 94,000 Da, and had a specific activity of 5624.4 units/mg of enzyme protein. When latent gelatinase was treated with trypsin, cathepsin G, neutrophil elastase, HgCl2 or urea, its activity was enhanced and the enzyme was processed and converted into species of the lower molecular mass. Upon activation, the protein band of 94,000 Da of reduced latent gelatinase underwent a decrease of about 6,000-12,000 Da. Formation of the species of lower molecular mass during urea activation could be blocked by the addition of EDTA.  相似文献   

8.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

9.
Cyclic GMP-stimulated cyclic nucleotide phosphodiesterase purified greater than 13,000-fold to apparent homogeneity from calf liver exhibited a single protein band (Mr approximately 102,000) on polyacrylamide gel electrophoresis under denaturing conditions. Enzyme activity comigrated with the single protein peak on analytical polyacrylamide gel electrophoresis, sucrose density gradient centrifugation, and gel filtration. From the sedimentation coefficient of 6.9 S and Stokes radius of 67 A, an Mr of 201,000 and frictional ratio (f/fo) of 1.7 were calculated, suggesting that the native enzyme is a nonspherical dimer of similar, if not identical, peptides. The effectiveness of Mg2+, Mn2+, and Co2+ in supporting catalytic activity depended on the concentration of cGMP and cAMP present as substrate or effector. Over a wide range of substrate concentrations, optimal concentrations for Mg2+, Mn2+, and Co2+ were about 10, 1, and 0.2 mM, respectively. At concentrations higher than optimal, Mg2+ inhibited activity somewhat; inhibition by Co2+ (and in some instances by Mn2+) was virtually complete. At low substrate concentrations, activity with optimal Mn2+ was equal to or greater than that with Co2+ and always greater than that with Mg2+. With greater than or equal to 0.5 microM cGMP or 20 to 300 microM cAMP and for cAMP-stimulated cGMP or cGMP-stimulated cAMP hydrolysis, activity with Mg2+ greater than Mn2+ greater than Co2+. In the presence of Mg2+, the purified enzyme hydrolyzed cGMP and cAMP with kinetics suggestive of positive cooperativity. Apparent Km values were 15 and 33 microM, and maximal velocities were 200 and 170 mumol/min/mg of protein, respectively. Substitution of Mn2+ for Mg2+ increased apparent Km and reduced Vmax for cGMP with little effect on Km or Vmax for cAMP. Co2+ increased Km and reduced Vmax for both. cGMP stimulated cAMP hydrolysis approximately 32-fold in the presence of Mg2+, much less with Mn2+ or Co2+. In the presence of Mg2+, Mn2+ and Co2+ at concentrations that increased activity when present singly inhibited cGMP-stimulated cAMP hydrolysis. It appears that divalent cations as well as cyclic nucleotides affect cooperative interactions of this enzyme. Whereas Co2+ effects were observed in the presence of either cyclic nucleotide, Mn2+ effects were especially prominent when cGMP was present (either as substrate or effector).  相似文献   

10.
The effect of increasing concentrations of Zn2+ (1 microM-5 mM) on protein phosphorylation was investigated in cytosol (S3) and crude synaptic plasma membrane (P2-M) fractions from rat cerebral cortex and purified calmodulin-stimulated protein kinase II (CMK II). Zn2+ was found to be a potent inhibitor of both protein kinase and protein phosphatase activities, with highly specific effects on CMK II. Only one phosphoprotein band (40 kDa in P2-M phosphorylated under basal conditions) was unaffected by addition of Zn2+. The vast majority of phosphoprotein bands in both basal and calcium/calmodulin-stimulated conditions showed a dose-dependent inhibition of phosphorylation, which varied with individual phosphoproteins. Two basal phosphoprotein bands (58 and 66 kDa in S3) showed a significant stimulation of phosphorylation at 100 microM Zn2+ with decreased stimulation at higher concentrations, which was absent by 5 mM Zn2+. A few Ca2+/calmodulin-stimulated phosphoproteins in P2-M and S3 showed biphasic behavior; inhibition at less than 100 microM Zn2+ and stimulation by millimolar concentrations of Zn2+ in the presence or absence of added Ca2+/calmodulin. The two major phosphoproteins in this group were identified as the alpha and beta subunits of CMK II. Using purified enzyme, Zn2+ was shown to have two direct effects on CMK II: an inhibition of Ca2+/calmodulin-stimulated autophosphorylation and substrate phosphorylation activity at low concentrations and the creation of a new Zn(2+)-stimulated, Ca2+/calmodulin-independent activity at concentrations of greater than 100 microM that produces a redistribution of activity biased toward autophosphorylation and an alpha subunit with an altered mobility on sodium dodecyl sulfate-containing gels.  相似文献   

11.
The kinetics of the recombination of the metal-depleted active site of horse liver alcohol dehydrogenase (LADH) with metal ions have been studied over a range of pH and temperature. The formation rates were determined optically, by activity measurements, or by using the pH change during metal incorporation with a pH-indicator as monitor. The binding of Zn2+, Co2+, and Ni2+ ions occurs in a two-step process. The first step is a fast equilibrium reaction, characterized by an equilibrium constant K1. The spectroscopic and catalytic properties of the native or metal-substituted protein are recovered in a slow, monomolecular process with the rate constant k2. The rate constants k2 5.2 X 10(-2) sec-1 (Zn2+), 1.1 X 10(-3) sec-1 (Co2+), and 2 X 10(-4) sec-1 (Ni2+). The rate constants increase with increasing pH. Using temperature dependence, the activation parameters for the reaction with Co2+ and Ni2+ were determined. Activation energies of 51 +/- 2.5 kJ/mol (0.033 M N-Tris-(hydroxymethyl)methyl-2-aminomethane sulfonic acid (TES), pH 6, 9) for Co2+ and 48.5 +/- 4 kJ/mol (0.033 M TES, pH 7, 2) for Ni2+ at 23 degrees C were found. The correspondent activation entropies are - 146 +/- 10 kJ/mol K for Co2+ and - 163 +/- 9 kJ/mol K for Ni2+. Two protons are released during the binding of Zn2+ to H4Zn(n)2 LADH in the pH range 6.8-8.1. The binding of coenzyme, either reduced or oxidized, prevents completely the incorporation of metal ions, suggesting that the metal ions enter the catalytic site via the coenzyme binding domain and not through the hydrophobic substrate channel.  相似文献   

12.
A new extracellular protease having a prospective application in the food industry was isolated from Bacillus sUbtilis NCIM 2711 by (NH4)2SO4 precipitation from the cell broth. It was purified using DEAE-Cellulose and CM-Sephadex C-50 ion-exchange chromatography. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 7.0 and temperature 55 degrees C with Km 1.06 mg/ml. The enzyme was stable over a pH range 6.5-8.0 at 30 degrees C for 1 hr in presence of CaCl2 x 2H2O. At 55 degrees C, the enzyme retained 60% activity up to 15 min in presence of CaCl2 x 2H2O. EDTA and o-phenanthroline (OP) completely inhibited the enzyme activity while DFP, PMSF and iodoacetamide were ineffective. The enzyme was completely inhibited by Hg2+ and partially by Cd2+, Cu2+, Ni2+, Pb2+ and Fe2+. The OP inhibited enzyme could be reactivated by Zn2+ and Co2+ up to 75% and 69% respectively. It is a neutral metalloprotease showing a single band of 43 kDa on SDS-PAGE.  相似文献   

13.
UDPgalactose: N-acetylgalactosamine mucin galactosyltransferase activity of the rat intestine was studied and purified using asialo-ovine submaxillary mucin as the acceptor substrate and inhibitors to suppress UDPgalactose breakdown by pyrophosphatase activities particularly prevalent in the duodenal-jejunal regions. Despite adequate suppression of UDPgalactose breakdown, significant intestinal region differences of mucin galactosyltransferase activity were observed. Elevations of activity were observed in the duodenum and distal ileum of the small intestine and the cecum and proximal colon; these elevations in activity correspond to areas of increased mucin production. Similarly, mucin galactosyltransferase activity of duodenal cells isolated along a crypt-to-villus axis showed a moderate increase (67.7%) in activity associated with cells in the crypt region. Small intestine mucin galactosyltransferase activity was purified 800-fold using a series of ion exchange (DEAE-Sepharose), gel filtration (S-200 Sephacryl) and affinity chromatographic steps to isolate the mucin galactosyltransferase activity from a Triton X-100/Nonidet P-40 extract of homogenized cells obtained by scraping everted intestines. The partially purified enzyme showed two distinct protein bands of 81.5 and 50 kDa and a faint band at 53.3 kDa. Kinetic analysis gave an apparent Km of 152 microM for UDPgalactose. The enzyme showed optimal activity with Mn2+ (20 mM) and partial activities using a number of other divalent cations. Higher concentrations of Mn2+ were slightly inhibitory. Mucin galactosyltransferase activity was inhibited by more then 90% in the presence of Zn2+ (4 mM) and this inhibition could not be reversed by additional Mn2+. Addition of Zn2+ (4 mM) to assays containing Mn2+ (20 mM) did not cause appreciable UDPgalactose breakdown, as measured by high-voltage paper electrophoresis, suggesting that Zn2+ inhibition is not a result of pyrophosphatase activation. In addition, Zn2+ does not appear to activate a protease or glycosidase activity in the partially purified enzyme preparation which could hydrolyze the galactosylated product prior to isolation.  相似文献   

14.
Zinc is essential to the catalytic activity of angiotensin converting enzyme. The enzyme contains one g-atom of zinc per mole of protein. Chelating agents abolish activity by removing the metal ion to yield the inactive, metal-free apoenzyme. Zinc does not stabilize protein structure since the native and apoenzymes are equally susceptible to heat denaturation. Addition of either Zn2+, Co2+, or Mn2+ to the apoenzyme generates an active metalloenzyme; Fe2+, Ni2+, Cu2+, Cd2+, and Hg2+ fail to restore activity. The activities of the metalloenzymes follow the order Zn greater than Co greater than Mn. The protein binds Zn2+ more firmly than it does Co2+ or Mn2+. Hydrolysis of the chromophoric substrate, furanacryloyl-Phe-Gly-Gly, by the active metalloenzymes is subject to chloride activation; the activation constant is not metal dependent. Metal replacement mainly affects Kcat with very little change in Km, indicating that the role of zinc is to catalyze peptide hydrolysis.  相似文献   

15.
利用产D-海因酶(HDT)的重组pE-hdt/E.coli菌株,在LB培养基中添加40μmol/L的Co2+,37℃培养10 h, 表达产物经Q-Sepharose 阴离子交换剂和Phenyl-Sepharose疏水层析,获得电泳纯Co2+D-海因酶(Co2+-HDT).该酶对底物DL-海因的比活性较HDT高约6倍,达21.8 U/mg.可见光光谱分析表明,在498 nm和568 nm处呈现Co2+海因酶络合物的特征性吸收峰.用ICP-AES测定纯酶金属离子含量,HDT每摩尔亚基含0.93摩尔Zn2+和0.04摩尔Co2+,而Co2+-HDT中每摩尔亚基中含0.17摩尔Zn2+ 和089摩尔Co2+.这一结果表明,HDT中的Zn2+ 已被Co2+所替代.此外,在动力学常数,pH和温度稳定性,金属螯合剂EDTA的影响等方面,HDT和Co2+-HDT也略有差异.  相似文献   

16.
GTP cyclohydrolase I (GCH) is the rate-limiting enzyme for the synthesis of tetrahydrobiopterin and its activity is important in the regulation of monoamine neurotransmitters such as dopamine, norepinephrine and serotonin. We have studied the action of divalent cations on the enzyme activity of purified recombinant human GCH expressed in Escherichia coli. First, we showed that the enzyme activity is dependent on the concentration of Mg-free GTP. Inhibition of the enzyme activity by Mg2+, as well as by Mn2+, Co2+ or Zn2+, was due to the reduction of the availability of metal-free GTP substrate for the enzyme, when a divalent cation was present at a relatively high concentration with respect to GTP. We next examined the requirement of Zn2+ for enzyme activity by the use of a protein refolding assay, because the recombinant enzyme contained approximately one zinc atom per subunit of the decameric protein. Only when Zn2+ was present was the activity of the denatured enzyme effectively recovered by incubation with a chaperone protein. These are the first data demonstrating that GCH recognizes Mg-free GTP and requires Zn2+ for its catalytic activity. We suggest that the cellular concentration of divalent cations can modulate GCH activity, and thus tetrahydrobiopterin biosynthesis as well.  相似文献   

17.
The three isozymes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli were overproduced, purified, and characterized with respect to their requirement for metal cofactor. The isolated isozymes contained 0.2-0.3 mol of iron/mol of enzyme monomer, variable amounts of zinc, and traces of copper. Enzymatic activity of the native enzymes was stimulated 3-4-fold by the addition of Fe2+ ions to the reaction mixture and was eliminated by treatment of the enzymes with EDTA. The chelated enzymes were reactivated by a variety of divalent metal ions, including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+. The specific activities of the reactivated enzymes varied widely with the different metals as follows: Mn2+ greater than Cd2+, Fe2+ greater than Co2+ greater than Ni2+, Cu2+, Zn2+ much greater than Ca2+. Steady state kinetic analysis of the Mn2+, Fe2+, Co2+, and Zn2+ forms of the phenylalanine-sensitive isozyme (DAHPS(Phe)) revealed that metal variation significantly affected the apparent affinity for the substrate, erythrose 4-phosphate, but not for the second substrate, phosphoenolpyruvate, or for the feedback inhibitor, L-phenylalanine. The tetrameric DAHPS(Phe) exhibited positive homotropic cooperativity with respect to erythrose 4-phosphate, phophoenolpyruvate, and phenylalanine in the presence of all metals tested.  相似文献   

18.
We described earlier the facilitated purifications of the trypsin and aminopeptidase components present in Pronase (Vosbeck, K. D., Chow, K. -F., and Awad, W. M., Jr. (1973) J. Biol. Chem. 248, 6029-6034). A partially resolved protein mixture left over after one of the steps in that procedure was passed through a Sephadex G-75 column. By this means, a component with carboxypeptidase activity was separated from associated serine endopeptidases. Further purification of this exopeptidase to apparent homogeneity was acheived by refiltration through the same Sephadex column and by CM-cellulose chromatography. A single protein band was observed after acrylamide gel electrophoresis; analysis by sedimentation equilibrium using the meniscus depletion method gave a molecular weight of 30,300. This enzyme demonstrates activity against Nalpha-benzyloxycarbonylglycyl-L-leucine and hippuryl-D,L-phenyllactate; no activity was found against Nalpha-acetyl-L-tyrosine ethyl ester, Nalpha-benzoyl-D,L-arginine-p-nitroanilide, or L-leuckne-p-nitroanilide. The maximum activity lies between pH values of 7 and 8; the enzyme is stable between pH values of 6 and 10. At room temperature 1,10-phenanthroline inactivates the enzyme completely whereas EDTA has no effect. Of the many cations tested, only Co2+, Ni2+, or Zn2+ restores activity to the 1,10-phenanthroline-treated enzyme; Co2+ provided 3 times the native activity. The metal in the native protein was found to be zinc. These findings are similar to those recorded with bovine pancreatic carboxypeptidase A, and suggest the possibility that the present enzyme may ge genetically related to the mammalian protein, as in previously noted examples of homology of three Pronase endopeptidases to pancreatic serine enzymes.  相似文献   

19.
Aminopeptidases catalyze the release of N-terminal amino acid residue from polypeptides and peptides, and most of them are known to be metalloenzymes. A tripeptidase gene (pepT) of Bacillus subtilis was expressed in Escherichia coli, and the resulting recombinant PepT was purified in an active form through sequential chromatographies. The addition of Zn2+ or Co2+ increased the enzymatic activity by approximately two fold. The points at which Zn2+ and Co2+ stimulated a half-maximum activity of the PepT were 650 nM and 1,700 nM, respectively. The measurement of the metal content showed that this enzyme contained 0.26 atom of Zn2+ per molecule with essentially the absence of Co2+ and others, and 0.53 atom of Zn2+ with 1.5-fold increase of activity when reconstituted with Zn2+. Consistent with this result, this enzyme is much readily refolded in the presence of Zn2+ than Co2+. To further delineate the structure and function relations, we made serial deletion mutants and analyzed their enzymatic activities. Of eight deletion mutants, only a mutant lacking the N-terminal 66 amino acid residues retained enzymatic activity. The mutant enzyme, however, required a concentration of Zn2+ ion at least ten-fold higher to reach maximum activity without significantly affecting kinetic parameters such as Km and Vmax compared to the full length PepT. Taken together, these data suggest that the B. subtilis PepT is likely to be a Zn2+-dependent metalloenzyme and that the N-terminal region of the PepT stabilizes Zn2+-binding.  相似文献   

20.
The gene encoding Staphylococcus simulans lysostaphin has been cloned into two Escherichia coli expression systems: pET23b+ (Novagen, UK) and pBAD/Thio-TOPO (Invitrogen, USA), which allow the overexpression of a target protein as a fusion protein. The enzyme produced in the pET system contains a cluster of six histidines at the C-terminus, and the protein produced in the pBAD system contains 133 additional amino acid residues at the N-terminus, including thioredoxin, a cluster of six histidines and a recognition site for endoprotease Factor Xa. The recombinant enzymes were purified by metal-affinity chromatography on a Co2+-Sepharose column. Approximately 20 mg of purified recombinant enzyme were obtained in the pET expression system and 39 mg in the pBAD system, from a 1-L culture. The obtained fusion protein from the pET system revealed specific activity that was approximately 10 times higher than that of the fusion protein from the pBAD system (970 U/mg versus 83 U/mg). The purified enzymes displayed maximum activity at close to 45 degrees C and pH 8.0 or 7.5 for the enzyme obtained from pET and pBAD system, respectively. The lysostaphin activity was strongly inhibited by Zn2+ or Cu2+ (2 mM) with a 70-80% decrease. The Ni2+ (2 mM) also inhibited the enzyme with a 60 and 20% activity decrease for enzyme from the pET and pBAD system, respectively. The Co2+ had no impact on enzymatic activity at the 2 mM concentration; however, 30 and 20% activity decreases were observed at the 10mM concentration for the enzyme obtained from the pET and pBAD expression systems, respectively. EDTA, known as a strong inhibitor of the native lysostaphin, had no impact on the antistaphylococcal activity of either recombinant enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号