共查询到20条相似文献,搜索用时 15 毫秒
1.
Iyadh Douagi Mattias N. E. Forsell Christopher Sundling Sijy O'Dell Yu Feng Pia Dosenovic Yuxing Li Robert Seder Karin Loré John R. Mascola Richard T. Wyatt Gunilla B. Karlsson Hedestam 《Journal of virology》2010,84(4):1683-1695
The high-affinity in vivo interaction between soluble HIV-1 envelope glycoprotein (Env) immunogens and primate CD4 results in conformational changes that alter the immunogenicity of the gp120 subunit. Because the conserved binding site on gp120 that directly interacts with CD4 is a major vaccine target, we sought to better understand the impact of in vivo Env-CD4 interactions during vaccination. Rhesus macaques were immunized with soluble wild-type (WT) Env trimers, and two trimer immunogens rendered CD4 binding defective through distinct mechanisms. In one variant, we introduced a mutation that directly disrupts CD4 binding (368D/R). In the second variant, we introduced three mutations (423I/M, 425N/K, and 431G/E) that disrupt CD4 binding indirectly by altering a gp120 subdomain known as the bridging sheet, which is required for locking Env into a stable interaction with CD4. Following immunization, Env-specific binding antibody titers and frequencies of Env-specific memory B cells were comparable between the groups. However, the quality of neutralizing antibody responses induced by the variants was distinctly different. Antibodies against the coreceptor binding site were elicited by WT trimers but not the CD4 binding-defective trimers, while antibodies against the CD4 binding site were elicited by the WT and the 423I/M, 425N/K, and 431G/E trimers but not the 368D/R trimers. Furthermore, the CD4 binding-defective trimer variants stimulated less potent neutralizing antibody activity against neutralization-sensitive viruses than WT trimers. Overall, our studies do not reveal any potential negative effects imparted by the in vivo interaction between WT Env and primate CD4 on the generation of functional T cells and antibodies in response to soluble Env vaccination.The HIV-1 Envs mediate the entry of the virus into target cells and are the only virally encoded proteins exposed on the surface of the virus. HIV-1 Env is the sole target for neutralizing antibodies (Abs) and therefore is an important component of a vaccine designed to elicit protective antibody responses (4, 20). The viral spike is a trimer comprised of three heterodimers of the exterior envelope glycoprotein, gp120, noncovalently attached to the transmembrane protein, gp41. The gp120 subunit binds the primary receptor, CD4 (7), to form or to expose the gp120 coreceptor binding elements, which interact with the viral coreceptor, primarily CCR5 (1, 9, 12, 45). The highly conserved coreceptor binding site (CoRbs) overlaps the gp120 bridging sheet and also contains both proximal and distal elements of V3 (18, 32, 43, 45).In attempts to mimic the native trimeric structure of Env present on the virus, various forms of soluble Env trimers were designed (reviewed in reference 14). One design consists of cleavage-defective trimers derived from the primary R5 isolate YU2 that possess a heterologous trimerization motif derived from T4 bacteriophage fibritin (F; YU2 gp140-F) (3, 21, 34, 40, 50, 51). We recently demonstrated that the immunization of monkeys, but not rabbits, with gp140-F trimers resulted in the generation of Abs directed against the CoRbs of gp120 capable of cross-neutralizing HIV-2 (15). CoRbs-directed Abs (also referred to as CD4-induced, or CD4i, Abs) also were elicited in rabbits transgenic for human CD4 (15). Taken together, these data strongly suggest that Env interacts with high-affinity primate CD4 in vivo, resulting in the formation, or exposure, of a highly immunogenic gp120 determinant that overlaps the CoRbs. Early in infection, the frequency of HIV-1-infected individuals with significant antibody responses against the CoRbs is high (8, 33), and CoRbs-directed antibody responses are elicited abundantly in humans inoculated with Env-based immunogens (15). Collectively, these data suggest that the recognition of the HIV-1 CoRbs by naïve B cells is greatly increased when Env is presented in complex with high-affinity primate CD4, leading to a productive Ab response against this epitope (41). With rare exceptions, the majority of CoRbs-directed monoclonal antibodies (MAbs) do not neutralize HIV-1 primary viruses in vitro, bringing into question the utility of this region as a relevant neutralization target (23, 31, 47, 49). Strategies aimed to diminish vaccine-elicited B-cell responses to the CoRbs, and shift responses toward more accessible neutralization targets, represent one approach to improve the design of Env-based vaccine candidates. The selective manipulation of Env immunogens to decrease their CD4 binding capacity may reduce the elicitation of CoRbs-directed Abs and circumvent potential occlusion effects of the conserved CD4 binding site caused by CD4 itself.In addition to the potential effects of in vivo Env-CD4 interactions on the Ab repertoire elicited by Env-based immunogens, interactions between Env and CD4 also may have consequences on CD4+ T-cell responses. CD4 is an important costimulatory molecule expressed on several subsets of T cells and antigen-presenting cells, and interactions with Env were shown to alter the function of CD4-expressing T cells in a number of in vitro systems (13, 37, 44). The elimination of the Env-CD4 interaction in the context of vaccination may be beneficial to improve the elicitation of helper T-cell responses and effective neutralizing Ab responses. In vivo evaluation in subjects possessing high-affinity CD4 (i.e., rhesus macaques or humans) of CD4 binding-competent and CD4 binding-deficient Env immunogens so far have not been described.To address these questions, we designed Env trimer variants rendered CD4 binding defective through two distinct mechanisms. In the first variant, the interaction between CD4 and HIV-1 Env was directly disrupted by the introduction of a mutation (368D/R) in the CD4 binding loop of the gp120 outer domain (29). This alteration abolishes the initial binding of CD4 and most CD4 binding site (CD4bs)-directed MAbs (42) to variant forms of gp120 and would be expected to do the same in the soluble stable timer context. The aim of the second variant was to decrease the CD4 binding affinity while preserving the antigenicity of the CD4bs (48). This variant was generated in the soluble gp140-F trimers by the introduction of three point mutations, 423I/M, 425N/K, and 431G/E, in the β20 strand region of gp120. These mutations were suggested to favor a helix rather than the β20/21 antiparallel strands visible in the gp120 structure (23, 31, 47, 49). In the monomeric context, mutations in the β20 strand region of gp120 abolish binding by CoRbs-directed Abs, presumably because the bridging sheet cannot form (48). The introduction of the 423I/M, 425N/K, and 431G/E mutations in the trimer context therefore should disrupt the normally high-affinity gp120-CD4 interaction, while recognition by CD4bs Abs would not be affected. Indeed, a recent study provides a mechanistic basis for the impact of these mutations on CD4 binding (52). This study revealed that CD4 interacts with gp120 by a two-step binding mechanism in which the first step involves a direct, but low-affinity, CD4 interaction with the gp120 outer domain, while the second step requires a conformational change in gp120 to fully stabilize the high-affinity gp120-CD4 interaction.Here, we exploit this two-step model to generate novel CD4 binding-defective soluble trimers that, unlike the 368D/R trimers, possess a CD4bs surface that retains recognition by well-described CD4bs Abs. By immunizing rhesus macaques with the wild-type (WT) and CD4 binding-defective trimer variants, we demonstrate that similar levels of Env-specific Ab and T-cell responses were elicited in the three groups, suggesting that in vivo interactions between CD4 binding-competent (WT) Env and CD4 do not measurably affect T-cell responses against Env in this immunization regimen. However, the quality of the Ab response was markedly different between the groups. As hypothesized, CoRbs-directed Abs were elicited only in animals inoculated with WT trimers and not in those inoculated with 368D/R or 423I/M, 425N/K, and 431G/E trimers (hereafter referred to as 368 and 423/425/431 trimers, respectively). Importantly, we show that the 423/425/431 trimers retain the capacity to elicit binding and neutralizing CD4bs-directed Abs. In conclusion, the results generated in this study suggest that CD4 engagement by the WT soluble Env trimers did not impair the overall magnitude of the elicited Env-specific antibody or T-cell responses. Furthermore, our data provide new insights into the characteristics of Env that impact immunogenicity. The data also provide a potential path forward for the design of Env immunogens that have the capacity to elicit neutralizing Abs against the conserved gp120 CD4 binding surface while eliminating both the elicitation of nonneutralizing CoRbs-directed Abs and the potential occlusion of the CD4 binding surface of gp120 by the engagement of the primary virus receptor, CD4. 相似文献
2.
Roberto Calcedo Luk H. Vandenberghe Soumitra Roy Suryanarayan Somanathan Lili Wang James M. Wilson 《Journal of virology》2009,83(6):2623-2631
Recent studies indicate that great apes and macaques chronically shed adenoviruses in the stool. Shedding of adenovirus in the stool of humans is less prevalent, although virus genomes persist in gut-associated lymphoid tissue in the majority of individual samples. Chimpanzees have high levels of broadly reactive neutralizing antibodies to adenoviruses in serum, with very low frequencies of adenovirus-specific T cells in peripheral blood. A similar situation exists in macaques; sampling of guts from macaques demonstrated adenovirus-specific T cells in lamina propria. Humans show intermediate levels of serum neutralizing antibodies, with adenovirus-specific T cells in peripheral blood of all individuals sampled and about 20% of samples from the gut, suggesting a potential role of T cells in better controlling virus replication in the gut. The overall structure of the E3 locus, which is involved in modulating the host''s response to infection, is degenerate in humans compared to that in apes, which may contribute to diminished evasion of host immunity. The impact of adenovirus persistence and immune responses should be considered when using adenoviral vectors in gene therapy and genetic vaccines.Viruses of the Adenoviridae family infect a wide range of vertebrate hosts. Adenoviruses that infect mammals belong to the genus Mastadenovirus and encompass at least seven viral species (formerly called subtypes) that infect primates (5). The molecular biology of human-derived adenoviruses has been characterized extensively for the species C group, for which human adenovirus 2 (HAdV-2) and HAdV-5 serve as prototypes (6). Adenoviruses cause a variety of nonlethal infectious diseases in humans, and lethal disseminated adenovirus infection occurs in immunosuppressed patients (6). Attempts to evaluate the pathogenesis of human adenoviruses in animal models have been difficult since most models demonstrate a very narrow permissiveness for virus replication.The natural history of adenovirus infections in humans was initially evaluated in prospective surveillance studies of family cohorts (7, 8). Self-limited respiratory illnesses in children were the most common syndromes associated with adenovirus infection, although virus was most easily detected in the stool. Excretion of virus in stool usually wanes rapidly following resolution of the infectious syndrome but is prolonged for a subset of individuals. Species C adenoviruses, which are the most prevalent in humans, can establish latency in adenoid and tonsil-derived lymphocytes (9).Adenovirus vectors have been used successfully as vaccine carriers due to their ability to elicit potent cellular and humoral immune response to the encoded transgene product. Recombinant vectors based on HAdV-5 have emerged as a potent platform for activating cytotoxic T lymphocytes against tumor and viral antigens. A problematic response of the host to HAdV-5-based vectors that was not predicted based on animal testing was observed in a clinical trial, namely, there was a paradoxical increased susceptibility to infection with human immunodeficiency virus (HIV) following vaccination with an HIV-based HAdV-5 vector in subjects with evidence of prior exposure to a natural infection with HAdV-5 (2). 相似文献
3.
Michael L. Freeman Kathleen G. Lanzer Tres Cookenham Bjoern Peters John Sidney Ting-Ting Wu Ren Sun David L. Woodland Alessandro Sette Marcia A. Blackman 《Journal of virology》2010,84(6):2881-2892
Murine gammaherpesvirus 68 (γHV68) provides an important experimental model for understanding mechanisms of immune control of the latent human gammaherpesviruses. Antiviral CD8 T cells play a key role throughout three separate phases of the infection: clearance of lytic virus, control of the latency amplification stage, and prevention of reactivation of latently infected cells. Previous analyses have shown that T-cell responses to two well-characterized epitopes derived from ORF6 and ORF61 progress with distinct kinetics. ORF6487-specific cells predominate early in infection and then decline rapidly, whereas ORF61524-specific cells continue to expand through early latency, due to sustained epitope expression. However, the paucity of identified epitopes to this virus has limited our understanding of the overall complexities of CD8 T-cell immune control throughout infection. Here we screened 1,383 predicted H-2b-restricted peptides and identified 33 responses, of which 21 have not previously been reported. Kinetic analysis revealed a spectrum of T-cell responses based on the rapidity of their decline after the peak acute response that generally corresponded to the expression patterns of the two previously characterized epitopes. The slowly declining responses that were maintained during latency amplification proliferated more rapidly and underwent maturation of functional avidity over time. Furthermore, the kinetics of decline was accelerated following infection with a latency-null mutant virus. Overall, the data show that γHV68 infection elicits a highly heterogeneous CD8 T-cell response that segregates into two distinctive kinetic patterns controlled by differential epitope expression during the lytic and latency amplification stages of infection.Murine gammaherpesvirus 68 (γHV68) is a mouse pathogen closely related to the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV). Intranasal infection of mice with γHV68 leads to an acute infection in lung epithelial cells that is ultimately cleared and the concurrent establishment of latency in B cells, dendritic cells, and macrophages that undergoes amplification in the spleen and is maintained lifelong (11, 12). Even though γHV68 has the capacity to downregulate major histocompatibility complex class I (MHC-I) molecules (36), CD8 T cells specific for γHV68 are generated and have been shown to proliferate in response to cognate antigen, protect naive mice from γHV68 infection, lyse peptide-pulsed target cells in vivo and in vitro, and maintain the ability to produce antiviral cytokines (5, 6, 13, 27, 35). Until recently, knowledge of the antiviral CD8 T-cell repertoire in C57BL/6 mice was largely limited to two well-characterized epitopes derived from ORF6 and ORF61. T-cell responses to these epitopes have been shown to progress with distinct kinetics, with ORF6487-specific cells predominating early in infection and ORF61524-specific cells continuing to expand through early latency before declining and then persisting at higher levels late in infection (33). The difference in response kinetics correlates with the differential presentation of the epitopes, with the ORF6487 epitope being expressed only during lytic infection and the ORF61524 epitope being expressed both during lytic infection and during the latency amplification phase (22, 28). Additionally, the latency amplification phase is associated with the expansion of CD8 T cells with a Vβ4 T-cell receptor (TCR) component in several mouse strains (17), presumably due to a superantigen-like effect of the γHV68 M1 protein (4, 9).To better understand the breadth of the anti-γHV68 T-cell response, we used an enzyme-linked immunospot (ELISpot) approach to identify new epitopes. We identified a large number of epitopes derived from 26 proteins that drive the acute CD8 T-cell response to γHV68, which then narrowed over time, resulting in a limited antiviral response during latency. We did not observe inflation of any of the responses, as has been demonstrated for some murine cytomegalovirus (MCMV)-specific responses (20, 26). There was no evidence for functional exhaustion, as all detectable CD8 T-cell responses maintained functionality, but the responses declined in numbers over time. The decline in responses occurred over a broad kinetic range, which segregated into two general groups that correlated precisely with those previously described for ORF6 and ORF61. Thus, some responses declined rapidly after the acute phase of infection, while others declined more slowly.We examined two epitope-specific responses from each of the two patterns in detail over time for functional and phenotypic characteristics and found the responses to be highly heterogeneous, differing in TCR affinity, functional avidity, and proliferation rates. Importantly, slowly declining responses were not maintained as efficiently after infection with a latency-deficient virus, consistent with a role for epitope expression in driving the heterogeneous rate of decline in cell number after the acute infection. The data show that the response kinetics seen for the ORF6487 and ORF61524 responses are broadly applicable to multiple CD8 T-cell epitopes. 相似文献
4.
Peter Dias Francesca Giannoni Lian Ni Lee Dongun Han Sorah Yoon Hideo Yagita Miyuki Azuma Sally R. Sarawar 《Journal of virology》2010,84(16):8241-8249
We previously showed that agonistic antibodies to CD40 could substitute for CD4 T-cell help and prevent reactivation of murine gammaherpesvirus 68 (MHV-68) in the lungs of major histocompatibility complex (MHC) class II−/− (CII−/−) mice, which are CD4 T cell deficient. Although CD8 T cells were required for this effect, no change in their activity was detected in vitro. A key question was whether anti-CD40 treatment (or CD4 T-cell help) changed the function of CD8 T cells or another cell type in vivo. To address this question, in the present study, we showed that adoptive transfer of CD8 T cells from virus-infected wild-type mice or anti-CD40-treated CII−/− mice caused a significant reduction in lung viral titers, in contrast to those from control CII−/− mice. Anti-CD40 treatment also greatly prolonged survival of infected CII−/− mice. This confirms that costimulatory signals cause a change in CD8 T cells enabling them to maintain effective long-term control of MHV-68. We investigated the nature of this change and found that expression of the inhibitory receptor PD-1 was significantly increased on CD8 T cells in the lungs of MHV-68-infected CII−/−, CD40−/−, or CD80/86−/− mice, compared with that in wild-type or CD28/CTLA4−/− mice, correlating with the level of viral reactivation. Furthermore, blocking PD-1-PD-L1 interactions significantly reduced viral reactivation in CD4 T-cell-deficient mice. In contrast, the absence of another inhibitory receptor, NKG2A, had no effect. These data suggest that CD4 T-cell help programs a change in CD8 T-cell function mediated by altered PD-1 expression, which enables effective long-term control of MHV-68.Murine gammaherpesvirus 68 (MHV-68) is a naturally occurring rodent pathogen which is closely related to Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV) (17, 64). Intranasal administration of MHV-68 to mice results in acute productive infection of lung epithelial cells and a latent infection in various cell types, including B lymphocytes, dendritic cells, epithelial cells, and macrophages (18, 19, 52, 53, 61, 65). The virus induces an inflammatory infiltrate in the lungs, lymph node enlargement, splenomegaly, and mononucleosis comprising increased numbers of activated CD8 T cells in the blood (53, 58). It has also been reported to induce lymphoproliferative disease/lymphoma in immunocompromised mice (30, 55, 60). Thus, the pathogenesis resembles that of EBV in humans, although structurally, the virus is more closely related to KSHV.Infectious MHV-68 is cleared from the lungs by a T-cell-dependent mechanism 10 to 15 days after infection (18, 53, 56). In wild-type mice, the lungs remain clear of replicating virus thereafter. Although CD4 T cells are not essential for primary clearance of replicating virus, they are required for effective long-term control (11). Thus, major histocompatibility complex (MHC) class II−/− mice that lack CD4 T cells or mice rendered CD4 deficient by antibody treatment initially clear infectious virus from the lungs. However, infectious virus reactivates in the lungs 10 to 15 days later and gradually increases in titer (11, 43). The infected CD4-deficient mice eventually die, apparently from long-term lung damage due to continuing lytic viral replication (11). MHC class II−/− mice do not produce antibody to T-dependent antigens (10). Cytotoxic T-lymphocyte (CTL) epitopes have been identified in open reading frame (ORF) 6 (p56, H-2Db-restricted), and ORF 61 (p79, H-2Kb-restricted) gene products, which appear to encode early lytic-phase proteins (32, 49). The epitopes are presented during two distinct phases during MHV-68 infection, which changes the pattern of CTL dominance (32, 51). However, there is no significant difference in the numbers of CD8 T cells specific for each epitope in wild-type mice and CD4 T-cell-deficient mice (4, 50). In addition, CTL activity measured in vitro does not differ substantially in the lungs of wild-type mice or CD4 T-cell-deficient mice (4, 11, 50). Furthermore, postexposure vaccination with the p56 epitope failed to prevent viral reactivation in class II−/− mice, despite dramatically expanding the number of CD8 T cells specific for the peptide (5). In contrast, vaccination of wild-type mice against these epitopes reduced lytic viral titers in the lung dramatically on subsequent challenge with MHV-68. B-cell-deficient mice clear MHV-68 with the kinetics of wild-type mice and do not show viral reactivation in the lungs (13, 61), suggesting that antibody is not essential for control of the virus. Depletion of CD4 T cells during the latent phase of infection in B-cell-deficient mice does not induce viral reactivation, whereas depletion of both CD4 and CD8 T-cell subsets provokes viral reactivation in the lungs (52). Short-term depletion of both CD4 and CD8 T-cell subsets during the latent phase of infection in wild-type mice does not lead to viral reactivation probably due to the presence of neutralizing antibody (11). Taken together, these results suggest that CD4 and CD8 T cells and B cells play overlapping roles in preventing or controlling reactivation of MHV-68 during the latent phase of infection. However, the B-cell- and CD8 T-cell-mediated control mechanisms do not develop in the absence of CD4 T cells.We, and others, have previously shown that the costimulatory molecule CD28 is not required for long-term control of MHV-68 (28, 29). However, interestingly, mice lacking both of the ligands for CD28, CD80 and CD86, show viral reactivation in the lung (21, 35). Our previously published data showed that agonistic antibodies to CD40 could substitute for CD4 T-cell function in the long-term control of MHV-68 (46). CD8 T-cell receptor-positive (TCR+) cells were required for this effect, while antibody production was not restored (45, 46). MHV-68-infected CD40L−/− mice (7) and CD40−/− mice (29) also showed viral reactivation in the lungs. However, no change in CD8 CTL activity was detected in in vitro assays following anti-CD40 treatment (46). A key question was whether anti-CD40 treatment (or CD4 T-cell help) caused a direct change in CD8 T-cell function or whether both CD8 T cells and an independent anti-CD40-sensitive step were required for viral control. To address this question, we used adoptive transfer of CD8 T cells from MHV-68-infected wild-type mice, anti-CD40-treated mice, or control MHC class II−/− mice to MHV-68-infected class II−/− recipients. We also investigated whether anti-CD40 treatment prolonged survival in addition to reducing lung viral titers. The heterodimeric molecule CD94/NKG2A has been implicated in negatively regulating the CD8 T-cell response to polyomavirus (38) and herpes simplex virus (HSV) (54), while the inhibitory receptor PD-1 (programmed death 1) has been implicated in T-cell exhaustion following infection with several other persistent viruses (2, 15, 20, 22, 26, 36, 39-41, 57, 67). In the present study, we investigated the effect of signaling via various costimulatory molecules on the expression of NKG2A and PD-1 and how these molecules influenced viral control. 相似文献
5.
6.
John R. Teijaro David Verhoeven Carly A. Page Damian Turner Donna L. Farber 《Journal of virology》2010,84(18):9217-9226
Memory CD4 T cells specific for influenza virus are generated from natural infection and vaccination, persist long-term, and recognize determinants in seasonal and pandemic influenza virus strains. However, the protective potential of these long-lived influenza virus-specific memory CD4 T cells is not clear, including whether CD4 T-cell helper or effector functions are important in secondary antiviral responses. Here we demonstrate that memory CD4 T cells specific for H1N1 influenza virus directed protective responses to influenza virus challenge through intrinsic effector mechanisms, resulting in enhanced viral clearance, recovery from sublethal infection, and full protection from lethal challenge. Mice with influenza virus hemagglutinin (HA)-specific memory CD4 T cells or polyclonal influenza virus-specific memory CD4 T cells exhibited protection from influenza virus challenge that occurred in the presence of CD8-depleting antibodies in B-cell-deficient mice and when CD4 T cells were transferred into lymphocyte-deficient RAG2−/− mice. Moreover, the presence of memory CD4 T cells mobilized enhanced T-cell recruitment and immune responses in the lung. Neutralization of gamma interferon (IFN-γ) production in vivo abrogated memory CD4 T-cell-mediated protection from influenza virus challenge by HA-specific memory T cells and heterosubtypic protection by polyclonal memory CD4 T cells. Our results indicate that memory CD4 T cells can direct enhanced protection from influenza virus infection through mobilization of immune effectors in the lung, independent of their helper functions. These findings have important implications for the generation of universal influenza vaccines by promoting long-lived protective CD4 T-cell responses.Influenza virus poses substantial threats to world health due to the emergence of new pandemic strains through viral mutation and reassortment, including the 2009 H1N1 pandemic strain. Developing effective vaccines that can provide immune-mediated protection to multiple influenza virus strains remains a major challenge, as current vaccines generate neutralizing antibodies directed against the highly variable hemagglutinin (HA) and neuraminidase (NA) surface viral glycoproteins (18). These vaccines are only partially effective at protecting individuals from succumbing to seasonal strains and are largely ineffective at protecting individuals from new pandemics. In contrast, T lymphocytes have the potential to provide long-term cross-strain protection, through their recognition of invariant viral determinants (3, 9), generation of effector responses to coordinate both cellular and humoral immunity, and development of memory populations that persist for decades (34). In humans, influenza virus-specific CD4 and CD8 T cells recognize internal polymerase, matrix, and nucleoprotein components of influenza virus which are conserved in multiple strains (3). Influenza virus-specific memory T cells generated from virus exposure and vaccines can be detected readily in the peripheral blood of healthy older children and adults (16, 30). Elucidating the protective capacities of memory T cells in antiviral immunity and their underlying mechanisms is therefore crucial to understanding clinical responses to influenza and to developing strategies to boost T-cell-mediated immunity for the next emerging pandemic.The potent cytolytic responses of virus-specific CD8 T cells and their roles in antiviral primary and secondary responses have been well established (58); however, considerably less is known about the function of memory CD4 T cells in antiviral immunity. Memory CD4 T cells have the potential to play more diverse roles in coordinating secondary responses than those of memory CD8 T cells via their ability to “help” or promote cellular and humoral immunity, and also through direct effector functions. Compared to CD8 T-cell responses, memory CD4 T-cell responses in humans were found to recognize a more diverse array of influenza virus-specific epitopes (46-48) and to exhibit cross-reactivities with new pandemic strains, including avian H5N1 and 2009 H1N1 “swine flu” strains (23, 28, 36, 48). In addition, antiviral memory CD4 T cells generated as a result of influenza vaccination (22) were found to persist longer than CD8 T cells in vivo following smallpox vaccination (29). These findings suggest that memory CD4 T-cell responses could be potential targets for boosting long-term cellular immunity following vaccination, although their protective capacity remains undefined.The role of CD4 T cells in anti-influenza virus immunity has been elucidated mainly for primary responses, and less is known about the protective potential and mechanisms underlying memory CD4 T-cell-directed secondary responses. In primary influenza virus infection, CD4 T cells promote antibody production by B cells necessary for complete viral clearance (2, 17, 19, 39, 40, 57) and also promote the generation of memory CD8 T cells (4). Whether memory CD4 T cells have a similar helper-intensive role in promoting B cells and CD8 T cells in secondary influenza responses or whether effector responses predominate is not known. In this study, we investigated the mechanisms by which memory CD4 T cells mediate secondary responses and promote recovery from influenza virus infection in the clinically relevant scenario of a persisting CD4 T-cell response but no preexisting antibody response to a new influenza virus strain. We demonstrate that both influenza virus HA-specific and polyclonal influenza virus-specific memory CD4 T cells direct rapid lung viral clearance and protect from lethality via secondary antiviral responses in the absence of CD8 T cells, B cells, or any lymphocytes. Unlike primary responses to influenza virus, which can mediate protection independent of gamma interferon (IFN-γ), memory CD4 T-cell-mediated protection in the lung is dependent on secreted IFN-γ and is associated with localized interactions with lung airways and foci of T-cell-directed responses. Our findings reveal that memory CD4 T cells drive antiviral protection in the lung through a qualitatively distinct mechanism and have important implications for exploiting the protective role of persisting memory CD4 T cells in vaccines and immunotherapies. 相似文献
7.
Channakeshava Sokke Umeshappa Roopa Hebbandi Nanjundappa Yufeng Xie Andrew Freywald Yulin Deng Hong Ma Jim Xiang 《PloS one》2012,7(10)
Adenoviral (AdV) vectors represent most commonly utilized viral vaccines in clinical studies. While the role of CD8+ cytotoxic T lymphocyte (CTL) responses in mediating AdV-induced protection is well understood, the involvement of CD4+ T cell-provided signals in the development of functional CD8+ CTL responses remain unclear. To explore CD4+ T helper signals required for AdVova-stimulated CTL responses, we established an adoptive transfer system by transferring CD4+ T cells derived from various knock out and transgenic mice into wild-type and/or CD4-deficient animals, followed by immunizing with recombinant ovalbumin (OVA)-expressing AdVova vector. Without CD4+ T help, both primary and memory CTL responses were greatly reduced in this model, and were associated with increased PD-1 expression. The provision of OVA-specific CD4+ T help in CD4+ T cell-deficient mice restored AdVova-induced primary CTL responses, and supported survival and recall responses of AdVova-stimulated memory CTLs. These effects were specifically mediated by CD4+ T cell-produced IL-2 and CD154 signals. Adoptive transfer of “helped” or “unhelped” effector and memory CTLs into naïve CD4+ T cell-deficient or -sufficient mice also revealed an additional role for polyclonal CD4+ T cell environment in the survival of AdVova-stimulated CTLs, partially explaining the extension of CTL contraction phase. Finally, during recall responses, CD4+ T cell environment, particularly involving memory CD4+ T cells, greatly enhanced expansion of memory CTLs. Collectively, our data strongly suggest a critical role for CD4+ T help in multiple phases of AdV-stimulated CTL responses, and could partially explain certain failures in AdV-based immunization trials targeting malignant tumors and chronic diseases that are often associated with compromised CD4+ T cell population and function. 相似文献
8.
Variability of Human Systemic Humoral Immune Responses to Adenovirus Gene Transfer Vectors Administered to Different Organs 总被引:4,自引:0,他引:4 下载免费PDF全文
Ben-Gary Harvey Neil R. Hackett Tarek El-Sawy Todd K. Rosengart Edward A. Hirschowitz Michael D. Lieberman Martin L. Lesser Ronald G. Crystal 《Journal of virology》1999,73(8):6729-6742
Administration of adenovirus (Ad) vectors to immunologically naive experimental animals almost invariably results in the induction of systemic anti-Ad neutralizing antibodies. To determine if the human systemic humoral host responses to Ad vectors follow a similar pattern, we evaluated the systemic (serum) anti-Ad serotype 5 (Ad5) neutralizing antibodies in humans after administration of first generation (E1(-) E3(-)) Ad5-based gene transfer vectors to different hosts. AdGVCFTR.10 (carrying the normal human cystic fibrosis [CF] transmembrane regulator cDNA) was sprayed (8 x 10(7) to 2 x 10(10) particle units [PU]) repetitively (every 3 months or every 2 weeks) to the airway epithelium of 15 individuals with CF. AdGVCD.10 (carrying the Escherichia coli cytosine deaminase gene) was administered (8 x 10(8) to 8 x 10(9) PU; once a week, twice) directly to liver metastasis of five individuals with colon cancer and by the intradermal route (8 x 10(7) to 8 x 10(9) PU, single administration) to six healthy individuals. AdGVVEGF121.10 (carrying the human vascular endothelial growth factor 121 cDNA) was administered (4 x 10(8) to 4 x 10(9.5) PU, single administration) directly to the myocardium of 11 individuals with ischemic heart disease. Ad vector administration to the airways of individuals with CF evoked no or minimal serum neutralizing antibodies, even with repetitive administration. In contrast, intratumor administration of an Ad vector to individuals with metastatic colon cancer resulted in a robust antibody response, with anti-Ad neutralizing antibody titers of 10(2) to >10(4). Healthy individuals responded to single intradermal Ad vector variably, from induction of no neutralizing anti-Ad antibodies to titers of 5 x 10(3). Likewise, individuals with ischemic heart disease had a variable response to single intramyocardial vector administration, ranging from minimal neutralizing antibody levels to titers of 10(4). Evaluation of the data from all trials showed no correlation between the peak serum neutralizing anti-Ad response and the dose of Ad vector administered (P > 0.1, all comparisons). In contrast, there was a striking correlation between the peak anti-Ad5 neutralizing antibody levels evoked by vector administration and the level of preexisting anti-Ad5 antibodies (P = 0.0001). Thus, unlike the case for experimental animals, administration of Ad vectors to humans does not invariably evoke a systemic anti-Ad neutralizing antibody response. In humans, the extent of the response is dictated by preexisting antibody titers and modified by route of administration but is not dose dependent. Since the extent of anti-Ad neutralizing antibodies will likely modify the efficacy of administration of Ad vectors, these observations are of fundamental importance in designing human gene therapy trials and in interpreting the efficacy of Ad vector-mediated gene transfer. 相似文献
9.
The activation of cytotoxic T lymphocytes (CTLs) to cells infected with adenovirus vectors contributes to problems of inflammation and transient gene expression that attend their use in gene therapy. The goal of this study was to identify in a murine model of liver gene therapy the proteins that provide targets to CTLs and to characterize the major histocompatibility complex (MHC) class I restricting elements. Mice of different MHC haplotypes were infected with an E1-deleted adenovirus expressing human alkaline phosphatase (ALP) or β-galactosidase as a reporter protein, and splenocytes were harvested for in vitro CTL assays to aid in the characterization of CTL epitopes. A library of vaccinia viruses was created to express individual viral open reading frames, as well as the ALP and lacZ transgenes. The MHC haplotype had a dramatic impact on the distribution of CTL targets: in C57BL/6 mice, the hexon protein presented by both H-2Kb and H2Db was dominant, and in C3H mice, H-2Dk-restricted presentation of ALP was dominant. Adoptive transfer of CTLs specific for various adenovirus proteins or transgene products into either Rag-I or C3H-scid mice infected previously with an E1-deleted adenovirus verified the in vivo relevance of the adenovirus-specific CTL targets identified in vitro. The results of these experiments illustrate the impact of lr gene control on the response to gene therapy with adenovirus vectors and suggest that the efficacy of therapy with adenovirus vectors may exhibit considerable heterogeneity when applied in human populations.A prerequisite for successful human gene therapy is the development of efficient and safe transfer technologies. Recombinant adenovirus vectors have several features which make them attractive vehicles for gene delivery. They transduce a wide variety of cell types, do not require host cell proliferation for gene transfer, and are able to transduce cells in vivo (6, 17, 19, 20, 25). The adenovirus genome is comprised of early and late genes; expression of the former leads to the activation of a cascade which culminates in the formation of new virions (9). First-generation recombinant adenoviruses used in gene therapy have been rendered replication defective by deletion of the E1A and E1B genes.Enthusiasm for the use of recombinant adenoviruses with deletions of the E1 genes in gene therapy has been diminished by the observation that deletion of E1 sequences is insufficient to completely ablate expression of other early and late viral genes. Previous studies revealed that the block in replication achieved by deleting E1 can be overcome in vitro with high multiplicities of infection (MOIs) or through cellular factors with E1-like function (10, 24). Expression of viral genes in infected-host cells leads to direct toxicity or to the stimulation of adenovirus-specific, major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs) which can contribute to the loss of transgene expression (31, 33, 34). The antigenic potential of reporter proteins as well as therapeutic proteins in models of gene replacement therapy is another potential problem. A few recent reports have highlighted the role of the transgene product in inducing destructive cellular immune responses (28, 32).The capsid proteins of adenovirus vectors stimulate CD4+ T helper cells which recognize antigenic peptides in association with MHC class II determinants. Both TH1 and TH2 subsets are activated, the former contributing to the CTL response by augmenting the stimulation of CD8+ T cells as well as by increasing expression of MHC class I on the target cell via gamma interferon (36).The antigenic targets recognized by MHC class I-restricted CTLs have been extensively studied for a variety of viruses including influenza virus, vesicular stomatitis virus, and lymphocytic choriomeningitis virus. Epitopes within internal regulatory proteins, as well as integral membrane proteins, have been identified as targets for CTL-mediated destruction of virus-infected cells (1, 2, 29, 37, 38). For adenovirus, however, little is known about the antigen specificity of the CTL response. Studies with replication-competent, wild-type adenovirus revealed E1A encoded within the E1 locus as a strong immunodominant antigen (15, 18). These data, however, are not relevant to the use of adenoviruses in gene therapy when E1A and E1B had been deleted.In this study, a library of recombinant vaccinia viruses expressing viral regulatory and structural genes as well as two reporter genes was used to precisely identify the targets within E1-deleted recombinant adenoviruses which elicit CD8+ T-cell responses. Experiments were performed in four strains of inbred mice, three of which had different mouse H-2 haplotypes. This study revealed that the level of CTL response to adenovirus antigens or the transgene product is dependent on the MHC haplotype of the host. 相似文献
10.
11.
The induction of strong CD8(+) T-cell responses against infectious diseases and cancer has remained a major challenge. Depending on the source of antigen and the infectious agent, priming of CD8(+) T cells requires direct and/or cross-presentation of antigenic peptides on major histocompatibility complex (MHC) class I molecules by professional antigen-presenting cells (APCs). However, both pathways show distinct preferences concerning antigen stability. Whereas direct presentation was shown to efficiently present peptides derived from rapidly degraded proteins, cross-presentation is dependent on long-lived antigen species. In this report, we analyzed the role of antigen stability on DNA vaccination and recombinant vaccinia virus (VV) infection using altered versions of the same antigen. The long-lived nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) can be targeted for degradation by N-terminal fusion to ubiquitin or, as we show here, to the ubiquitin-like modifier FAT10. Direct presentation by cells either transfected with NP-encoding plasmids or infected with recombinant VV in vitro was enhanced in the presence of short-lived antigens. In vivo, however, the highest induction of NP-specific CD8(+) T-cell responses was achieved in the presence of long-lived NP. Our experiments provide evidence that targeting antigens for proteasomal degradation does not improve the immunogenicity of DNA vaccines and recombinant VVs. Rather, it is the long-lived antigen that is superior for the efficient activation of MHC class I-restricted immune responses in vivo. Hence, our results suggest a dominant role for antigen cross-priming in DNA vaccination and recombinant VV infection. 相似文献
12.
E4ORF3 Requirement for Achieving Long-Term Transgene Expression from the Cytomegalovirus Promoter in Adenovirus Vectors 下载免费PDF全文
Donna Armentano Michael P. Smith Cathleen C. Sookdeo Joseph Zabner Michael A. Perricone Judith A. St. George Samuel C. Wadsworth Richard J. Gregory 《Journal of virology》1999,73(8):7031-7034
Analysis of transgene expression under the control of the cytomegalovirus (CMV) promoter from adenovirus vectors in which the E4 region was modified indicated that E4ORF3 is required for long-term expression in the murine lung. CMV promoter truncation led to the persistence of expression in the absence of E4, thus eliminating the ORF3 requirement. 相似文献
13.
Roland Zahn Gert Gillisen Anna Roos Marina Koning Esmeralda van der Helm Dirk Spek Mo Weijtens Maria Grazia Pau Katarina Rado?evi? Gerrit Jan Weverling Jerome Custers Jort Vellinga Hanneke Schuitemaker Jaap Goudsmit Ariane Rodríguez 《PloS one》2012,7(12)
Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years. 相似文献
14.
M. Lusky M. Christ K. Rittner A. Dieterle D. Dreyer B. Mourot H. Schultz F. Stoeckel A. Pavirani M. Mehtali 《Journal of virology》1998,72(3):2022-2032
Isogenic, E3-deleted adenovirus vectors defective in E1, E1 and E2A, or E1 and E4 were generated in complementation cell lines expressing E1, E1 and E2A, or E1 and E4 and characterized in vitro and in vivo. In the absence of complementation, deletion of both E1 and E2A completely abolished expression of early and late viral genes, while deletion of E1 and E4 impaired expression of viral genes, although at a lower level than the E1/E2A deletion. The in vivo persistence of these three types of vectors was monitored in selected strains of mice with viral genomes devoid of transgenes to exclude any interference by immunogenic transgene-encoded products. Our studies showed no significant differences among the vectors in the short-term maintenance and long-term (4-month) persistence of viral DNA in liver and lung cells of immunocompetent and immunodeficient mice. Furthermore, all vectors induced similar antibody responses and comparable levels of adenovirus-specific cytotoxic T lymphocytes. These results suggest that in the absence of transgenes, the progressive deletion of the adenovirus genome does not extend the in vivo persistence of the transduced cells and does not reduce the antivirus immune response. In addition, our data confirm that, in the absence of transgene expression, mouse cellular immunity to viral antigens plays a minor role in the progressive elimination of the virus genome.Replication-deficient human adenoviruses (Ad) have been widely investigated as ex vivo and in vivo gene delivery systems for human gene therapy. The ability of these vectors to mediate the efficient expression of candidate therapeutic or vaccine genes in a variety of cell types, including postmitotic cells, is considered an advantage over other gene transfer vectors (3, 28, 49). However, the successful application of currently available E1-defective Ad vectors in human gene therapy has been hampered by the fact that transgene expression is only transient in vivo (2, 15, 16, 33, 36, 46). This short-lived in vivo expression of the transgene has been explained, at least in part, by the induction in vivo of cytotoxic immune responses to cells infected with the Ad vector. Studies with rodent systems have suggested that cytotoxic T lymphocytes (CTLs) directed against virus antigens synthesized de novo in the transduced tissues play a major role in eliminating cells containing the E1-deleted viral genome (56–58, 61). Consistent with the concept of cellular antiviral immunity, expression of transgenes is significantly extended in experimental rodent systems that are deficient in various components of the cellular immune system or that have been rendered immunocompromised by administration of pharmacological agents (2, 33, 37, 48, 60, 64).Based on the assumption that further reduction of viral antigen expression may lower the immune response and thus extend persistence of transgene expression, previous studies have investigated the consequences of deleting both E1 and an additional viral regulatory region, such as E2A or E4. The E2A region encodes a DNA binding protein (DBP) with specific affinity for single-stranded Ad DNA. The DNA binding function is essential for the initiation and elongation of viral DNA synthesis during the early phase of Ad infection. During the late phase of infection, DBP plays a central role in the activation of the major late promoter (MLP) (for a recent review, see reference 44). The E4 region, located at the right end of the viral genome, encodes several regulatory proteins with pleiotropic functions which are involved in the accumulation, splicing, and transport of early and late viral mRNAs, in DNA replication, and in virus particle assembly (reviewed in reference 44). The simultaneous deletion of E1 and E2A or of E1 and E4 should therefore further reduce the replication of the virus genome and the expression of early and late viral genes. Such multidefective vectors have been generated and tested in vitro and in vivo (9, 12, 17, 19–21, 23, 24, 26, 34, 40, 52, 53, 59, 62, 63). Recombinant vectors with E1 deleted and carrying an E2A temperature-sensitive mutation (E2Ats) have been shown in vitro to express much smaller amounts of virus proteins, leading to extended transgene expression in cotton rats and mice (19, 20, 24, 59). To eliminate the risks of reversion of the E2Ats point mutation to a wild-type phenotype, improved vectors with both E1 and E2A deleted were subsequently generated in complementation cell lines coexpressing E1 and E2A genes (26, 40, 63). In vitro analysis of human cells infected by these viruses demonstrated that the double deletion completely abolished viral DNA replication and late protein synthesis (26). Similarly, E1/E4-deleted vectors have been generated in various in vitro complementation systems and tested in vitro and in vivo (9, 17, 23, 45, 52, 53, 62). These studies showed that deletion of both E1 and E4 did indeed reduce significantly the expression of early and late virus proteins (17, 23), leading to a decreased anti-Ad host immune response (23), reduced hepatotoxicity (17, 23, 52), and improved in vivo persistence of the transduced liver cells (17, 23, 52).Interpretation of these results is difficult, however, since all tested E1- and E1/E4-deleted vectors encoded the bacterial β-galactosidase (βgal) marker, whose strong immunogenicity is known to influence the in vivo persistence of Ad-transduced cells (32, 37). Moreover, the results described above are not consistent with the conclusions from other studies showing, in various immunocompetent mouse models, that cellular immunity to Ad antigens has no detectable impact on the persistence of the transduced cells (37, 40, 50, 51). Furthermore, in contrast to results of earlier studies (19, 20, 59), Fang et al. (21) demonstrated that injection of E1-deleted/E2Ats vectors into immunocompetent mice and hemophilia B dogs did not lead to an improvement of the persistence of transgene expression compared to that with isogenic E1-deleted vectors. Similarly, Morral et al. (40) did not observe any difference in persistence of transgene expression in mice injected with either vectors deleted in E1 only or vectors deleted in both E1 and E2A. Finally, the demonstration that some E4-encoded products can modulate transgene expression (1, 17, 36a) makes the evaluation of E1- and E1/E4-deleted vectors even more complex when persistence of transgene expression is used for direct comparison of the in vivo persistence of cells transduced by the two types of vectors.The precise influence of the host immune response to viral antigens on the in vivo persistence of the transduced cells, and hence the impact of further deletions in the virus genome, therefore still remains unclear. To investigate these questions, we generated a set of isogenic vectors with single deletions (AdE1°) and double deletions (AdE1°E2A° and AdE1°E4°) and their corresponding complementation cell lines and compared the biologies and immunogenicities of these vectors in vitro and in vivo. To eliminate any possible influence of transgene-encoded products on the interpretation of the in vivo results, we used E1-, E1/E2A-, and E1/E4-deleted vectors with no transgenes. 相似文献
15.
Brown Rebecca Salgado-Lynn Milena Jumail Amaziasizamoria Jalius Cyrlen Chua Tock-Hing Vythilingam Indra Ferguson Heather M. 《EcoHealth》2022,19(2):233-245
EcoHealth - Several vector-borne pathogens of primates have potential for human spillover. An example is the simian malaria Plasmodium knowlesi which is now a major public health problem in... 相似文献
16.
R. M. Leskowitz X. Y. Zhou F. Villinger M. H. Fogg A. Kaur P. M. Lieberman F. Wang H. C. Ertl 《Journal of virology》2013,87(15):8351-8362
Epstein-Barr virus (EBV) infection leads to lifelong viral persistence through its latency in B cells. EBV-specific T cells control reactivations and prevent the development of EBV-associated malignancies in most healthy carriers, but infection can sometimes cause chronic disease and malignant transformation. Epstein-Barr nuclear antigen 1 (EBNA-1) is the only viral protein consistently expressed during all forms of latency and in all EBV-associated malignancies and is a promising target for a therapeutic vaccine. Here, we studied the EBNA-1-specific immune response using the EBV-homologous rhesus lymphocryptovirus (rhLCV) infection in rhesus macaques. We assessed the frequency, phenotype, and cytokine production profiles of rhLCV EBNA-1 (rhEBNA-1)-specific T cells in 15 rhesus macaques and compared them to the lytic antigen of rhLCV BZLF-1 (rhBZLF-1). We were able to detect rhEBNA-1-specific CD4+ and/or CD8+ T cells in 14 of the 15 animals screened. In comparison, all 15 animals had detectable rhBZLF-1 responses. Most peptide-specific CD4+ T cells exhibited a resting phenotype of central memory (TCM), while peptide-specific CD8+ T cells showed a more activated phenotype, belonging mainly to the effector cell subset. By comparing our results to the human EBV immune response, we demonstrate that the rhLCV model is a valid system for studying chronic EBV infection and for the preclinical development of therapeutic vaccines. 相似文献
17.
18.
Xinhui Ge Venus Tan Paul L. Bollyky Nathan E. Standifer Eddie A. James William W. Kwok 《Journal of virology》2010,84(7):3312-3319
Very limited evidence has been reported to show human adaptive immune responses to the 2009 pandemic H1N1 swine-origin influenza A virus (S-OIV). We studied 17 S-OIV peptides homologous to immunodominant CD4 T epitopes from hemagglutinin (HA), neuraminidase (NA), nuclear protein (NP), M1 matrix protein (MP), and PB1 of a seasonal H1N1 strain. We concluded that 15 of these 17 S-OIV peptides would induce responses of seasonal influenza virus-specific T cells. Of these, seven S-OIV sequences were identical to seasonal influenza virus sequences, while eight had at least one amino acid that was not conserved. T cells recognizing epitopes derived from these S-OIV antigens could be detected ex vivo. Most of these T cells expressed memory markers, although none of the donors had been exposed to S-OIV. Functional analysis revealed that specific amino acid differences in the sequences of these S-OIV peptides would not affect or partially affect memory T-cell responses. These findings suggest that without protective antibody responses, individuals vaccinated against seasonal influenza A may still benefit from preexisting cross-reactive memory CD4 T cells reducing their susceptibility to S-OIV infection.The outbreak of H1N1 swine-origin influenza A virus (S-OIV) in April 2009 has raised a new threat to public health (5, 6). This novel virus (with A/California/04/09 H1N1 as a prototypic strain) not only replicated more efficiently but also caused more severe pathological lesions in the lungs of infected mice, ferrets, and nonhuman primates than a currently circulating human H1N1 virus (9). Similarly, human patients with influenza-like illness who tested negative for S-OIV had a milder clinical course than those who tested positive (13). Another major concern is the lack of immune protection against S-OIV in the human population. Initial serum analysis indicated that cross-reactive antibodies to this novel viral strain were detected in only one-third of people over 60 years of age, while humoral immune responses in the population under 60 years of age were rarely detected (3, 8). In addition, vaccination with recent seasonal influenza vaccines induced little or no cross-reactive antibody responses to S-OIV in any age group (3, 8).Only a few studies address whether preexisting seasonal influenza A virus-specific memory T cells cross-react with antigenic peptides derived from S-OIV (7). In the absence of preexisting cross-reactive neutralizing antibodies, it is likely that T-cell-mediated cellular immunity contributes to viral clearance and reduces the severity of symptoms, although virus-specific T cells cannot directly prevent the establishment of infection (10). Greenbaum and colleagues recently compared published T-cell epitopes for seasonal influenza viruses with S-OIV antigens (Ags) using a computational approach (7). Several seasonal H1N1 epitopes were found to be identical to S-OIV sequences. This implies that seasonal flu-specific memory T cells circulating in the peripheral blood of vaccinated and/or previously infected individuals are able to recognize their S-OIV homologues.The first objective of this study was to determine the extent of cross-reactivity of seasonal H1N1 influenza A virus-specific CD4 T cells with S-OIV epitopes, especially those less conserved peptide sequences. We chose 17 immunodominant DR4-restricted T-cell epitopes derived from a seasonal H1N1 strain, compared the binding of these epitopes and their S-OIV homologous peptides to DR4, tested the ability of S-OIV peptides to drive seasonal influenza virus-specific T-cell proliferation in vitro, and estimated the frequency of S-OIV cross-reactive T cells in the periphery of noninfected donors. We found that most homologous S-OIV peptides were able to activate seasonal H1N1 virus-specific CD4 T cells. The second objective was to compare the antigen dosage requirement to activate those T cells. By assessing the alternations in the functional avidities (of T cells to the cognate peptide and S-OIV homologue) due to amino acid differences in S-OIV peptides, we showed how those cross-reactive CD4 T cells differentially responded to the antigenic peptides derived from seasonal H1N1 virus or S-OIV. This study leads to the conclusion that previous exposure to seasonal H1N1 viral antigens will generate considerable levels of memory CD4 T cells cross-reactive with S-OIV. 相似文献
19.
20.
Production and Characterization of Improved Adenovirus Vectors with the E1, E2b, and E3 Genes Deleted 总被引:11,自引:0,他引:11 下载免费PDF全文
Andrea Amalfitano Michael A. Hauser Huimin Hu Delila Serra Catherine R. Begy Jeffrey S. Chamberlain 《Journal of virology》1998,72(2):926-933
Adenovirus (Ad)-based vectors have great potential for use in the gene therapy of multiple diseases, both genetic and nongenetic. While capable of transducing both dividing and quiescent cells efficiently, Ad vectors have been limited by a number of problems. Most Ad vectors are engineered such that a transgene replaces the Ad E1a, E1b, and E3 genes; subsequently the replication-defective vector can be propagated only in human 293 cells that supply the deleted E1 gene functions in trans. Unfortunately, the use of high titers of E1-deleted vectors has been repeatedly demonstrated to result in low-level expression of viral genes still resident in the vector. In addition, the generation of replication-competent Ad (RCA) by recombination events with the E1 sequences residing in 293 cells further limits the usefulness of E1-deleted Ad vectors. We addressed these problems by isolating new Ad vectors deleted for the E1, E3, and the E2b gene functions. The new vectors can be readily grown to high titers and have several improvements, including an increased carrying capacity and a theoretically decreased risk for generating RCA. We have also demonstrated that the further block to Ad vector replication afforded by the deletion of both the E1 and E2b genes significantly diminished Ad late gene expression in comparison to a conventional E1-deleted vector, without destabilization of the modified vector genome. The results suggested that these modified vectors may be very useful both for in vitro and in vivo gene therapy applications. 相似文献