首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upland soils are important sinks for atmospheric methane (CH4), a process essentially driven by methanotrophic bacteria. Soil CH4 uptake often depends on land use, with afforestation generally increasing the soil CH4 sink. However, the mechanisms driving these changes are not well understood to date. We measured soil CH4 and N2O fluxes along an afforestation chronosequence with Norway spruce (Picea abies L.) established on an extensively grazed subalpine pasture. Our experimental design included forest stands with ages ranging from 25 to >120 years and included a factorial cattle urine addition treatment to test for the sensitivity of soil CH4 uptake to N application. Mean CH4 uptake significantly increased with stand age on all sampling dates. In contrast, CH4 oxidation by sieved soils incubated in the laboratory did not show a similar age dependency. Soil CH4 uptake was unrelated to soil N status (but cattle urine additions stimulated N2O emission). Our data indicated that soil CH4 uptake in older forest stands was driven by reduced soil water content, which resulted in a facilitated diffusion of atmospheric CH4 into soils. The lower soil moisture likely resulted from increased interception and/or evapotranspiration in the older forest stands. This mechanism contrasts alternative explanations focusing on nitrogen dynamics or the composition of methanotrophic communities, although these factors also might be at play. Our findings further imply that the current dramatic increase in forested area increases CH4 uptake in alpine regions.  相似文献   

2.
Overgrazing‐induced degradation of temperate semiarid steppes may affect the soil sink for atmospheric methane (CH4). However, previous studies have primarily focused on the growing season and on single grazing patterns. Thus, the response of annual CH4 uptake by steppes compared with various grazing practices is uncertain. In this study, we investigated the effects of grazing on the annual CH4 uptake by two typical Eurasian semiarid steppes (the Stipa grandis steppe and the Leymus chinensis steppe) located in Inner Mongolia, China. The CH4 fluxes were measured year‐round using static chambers and gas chromatography at 12 field sites that differed primarily in grazing intensities. Our results indicated that steppe soils were CH4 sinks throughout the year. The annual CH4 uptake correlated with stocking rates, whereas the seasonality of CH4 uptake was primarily dominated by temperature. The annual CH4 uptake at all sites averaged 3.7±0.7 kg C ha?1 yr?1 (range: 2.3–4.5), where approximately 35% (range: 23–40%) occurred during the nongrowing season. Light‐to‐moderate grazing (stocking rate≤1 sheep ha?1 yr?1) did not significantly change the annual CH4 uptake compared with ungrazed steppes, but heavy grazing reduced annual CH4 uptake significantly (by 24–31%, P<0.05). These findings imply that easing the pressure of heavily grazed steppes (e.g. moving to light or moderate stocking rates) would help restore steppe soil sinks for atmospheric CH4. The empirical equations based on the significant relationships between annual CH4 uptake and stocking rates, aboveground plant biomass and topsoil air permeability (P<0.01) could provide simple approaches for the estimation of regional CH4 uptake by temperate semiarid steppes.  相似文献   

3.
森林土壤甲烷吸收的主控因子及其对增氮的响应研究进展   总被引:3,自引:0,他引:3  
森林土壤甲烷(CH4)吸收在生态系统碳、氮循环和碳平衡研究中具有重要作用。论述了森林土壤CH4的产生和消耗过程及其主控因子,有效氮不同的森林土壤CH4吸收对氮素输入的响应差异及其驱动机制,并且明确了现有研究的不足和未来研究的重点。研究表明:大气氮沉降输入倾向于抑制富氮森林土壤的CH4吸收,而对贫氮森林土壤CH4吸收具有显著的促进作用,其内在的氮素调控机制至今尚不明确。主要的原因是过去通过高剂量施氮试验所得出的理论难以准确地解释低水平氮沉降情景下森林土壤CH4吸收过程,有关森林土壤CH4吸收对大气氮沉降响应的微生物学机理也缺乏系统性研究。未来研究的重点是探讨森林土壤CH4物理扩散和净吸收过程对施氮类型、剂量的短期与长期响应,量化深层土壤CH4累积和消耗对表层土壤CH4吸收的贡献,揭示森林土壤CH4吸收对增氮响应的物理学与生物化学机制。另外,研究森林土壤甲烷氧化菌群落活性、结构对施氮类型和剂量的响应,阐明土壤CH4吸收与甲烷氧化菌群落组成的内在联系,有助于深入揭示森林土壤CH4吸收对增氮响应的微生物学机制。  相似文献   

4.
Measurements of the net methane exchange over a range of forest, moorland, and agricultural soils in Scotland were made during the period April to June 1994 and 1995. Fluxes of CH4 ranged from oxidation –12.3 to an emission of 6.8 ng m–2 s–1. The balance between CH4 oxidation and emission depended on the physical conditions of the soil, primarily soil moisture. The largest oxidation rates were found in the mineral forest soils, and CH4 emission was observed in several peat soils. The smallest oxidation rate was observed in an agricultural soil. The relationship between CH4 flux and soil moisture observed in peats (FluxCH 4 = 0.023 × %H2O (dry weight) – 7.44, p > 0.05) was such that CH4 oxidation was observed at soil moistures less than 325%( ± 80%). CH4 emission was found at soil moistures exceeding this value. A large range of CH4 oxidation rates were observed over a small soil moisture range in the mineral soils. CH4 oxidation in mineral soils was negatively correlated with soil bulk density (FluxCH 4 = –37.35 × bulk density (g cm–3) + 48.83, p > 0.05). Increased nitrogen loading of the soil due to N fixation, atmospheric deposition of N, and fertilisation, were consistently associated with decreases in the soil sink for CH4, typically in the range 50 to 80%, on a range of soil types and land uses.  相似文献   

5.
To evaluate the effect of cultivation, nitrogen fertilizer, and set aside on CH4 uptake after drained marshland was converted into agricultural fields, CH4 fluxes and CH4 concentrations in soil gas were in situ measured in a drained marsh soil, a set‐aside cultivated soil, and cultivated soils in Sanjiang Plain of Northeast China in August 2001. Over the measuring period, the highest CH4 uptake rate was 120.7±6.2 μg CH4 m?2 h?1 in the drained marsh soil and the lowest was 29.5±4.9 μg CH4 m?2 h?1 in the set‐aside cultivated soil, showing that there was no significant recovery of CH4 uptake ability 5 years after cultivation activity was stopped. CH4 uptake rates were significantly less in the cultivated soils than in the drained marsh soil by 30.1–74.6%, which resulted mainly from cultivation and partly from nitrogen addition. A significantly negative correlation between CH4 flux and bulk density in the cultivated soils tilled by machine suggests that cultivation reduced CH4 uptake through compaction, because of the enhanced diffusion resistance for CH4 and O2. Nitrogen fertilization slowly reduced but persistently affected CH4 uptake even after long‐term application of nitrogen.  相似文献   

6.
The effect of soil microbial processes on production and/or consumption of atmospheric trace gases was studied in four different soils which were preincubated in the presence of elevated concentrations of CH4, NH 4 + or CO, to simulate the growth of the resident populations of methanotrophic, nitrifying, or carboxydotrophic bacteria, respectively. Oxidation of CH4, both at atmospheric (1.8 ppmv) and at elevated (3500 ppmv) CH4 mixing ratios, was stimulated after preincubation with CH4, but not with NH 4 + or CO, indicating that CH4 was oxidized by methanotrophic, but not by nitrifying or carboxydotrophic bacteria. However, the oxidation of CH4 was partially inhibited by addition of NH 4 + and CO. Analogously, oxidation of NH 4 + was partially inhibited by addition of CH4. Oxidation of CO at elevated mixing ratios (2300 ppmv) was stimulated after preincubation with CO, indicating oxidation by carboxydotrophs, but was also stimulated at a small extent after preincubation with CH4, suggesting the involvement of methanotrophs. At atmospheric CO mixing ratios (0.13 ppmv), on the other hand, oxidation of CO was stimulated after preincubation with NH 4 + , indicating that the activity was due to nitrifiers. NO uptake was stimulated in soils preincubated with CH4, indicating the involvement of methanotrophs. However, production of N2O was only stimulated, if CH4 was added as a substrate. The results indicate that especially the methanotrophic and nitrifying populations in soil not only oxidize their specific substrates, but are also involved in the metabolism of other compounds.  相似文献   

7.
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus (‘forest’) lead to expansion of permafrost‐free wetlands (‘wetland’). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4) emissions. Here, we quantify the thaw‐induced increase in CH4 emissions for a boreal forest‐wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long‐term net carbon dioxide (CO2) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland‐to‐forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May–October) wetland CH4 emission of ~13 g CH4 m?2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4 m?2. In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr?1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4 m?2 yr?1 in landscape CH4 emissions. A long‐term net CO2 uptake of >200 g CO2 m?2 yr?1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long‐term apparent carbon accumulation rates in similar boreal forest‐wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long‐term net CO2 uptake between 49 and 157 g CO2 m?2 yr?1. Thus, thaw‐induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century.  相似文献   

8.
This paper reports the range and statistical distribution of oxidation rates of atmospheric CH4 in soils found in Northern Europe in an international study, and compares them with published data for various other ecosystems. It reassesses the size, and the uncertainty in, the global terrestrial CH4 sink, and examines the effect of land‐use change and other factors on the oxidation rate. Only soils with a very high water table were sources of CH4; all others were sinks. Oxidation rates varied from 1 to nearly 200 μg CH4 m?2 h?1; annual rates for sites measured for ≥1 y were 0.1–9.1 kg CH4 ha?1 y?1, with a log‐normal distribution (log‐mean ≈ 1.6 kg CH4 ha?1 y?1). Conversion of natural soils to agriculture reduced oxidation rates by two‐thirds –‐ closely similar to results reported for other regions. N inputs also decreased oxidation rates. Full recovery of rates after these disturbances takes > 100 y. Soil bulk density, water content and gas diffusivity had major impacts on oxidation rates. Trends were similar to those derived from other published work. Increasing acidity reduced oxidation, partially but not wholly explained by poor diffusion through litter layers which did not themselves contribute to the oxidation. The effect of temperature was small, attributed to substrate limitation and low atmospheric concentration. Analysis of all available data for CH4 oxidation rates in situ showed similar log‐normal distributions to those obtained for our results, with generally little difference between different natural ecosystems, or between short‐and longer‐term studies. The overall global terrestrial sink was estimated at 29 Tg CH4 y?1, close to the current IPCC assessment, but with a much wider uncertainty range (7 to > 100 Tg CH4 y?1). Little or no information is available for many major ecosystems; these should receive high priority in future research.  相似文献   

9.
Oxidation of methane in boreal forest soils: a comparison of seven measures   总被引:12,自引:4,他引:8  
Methane oxidation rates were measured in boreal forest soils using seven techniques that provide a range of information on soil CH4 oxidation. These include: (a) short-term static chamber experiments with a free-air (1.7 ppm CH4) headspace, (b) estimating CH4 oxidation rates from soil CH4 distributions and (c)222Rn-calibrated flux measurements, (d) day-long static chamber experiments with free-air and amended (+20 to 2000 PPM CH4) headspaces, (e) jar experiments on soil core sections using free-air and (f) amended (+500 ppm CH4) headspaces, and (g) jar experiments on core sections involving tracer additions of14CH4. Short-term unamended chamber measurements,222Rn-calibrated flux measurements, and soil CH4 distributions show independently that the soils are capable of oxidizing atmospheric CH4 at rates ranging to < 2 mg m–2 d–1. Jar experiments with free-air headspaces and soil CH4 profiles show that CH4 oxidation occurs to a soil depth of 60 cm and is maximum in the 10 to 20 cm zone. Jar experiments and chamber measurements with free-air headspaces show that CH4 oxidation occurs at low (< 0.9 ppm) thresholds. The14CH4-amended jar experiments show the distribution of end products of CH4 oxidation; 60% is transformed to CO2 and the remainder is incorporated in biomass. Chamber and jar experiments under amended atmospheres show that these soils have a high capacity for CH4 oxidation and indicate potential CH4 oxidation rates as high as 867 mg m–2 d–1. Methane oxidation in moist soils modulates CH4 emission and can serve as a negative feedback on atmospheric CH4 increases.  相似文献   

10.
Terrestrial ecosystems in northern high latitudes exchange large amounts of methane (CH4) with the atmosphere. Climate warming could have a great impact on CH4 exchange, in particular in regions where degradation of permafrost is induced. In order to improve the understanding of the present and future methane dynamics in permafrost regions, we studied CH4 fluxes of typical landscape structures in a small catchment in the forest tundra ecotone in northern Siberia. Gas fluxes were measured using a closed‐chamber technique from August to November 2003 and from August 2006 to July 2007 on tree‐covered mineral soils with and without permafrost, on a frozen bog plateau, and on a thermokarst pond. For areal integration of the CH4 fluxes, we combined field observations and classification of functional landscape structures based on a high‐resolution Quickbird satellite image. All mineral soils were net sinks of atmospheric CH4. The magnitude of annual CH4 uptake was higher for soils without permafrost (1.19 kg CH4 ha−1 yr−1) than for soils with permafrost (0.37 kg CH4 ha−1 yr−1). In well‐drained soils, significant CH4 uptake occurred even after the onset of ground frost. Bog plateaux, which stored large amounts of frozen organic carbon, were also a net sink of atmospheric CH4 (0.38 kg CH4 ha−1 yr−1). Thermokarst ponds, which developed from permafrost collapse in bog plateaux, were hot spots of CH4 emission (approximately 200 kg CH4 ha−1 yr−1). Despite the low area coverage of thermokarst ponds (only 2.1% of the total catchment area), emissions from these sites resulted in a mean catchment CH4 emission of 3.8 kg CH4 ha−1 yr−1. Export of dissolved CH4 with stream water was insignificant. The results suggest that mineral soils and bog plateaux in this region will respond differently to increasing temperatures and associated permafrost degradation. Net uptake of atmospheric CH4 in mineral soils is expected to gradually increase with increasing active layer depth and soil drainage. Changes in bog plateaux will probably be much more rapid and drastic. Permafrost collapse in frozen bog plateaux would result in high CH4 emissions that act as positive feedback to climate warming.  相似文献   

11.
内蒙古典型草原植物功能型对土壤甲烷吸收的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
甲烷(CH4)是仅次于CO2的重要温室气体。内蒙古草原是欧亚温带草原的重要类型, 具有典型的生态地域代表性。该文以内蒙古温带典型草原为研究对象, 通过人工剔除植物种的方法来确定群落中的植物功能型, 并应用静态箱技术, 观测土壤CH4的吸收, 以理解植物功能型对土壤CH4吸收的影响。结果表明: 1)土壤CH4的吸收受温度和水分变化的影响, 具有明显的季节差异, 且与温度显著相关。2)在2008年和2009年所测的大部分月份中, 植物功能型的土壤CH4吸收量之间没有显著差异; 然而在植物生长旺季(8月), 不同植物功能型的土壤CH4吸收量之间存在显著差异, 多年生丛生禾草的土壤CH4吸收量最小。3)处理中一、二年生植物、多年生杂类草的存在能够增加土壤CH4的吸收量, 而处理中多年生根茎类禾草、多年生丛生禾草的存在对土壤CH4吸收的影响不大。这可能是因为, 植物功能型影响土壤的微生物代谢和环境因子, 进而影响土壤CH4吸收量。该试验说明, 在痕量气体层面上, 植物功能型组成在生态系统功能中具有重要作用, 特别是群落中的亚优势种和伴生种(一、二年生植物、多年生杂类草), 通过调控土壤微生物和环境因子, 对地-气的CH4交换产生重要影响。  相似文献   

12.
Microbial oxidation in aerobic soils is the primary biotic sink for atmospheric methane (CH4), a powerful greenhouse gas. Although tropical forest soils are estimated to globally account for about 28% of annual soil CH4 consumption (6.2 Tg CH4 year?1), limited data are available on CH4 exchange from tropical montane forests. We present the results of an extensive study on CH4 exchange from tropical montane forest soils along an elevation gradient (1,000, 2,000, 3,000 m) at different topographic positions (lower slope, mid-slope, ridge position) in southern Ecuador. All soils were net atmospheric CH4 sinks, with decreasing annual uptake rates from 5.9 kg CH4–C ha?1 year?1 at 1,000 m to 0.6 kg CH4–C ha?1 year?1 at 3,000 m. Topography had no effect on soil atmospheric CH4 uptake. We detected some unexpected factors controlling net methane fluxes: positive correlations between CH4 uptake rates, mineral nitrogen content of the mineral soil and with CO2 emissions indicated that the largest CH4 uptake corresponded with favorable conditions for microbial activity. Furthermore, we found indications that CH4 uptake was N limited instead of inhibited by NH4 +. Finally, we showed that in contrast to temperate regions, substantial high affinity methane oxidation occurred in the thick organic layers which can influence the CH4 budget of these tropical montane forest soils. Inclusion of elevation as a co-variable will improve regional estimates of methane exchange in these tropical montane forests.  相似文献   

13.
To clarify the reason for the higher CH4 uptake rate in Japanese forest soils, twenty-seven sites were established for CH4 flux measurement. The first order rate constant for CH4 uptake was also determined using soil core incubation at 14 sites. The CH4 uptake rate had a seasonal fluctuation, high in summer and low in winter, and the rate correlated with soil temperature at 17 sites. The annual CH4 uptake rates ranged from 2.7 to 24.8 kg CH4 ha−1 y−1 (the average of these rates was 9.7 or 10.9 kg CH4 ha−1 y−1, depending on method of calculation), which is somewhat higher than the uptake rates reported in previous literature. The averaged CH4 uptake rate correlated closely with the CH4 oxidation rate of the topsoil (0–5 cm) in the study sites. The CH4 oxidation constant of the topsoil was explained by a multiple regression model using total pore volume of the soil, nitrate content, and C/N ratio (p < 0.05, R 2 = 0.684). This result and comparison with literature data suggest that the high CH4 uptake rate in Japanese forest soils depends on the high porosity probably due to volcanic ash parent materials. According to our review of the literature, the CH4 uptake rate in temperate forests in Europe is significantly different from that in Asia and North America. A new global CH4 uptake rate in temperate forests was estimated to be 5.4 Tg y−1 (1 SE is 1.1 Tg y−1) on a continental basis.  相似文献   

14.
Rates of rhizospheric methane oxidation were evaluated by aerobic incubations of subcores collected in flooded anoxic soils populated by emergent macrophytes, by greenhouse whole plant incubations, and by CH4 stable isotopic analysis. Subcore incubations defined upper limits for rhizospheric methane oxidation on an areal basis which were equal to or greater than emission rates. These rates are considered upper limits because O2 did not limit CH4 uptake as is likely to occur in situ. The ratio of maximum potential methane oxidation (MO) to methane emission (ME) ranged from 0.7 to 1.9 in Louisiana rice (Oryza sativa), from 1.0 to 4.0 in a N. Florida Sagittaria lancifolia marsh, and from 5.6 to 51 in Everglades Typha domingensis and Cladium jamaicense areas. Methane oxidation/methane emission ratios determined in whole plant incubations of Sagittaria lancifolia under oxic and anoxic conditions ranged from 0.5 to 1.6. Methane oxidation activity associated with emergent aquatic macrophytes was found primarily in fine root material. A weak correlation was observed between live root biomass and CH4 uptake in Typha. Rhizomes showed small or zero rates of methane uptake and no uptake was associated with plant stems. Methane stable isotope data from a S. lancifolia marsh were as follows: CH4 emitted from plants: −61.6 ± 0.3%; CH4 within stems: −42.0 ± 0.2%; CH4 within sedimentary bubbles: −51.7 ± 0.3%). The 13C enrichment observed relative to emitted CH4 could be due to preferential mobilization of CH4 containing the lighter isotope and/or the action of methanotrophic bacteria.  相似文献   

15.
Methane consumption in two temperate forest soils   总被引:4,自引:4,他引:0  
Forest soils are thought to be an important sink for atmospheric methane. To evaluate methane consumption,14C-labeled methane was added to the headspace of intact soil cores collected from a mixed mesophytic forest and from a red spruce forest located in the central Appalachian Mountains. Both soils consumed the added methane at initially high rates that decreased as the methane mixing ratio of the air decreased. The mixed mesophytic forest soil consumed an average of 2 mg CH4 m–2 d–1 versus 1 mg CH, m–2 d–1 for the spruce forest soil. The addition of acetylene to the headspace completely suppressed methane consumption by the soils, suggesting that an aerobic methane-consuming microorganism mediated the process. At both forest sites, methane mixing ratios in soil air spaces were greater than that in the air overlying the soil surface, indicating that these soils had the ability to produce methane. Models of methane emission from forest soils to the atmosphere must represent methane flux as the balance between production and consumption of methane, which are controlled by very different factors  相似文献   

16.
Tropical peatlands are a known source of methane (CH4) to the atmosphere, but their contribution to atmospheric CH4 is poorly constrained. Since the 1980s, extensive areas of the peatlands in Southeast Asia have experienced land‐cover change to smallholder agriculture and forest plantations. This land‐cover change generally involves lowering of groundwater level (GWL), as well as modification of vegetation type, both of which potentially influence CH4 emissions. We measured CH4 exchanges at the landscape scale using eddy covariance towers over two land‐cover types in tropical peatland in Sumatra, Indonesia: (a) a natural forest and (b) an Acacia crassicarpa plantation. Annual CH4 exchanges over the natural forest (9.1 ± 0.9 g CH4 m?2 year?1) were around twice as high as those of the Acacia plantation (4.7 ± 1.5 g CH4 m?2 year?1). Results highlight that tropical peatlands are significant CH4 sources, and probably have a greater impact on global atmospheric CH4 concentrations than previously thought. Observations showed a clear diurnal variation in CH4 exchange over the natural forest where the GWL was higher than 40 cm below the ground surface. The diurnal variation in CH4 exchanges was strongly correlated with associated changes in the canopy conductance to water vapor, photosynthetic photon flux density, vapor pressure deficit, and air temperature. The absence of a comparable diurnal pattern in CH4 exchange over the Acacia plantation may be the result of the GWL being consistently below the root zone. Our results, which are among the first eddy covariance CH4 exchange data reported for any tropical peatland, should help to reduce the uncertainty in the estimation of CH4 emissions from a globally important ecosystem, provide a more complete estimate of the impact of land‐cover change on tropical peat, and develop science‐based peatland management practices that help to minimize greenhouse gas emissions.  相似文献   

17.
We investigated the effects of oxygen (O2) concentration on methane (CH4) production and oxidation in two humid tropical forests that differ in long‐term, time‐averaged soil O2 concentrations. We identified sources and sinks of CH4 through the analysis of soil gas concentrations, surface emissions, and carbon isotope measurements. Isotope mass balance models were used to calculate the fraction of CH4 oxidized in situ. Complementary laboratory experiments were conducted to determine the effects of O2 concentration on gross and net rates of methanogenesis. Field and laboratory experiments indicated that high levels of CH4 production occurred in soils that contained between 9±1.1% and 19±0.2% O2. For example, we observed CH4 concentrations in excess of 3% in soils with 9±1.1% O2. CH4 emissions from the lower O2 sites were high (22–101 nmol CH4 m?2 s?1), and were equal in magnitude to CH4 emissions from natural wetlands. During peak periods of CH4 efflux, carbon dioxide (CO2) emissions became enriched in 13C because of high methanogenic activity. Gross CH4 production was probably greater than flux measurements indicated, as isotope mass balance calculations suggested that 48–78% of the CH4 produced was oxidized prior to atmospheric egress. O2 availability influenced CH4 oxidation more strongly than methanogenesis. Gross CH4 production was relatively insensitive to O2 concentrations in laboratory experiments. In contrast, methanotrophic bacteria oxidized a greater fraction of total CH4 production with increasing O2 concentration, shifting the δ13C composition of CH4 to values that were more positive. Isotopic measurements suggested that CO2 was an important source of carbon for methanogenesis in humid forests. The δ13C value of methanogenesis was between ?84‰ and ?98‰, which is well within the range of CH4 produced from CO2 reduction, and considerably more depleted in 13C than CH4 formed from acetate.  相似文献   

18.
Increases in the concentrations of atmospheric greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) due to human activities are associated with global climate change. CO2 concentration in the atmosphere has increased by 33% (to 380 ppm) since 1750 ad, whilst CH4 concentration has increased by 75% (to 1,750 ppb), and as the global warming potential (GWP) of CH4 is 25 fold greater than CO2 it represents about 20% of the global warming effect. The purpose of this review is to: (a) address recent findings regarding biophysical factors governing production and consumption of CH4, (b) identify the current level of knowledge regarding the main sources and sinks of CH4 in Australia, and (c) identify CH4 mitigation options and their potential application in Australian ecosystems. Almost one-third of CH4 emissions are from natural sources such as wetlands and lake sediments, which is poorly documented in Australia. For Australia, the major anthropogenic sources of CH4 emissions include energy production from fossil fuels (~24%), enteric fermentation in the guts of ruminant animals (~59%), landfills, animal wastes and domestic sewage (~15%), and biomass burning (~5%), with minor contributions from manure management (1.7%), land use, land-use change and forestry (1.6%), and rice cultivation (0.2%). A significant sink exists for CH4 (~6%) in aerobic soils, including agricultural and forestry soils, and potentially large areas of arid soils, however, due to limited information available in Australia, it is not accounted for in the Australian National Greenhouse Gas Inventory. CH4 emission rates from submerged soils vary greatly, but mean values ≤10 mg m?2 h?1 are common. Landfill sites may emit CH4 at one to three orders of magnitude greater than submerged soils. CH4 consumption rates in non-flooded, aerobic agricultural, pastoral and forest soils also vary greatly, but mean values are restricted to ≤100 μg m?2 h?1, and generally greatest in forest soils and least in agricultural soils, and decrease from temperate to tropical regions. Mitigation options for soil CH4 production primarily relate to enhancing soil oxygen diffusion through water management, land use change, minimised compaction and soil fertility management. Improved management of animal manure could include biogas capture for energy production or arable composting as opposed to open stockpiling or pond storage. Balanced fertiliser use may increase soil CH4 uptake, reduce soil N2O emissions whilst improving nutrient and water use efficiency, with a positive net greenhouse gas (CO2-e) effect. Similarly, the conversion of agricultural land to pasture, and pastoral land to forestry should increase soil CH4 sink. Conservation of native forests and afforestation of degraded agricultural land would effectively mitigate CH4 emissions by maintaining and enhancing CH4 consumption in these soils, but also by reducing N2O emissions and increasing C sequestration. The overall impact of climate change on methanogenesis and methanotrophy is poorly understood in Australia, with a lack of data highlighting the need for long-term research and process understanding in this area. For policy addressing land-based greenhouse gas mitigation, all three major greenhouse gases (CO2, CH4 and N2O) should be monitored simultaneously, combined with improved understanding at process-level.  相似文献   

19.
Well‐drained forest soils are thought to be a significant sink for atmospheric methane. Recent research suggests that land use change reduces the soil methane sink by diminishing populations of methane oxidizing bacteria. Here we report soil CH4 uptake from ‘natural’ mature beech forests and from mature pine and spruce plantations in two study areas of Germany with distinct climate and soils. The CH4 uptake rates of both beech forests at Solling and Unterlüß were about two–three times the CH4 uptake rates of the adjacent pine and spruce plantations, indicating a strong impact of forest type on the soil CH4 sink. The CH4 uptake rates of sieved mineral soils from our study sites confirmed the tree species effect and indicate that methanotrophs were mainly reduced in the 0–5 cm mineral soil depth. The reasons for the reduction are still unknown. We found no site effect between Solling and Unterlüß, however, CH4 uptake rates from Solling were significantly higher at the same effective CH4 diffusivity. This potential site effect was masked by higher soil water contents at Solling. Soil pH (H2O) explained 71% of the variation in CH4 uptake rates of sieved mineral soils from the 0–5 cm depth, while cation exchange capacity, soil organic carbon, soil nitrogen and total phosphorous content were not correlated with CH4 uptake rates. Comparing 1998–99, annual CH4 uptake rates increased by 69–111% in the beech and spruce stands and by 5–25% in the pine stands, due primarily to differences in growing season soil moisture. Cumulative CH4 uptake rates from November throughout April were rather constant in both years. The CH4 uptake rates of each stand were separately predicted using daily average soil matric potential and a previously developed empirical model. The model results revealed that soil matric potential explains 53–87% of the temporal variation in CH4 uptake. The differences between measured and predicted annual CH4 uptake rates were less than 10%, except for the spruce stand at Solling in 1998 (17%). Based on data from this study and from the literature, we calculated a total reduction in the soil CH4 sink of 31% for German forests due in part to conversion of deciduous to coniferous forests.  相似文献   

20.
Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4) oxidation in well‐aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in‐situ soil–atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand ‘maturity’ (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0–0.05, 0.05–0.10, 0.10–0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south‐eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号