首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SRY (sex-determining region on the Y chromosome) is essential for male development; however, the molecular mechanism by which the SRY induces testis development is still unclear. To elucidate the mechanism of testis development, we identified SRY-interacting proteins using a yeast two-hybrid system. We found two ribosomal proteins, RPS7 (ribosomal protein S7) and RPL13a (ribosomal protein L13a) that interact with the HMG (high-mobility group) box domain of SRY. Furthermore, we confirmed the intracellular distributions of RPS7, RPL13a and SRY and found that the three proteins were co-expressed in COS1 cells. SRY, RPS7 and RPL13a were co-localized in nuclear speckles. These findings suggest that SRY plays an important role in activities associated with nuclear speckles via an unknown mechanism.  相似文献   

2.
3.
4.
人类性别决定和性别分化研究进展   总被引:3,自引:0,他引:3  
SRY基因在人类性别分化中起着关键作用,目前研究认为SRY仅是涉及性别决定过程的基因之一,其他基因和SRY相关基因SOX9,抗副中肾激素基因AMH,编码缁类因子的基因SF1,X-连锁的DAX基因,wilm‘s肿瘤抑制基因WT1等基因都参与了人类性腺分化和发育,本文拟就人类性别决定基因的研究进展及其与人类性别分化的关系作一综述。  相似文献   

5.
6.
7.
Summary— Asymmetric distribution of mRNA has been associated with polarisation and cell fate determination during early development of animal embryos. In this report we determine the distribution pattern of Zf-Sox 19 mRNA during early embryogenesis of zebrafish. Zf-Sox 19 mRNA is found in one pole of the embryo at the 8-cell stage and in the deep cell layer close to the yolk, perhaps under the influence of yolk determinants. Zf-Sox 19 is the earliest gene in zebrafish development whose RNA shows a restricted localisation. This result indicates that the first eight blastomeres are not equivalent in their molecular components.  相似文献   

8.
大熊猫SRY基因的PCR扩增和克隆   总被引:9,自引:0,他引:9  
张思仲  周荣家 《遗传学报》1994,21(4):281-286
本文采用人SRY基因的一对引物,通过PCR扩增获得了雄性大熊猫SRY基因片段。表明大熊猫存在与人SRY基因同源的相应基因,将PCR产物与载体pUC-Eco-T连接后,用以转化JM109菌,经过与人SRY基因探针菌落杂交筛选获得了大熊猫SRY苈在克隆,命名为pAMY0.6,其插入片段为相应于人SRY基因保守区在内的一段约609bpDNA。此外,还制作和比较分析了人和大熊猫基因片段的限制酶图谱。  相似文献   

9.
10.
11.
12.
Sex determination in the early developmental stages of dioecious crops is economically-beneficial. During this study, a human homology of SRY gene was successfully identified in dioecious crops. SRY gene sequences of date palm and jojoba were submitted to GenBank under the accession numbers KC577225 and MK991776, respectively. This is the first report regarding the novel sex-determination methodology of four dioecious plants (jojoba, date palm, papaya, and pistachios). SRY sex gene was found in all the tested dioecious plant and human samples. This novel approach is simple and of significant importance for breeders. It facilitates the unambiguous selection of jojoba and date palm female plants at an early age and reduces the plantation cost of cultivating non-productive male plants. This is a rapid sex-determination technique for dioecious plants and mammals at an early stage. This technique specifically targets the SRY sequence that has been comprehensively investigated in humans. The kit development for the SRY-based sex determination of various crops is in progress.  相似文献   

13.
14.
15.
16.
17.
It is known that inhibition of histone deacetylases (HDACs) leads to acetylation of the abundant protein chaperone hsp90. In a recent study, we have shown that knockdown of HDAC6 by a specific small interfering RNA leads to hyperacetylation of hsp90 and that the glucocorticoid receptor (GR), an established hsp90 "client" protein, is defective in ligand binding, nuclear translocation, and gene activation in HDAC6-deficient cells (Kovacs, J. J., Murphy, P. J. M., Gaillard, S., Zhao, X., Wu, J-T., Nicchitta, C. V., Yoshida, M., Toft, D. O., Pratt, W. B., and Yao, T-P. (2005) Mol. Cell 18, 601-607). Using human embryonic kidney wild-type and HDAC6 (small interfering RNA) knockdown cells transiently expressing the mouse GR, we show here that the intrinsic properties of the receptor protein itself are not affected by HDAC6 knockdown, but the knockdown cytosol has a markedly decreased ability to assemble stable GR.hsp90 heterocomplexes and generate stable steroid binding activity under cell-free conditions. HDAC6 knockdown cytosol has the same ability to carry out dynamic GR.hsp90 heterocomplex assembly as wild-type cytosol. Addition of purified hsp90 to HDAC6 knockdown cytosol restores stable GR.hsp90 heterocomplex assembly to the level of wild-type cytosol. hsp90 from HDAC6 knockdown cytosol has decreased ATP-binding affinity, and it does not assemble stable GR.hsp90 heterocomplexes when it is a component of a purified five-protein assembly system. Incubation of knockdown cell hsp90 with purified HDAC6 converts the hsp90 to wild-type behavior. Thus, acetylation of hsp90 results in dynamic GR.hsp90 heterocomplex assembly/disassembly, and this is manifest in the cell as a approximately 100-fold shift to the right in the steroid dose response for gene activation.  相似文献   

18.
利用PCR技术从北京黑白花奶牛(Bostaurus)的基因组DNA中克隆了SRY(Sex-determiningregionontheYchromosome)基因编码区全长序列。序列分析表明牛SRY基因的HMG区(Highmobilitygroup)呈现高度的保守性,与人、小鼠、猪等的相似性达到70%。将SRY基因与pET-28a( )载体相连,构建表达载体pET-28a/SRY;把该表达载体转入大肠杆菌BL21(DE3),以IPTG诱导30℃诱导4h,SRY蛋白可高效表达,表达产物占总蛋白量的26%。对表达产物进行了Western-blotting检测,并采用亲和层析技术获得了高纯度的牛SRY蛋白。通过PCR技术分别获得牛、人、鼠的苗勒氏管抑制物(MullerianInhibitingsubstances,MIS)启动子,凝胶阻滞试验证明,牛SRY蛋白可与人及牛的MIS启动子结合,但与鼠的Mis启动子不发生相互作用。  相似文献   

19.
Histone acetylation is an important epigenetic modification implicated in the regulation of chromatin structure and, subsequently, gene expression. Global histone deacetylation was reported in mouse oocytes during meiosis but not mitosis. The regulation of this meiosis-specific deacetylation has not been elucidated. Here, we demonstrate that p34(cdc2) kinase activity and protein synthesis are responsible for the activation of histone deacetylases and the inhibition of histone acetyltransferases (HATs), respectively, resulting in deacetylation of histone H4 at lysine-12 (H4K12) during mouse oocyte meiosis. Temporal changes in the acetylation state of H4K12 were examined immunocytochemically during meiotic maturation using an antibody specific for acetylated H4K12. H4K12 was deacetylated during the first meiosis, temporarily acetylated around the time of the first polar body (PB1) extrusion, and then deacetylated again during the second meiosis. Because these changes coincided with the known oscillation pattern of p34(cdc2) kinase activity, we investigated the involvement of the kinase in H4K12 deacetylation. Roscovitine, an inhibitor of cyclin-dependent kinase activity, prevented H4K12 deacetylation during both the first and second meiosis, suggesting that p34(cdc2) kinase activity is required for deacetylation during meiosis. In addition, cycloheximide, a protein synthesis inhibitor, also prevented deacetylation. After PB1 extrusion, at which time H4K12 had been deacetylated, H4K12 was re-acetylated in the condensed chromosomes by treatment with cycloheximide but not with roscovitine. These results demonstrate that HATs are present but inactivated by newly synthesized protein(s) that is (are) not involved in p34(cdc2) kinase activity. Our results suggest that p34(cdc2) kinase activity induces the deacetylation of H4K12 and that the deacetylated state is maintained by newly synthesized protein(s) that inhibits HAT activity during meiosis.  相似文献   

20.
Hua Su 《Autophagy》2018,14(6):1086-1087
PIK3C3/VPS34 (phosphatidylinositol 3-kinase catalytic subunit type 3) converts phosphatidylinositol (PtdIns) to phosphatidylinositol-3-phosphate (PtdIns3P), sustaining macroautophagy/autophagy and endosomal transport. So far, facilitating the assembly of the PIK3C3/VPS34-BECN1-PIK3R4/VPS15/p150 core complex at distinct membranes is the only known way to activate PIK3C3/VPS34 in cells. We have recently revealed a novel mechanism that regulates PIK3C3/VPS34 activation; cellular PIK3C3/VPS34 is repressed under nutrient-rich conditions by EP300/p300-mediated acetylation. Following nutrient-deprivation that drops EP300 activity, PIK3C3/VPS34 is liberated by deacetylation. Intriguingly, while deacetylation of the N-terminal K29 residue accounts for core complex formation, deacetylation at the C-terminal K771 site determines the binding of PIK3C3/VPS34 to its substrate PtdIns. In vitro and in cell evidence shows that EP300-dependent acetylation and deacetylation is a switch for turning off/on PIK3C3/VPS34 in which deacetylation of K771 is required for its full activation. This PIK3C3/VPS34 activation mechanism is utilized not only by starvation-induced autophagy but also by autophagy without the involvement of AMPK, MTORC1 or ULK1. These findings suggest an alternative circuit in cells for PIK3C3/VPS34 activation, which is involved in membrane transformations in response to metabolic and nonmetabolic cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号