首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta- galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.  相似文献   

2.
The RGG domain in hnRNP A2 affects subcellular localization   总被引:4,自引:0,他引:4  
The heterogeneous nuclear ribonucleoproteins (hnRNP) associate with pre-mRNA in the nucleus and play an important role in RNA processing and splice site selection. In addition, hnRNP A proteins function in the export of mRNA to the cytoplasm. Although the hnRNP A proteins are predominantly nuclear, hnRNP A1 shuttles rapidly between the nucleus and the cytoplasm. HnRNP A2, whose cytoplasmic overexpression has been identified as an early biomarker of lung cancer, has been less well studied. Cytosolic hnRNP A2 overexpression has also been noted in brain tumors, in which it has been correlated with translational repression of Glucose Transporter-1 expression. We now examine the role of arginine methylation on the nucleocytoplasmic localization of hnRNP A2 in the HEK-293 and NIH-3T3 mammalian cell lines. Treatment of either cell line with the methyltransferase inhibitor adenosine dialdehyde dramatically shifts hnRNP A2 localization from the nuclear to the cytoplasmic compartment, as shown both by immunoblotting and by immunocytochemistry. In vitro radiolabeling with [(3)H]AdoMet of GST-tagged hnRNP A2 RGG mutants, using recombinant protein arginine methyltransferase (PRMT1), shows (i) that hnRNP A2 is a substrate for PRMT1 and (ii) that methylated residues are found only in the RGG domain. Deletion of the RGG domain (R191-G253) of hnRNP A2 results in a cytoplasmic localization phenotype, detected both by immunoblotting and by immunocytochemistry. These studies indicate that the RGG domain of hnRNP A2 contains sequences critical for cellular localization of the protein. The data suggest that hnRNP A2 may contain a novel nuclear localization sequence, regulated by arginine methylation, that lies in the R191-G253 region and may function independently of the M9 transportin-1-binding region in hnRNP A2.  相似文献   

3.
We characterized the Arabidopsis orthologue of the human nuclear import receptor transportin1 (TRN1). Like the human receptor, Arabidopsis TRN1 recognizes nuclear import signals on proteins that are different from the classical basic nuclear localization signals. The M9 domain of human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is the prototype of such signals. We show that AtTRN1 binds to similar domains in hnRNP-like proteins from plants. AtTRN1 also interacts with human hnRNP A1 and with yeast Nab2p, two classical import cargo proteins of transportin in these organisms. Like all nuclear transport receptors of the importin-beta family, AtTRN1 binds to the regulatory GTPase Ran from Arabidopsis. We demonstrated that the amino terminus of AtTRN1 is necessary for this interaction. Recombinant AtTRN1 conferred nuclear import of fluorescently labelled BSA-M9 peptide conjugates in permeabilized HeLa cells, functionally replacing human TRN1 in these in vitro nuclear import assays. We identified three plant substrate proteins that interact with AtTRN1 and contain M9-like domains: a novel Arabidopsis hnRNP that shows high similarity to human hnRNP A1 and two small RNA-binding proteins from Arabidopsis, AtGRP7 and AtGRP8. Nuclear import activity of the M9-like domains of these plant proteins was demonstrated in vivo by their ability to confer partial nuclear re-localisation of a GFP fusion protein containing a nuclear export signal. In addition, fluorescently labelled AtGRP7 was specifically imported into nuclei of permeabilized HeLa cells by Arabidopsis AtTRN1 and human TRN1. These results suggest that the transportin-mediated nuclear import pathway is highly conserved between man, yeast and plants.  相似文献   

4.
HnRNP A2 is an RNA trafficking protein that binds to a specific cis -acting RNA trafficking element (A2RE) in myelin basic protein RNA and other transported RNAs. A2RE/hnRNPA2 determinants mediate several different steps in RNA trafficking including granule assembly, transport to the plus ends of microtubules and translational activation. A yeast two hybrid screen designed to identify proteins that interact with hnRNP A2 selected a clone corresponding to the carboxyl terminal portion of TOG (tumor overexpressed gene), a microtubule-associated protein that regulates microtubule dynamics. Co-immunostaining of oligodendrocytes with antibody to hnRNPA2 and TOG revealed extensive colocalization of TOG with hnRNP A2 granules in the dendrites. A small population of hnRNP A2 granules lacked TOG and some regions of TOG staining lacked hnRNP A2. In oligodendrocytes injected with fluorescent A2RE RNA and stained for TOG, granules containing fluorescent RNA colocalized with TOG. Co-injection of anti-TOG antibody with fluorescent A2RE RNA decreased colocalization with TOG and increased transport of the injected RNA. These observations suggest that molecular interaction between hnRNP A2 and TOG serves to anchor A2RE mRNAs/hnRNPA2 granules at plus ends of microtubules.
Acknowledgements:   Supported by NIH NS19943 (EB) and NS15190 (JHC), and NMSS RG2843 (EB).  相似文献   

5.
HnRNP A2 is an RNA trafficking protein that binds to a specific cis‐acting RNA trafficking element (A2RE) in myelin basic protein RNA and other transported RNAs. A2RE/hnRNPA2 determinants mediate several different steps in RNA trafficking including granule assembly, transport to the plus ends of microtubules and translational activation. A yeast two hybrid screen designed to identify proteins that interact with hnRNP A2 selected a clone corresponding to the carboxyl terminal portion of TOG (tumor overexpressed gene), a microtubule‐associated protein that regulates microtubule dynamics. Co‐immunostaining of oligodendrocytes with antibody to hnRNPA2 and TOG revealed extensive colocalization of TOG with hnRNP A2 granules in the dendrites. A small population of hnRNP A2 granules lacked TOG and some regions of TOG staining lacked hnRNP A2. In oligodendrocytes injected with fluorescent A2RE RNA and stained for TOG, granules containing fluorescent RNA colocalized with TOG. Co‐injection of anti‐TOG antibody with fluorescent A2RE RNA decreased colocalization with TOG and increased transport of the injected RNA. These observations suggest that molecular interaction between hnRNP A2 and TOG serves to anchor A2RE mRNAs/hnRNPA2 granules at plus ends of microtubules. Acknowledgements: Supported by NIH NS19943 (EB) and NS15190 (JHC), and NMSS RG2843 (EB).  相似文献   

6.
To investigate the functional role of the nonhelical domains of the intermediate filament (IF) protein vimentin, we carried out transient transfection of constructs encoding fusion proteins of these domains with enhanced green fluorescent protein (EGFP). Expression of these fusion proteins did not have any effect on the endogenous IF networks of transfected cells. However, the head domain-EGFP fusion protein localized almost exclusively to the nucleus. This localization could be disrupted in a reversible fashion by chilling cells. Furthermore, the head domain was capable of targeting to the nucleus a strictly cytoplasmic protein, pyruvate kinase. Thus, the vimentin head domain contains information that specifically directs proteins into the nucleus. In contrast, the nonhelical tail domain of vimentin, when expressed as a fusion protein with EGFP, was retained in the cytoplasm. Cytoplasmic retention of tail domain-containing fusion proteins appeared to be dependent on the integrity of the microtubule network. Our results are consistent with a proposal that the nonhelical end domains of vimentin are involved in maintaining an extended IF network by exerting oppositely directed forces along the filaments. The head domains exert a nuclear-directed force while the tail domains extend the IF network toward the cell periphery via a microtubule-dependent mechanism.  相似文献   

7.
Several membrane-associating signals, including covalently linked fatty acids, are found in various combinations at the N termini of signaling proteins. The function of these combinations was investigated by appending fatty acylated N-terminal sequences to green fluorescent protein (GFP). Myristoylated plus mono/dipalmitoylated GFP chimeras and a GFP chimera containing a myristoylated plus a polybasic domain were localized similarly to the plasma membrane and endosomal vesicles, but not to the nucleus. Myristoylated, nonpalmitoylated mutant chimeric GFPs were localized to intracellular membranes, including endosomes and the endoplasmic reticulum, and were absent from the plasma membrane, the Golgi, and the nucleus. Dually palmitoylated GFP was localized to the plasma membrane and the Golgi region, but it was not detected in endosomes. Nonacylated GFP chimeras, as well as GFP, showed cytosolic and nuclear distribution. Our results demonstrate that myristoylation is sufficient to exclude GFP from the nucleus and associate with intracellular membranes, but plasma membrane localization requires a second signal, namely palmitoylation or a polybasic domain. The similarity in localization conferred by the various myristoylated and palmitoylated/polybasic sequences suggests that biophysical properties of acylated sequences and biological membranes are key determinants in proper membrane selection. However, dual palmitoylation in the absence of myristoylation conferred significant differences in localization, suggesting that multiple palmitoylation sites and/or enzymes may exist.  相似文献   

8.
Elevated concentrations of carcinoembryonic antigen (CEA) in the blood are associated with the development of hepatic metastases from colorectal cancers. Clearance of circulating CEA occurs through endocytosis by liver macrophages, Kupffer cells. Previously we identified heterogeneous nuclear ribonucleoproteins M4 (hnRNP M4) as a receptor (CEAR) for CEA. HnRNP M4 has two isoform proteins (p80, p76), the full-length hnRNP M4 (CEARL) and a truncated form (CEARS) with a deletion of 39 amino acids between RNA binding domains 1 and 2, generated by alternative splicing. The present study was undertaken to clarify any isoform-specific differences in terms of their function as CEA receptor and localization. We develop anti-CEAR isoform-specific antibodies and show that both CEAR splicing isoforms are expressed on the surface of Kupffer cells and can function as CEA receptor. Alternatively, in P388D1 macrophages CEARS protein has nuclear and CEARL has cytoplasmic localization. In MIP101 colon cancer and HeLa cells the CEARS protein is localized to the nucleus and CEARL to the cytoplasm. These findings imply that different functions are assigned to CEAR isoforms depending on the cell type. The search of 39 amino acids deleted region against the Prosite data base revealed the presence of N-myristylation signal PGGPGMITIP that may be involved in protein targeting to the plasma membrane. Overall, this report demonstrates that the cellular distribution, level of expression, and relative amount of CEARL and CEARS isoforms determine specificity for CEA binding and the expression of alternative spliced forms of CEAR is regulated in a tissue-specific manner.  相似文献   

9.
More than 20 different heterogeneous nuclear ribonucleoproteins (hnRNPs) are associated with pre-mRNAs in the nucleus of mammalian cells and these proteins appear to influence pre-mRNA processing and other aspects of mRNA metabolism and transport. The arrangement of hnRNP proteins on pre-mRNAs is likely to be unique for each RNA and may be determined by the different RNA-binding preferences of each of these proteins. hnRNP F (M(r) = 53 kD, pI = 6.1) and hnRNP H (M(r) = 56 kD, pI = 6.7-7.1) are abundant components of immunopurified hnRNP complexes and they have distinct nucleic acid binding properties. Unlike other hnRNP proteins which display a varying range of affinities for different ribonucleotidehomopolymers and ssDNA, hnRNP F and hnRNP H bind only to poly(rG) in vitro. hnRNP F and hnRNP H were purified from HeLa cells by poly(rG) affinity chromatography and oligonucleotides derived from peptide sequences were used to isolate a cDNA encoding hnRNP F. The predicted amino acid sequence of hnRNP F revealed a novel protein with three repeated domains related to the RNP consensus sequence RNA-binding domain. Monoclonal antibodies produced against bacterially expressed hnRNP F were specific for both hnRNP F and hnRNP H and recognized related proteins in divergent organisms, including in the yeast Saccharomyces cerevisiae. hnRNP F and hnRNP H are thus highly related immunologically and they share identical peptides. Interestingly, immunofluorescence microscopy revealed that hnRNP F and hnRNP H are concentrated in discrete regions of the nucleoplasm, in contrast to the general nucleoplasmic distribution of previously characterized hnRNP proteins. The unique RNA-binding properties, amino acid sequence and distinct intranuclear localization of hnRNP F and hnRNP H make them novel hnRNP proteins that are likely to be important for the processing of RNAs containing guanosine-rich sequences.  相似文献   

10.
Trafficking of mRNA molecules from the nucleus to distal processes in neural cells is mediated by heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 trans‐acting factors. Although hnRNP A2/B1 is alternatively spliced to generate four isoforms, most functional studies have not distinguished between these isoforms. Here, we show, using isoform‐specific antibodies and isoform‐specific green fluorescent protein (GFP)‐fusion expression constructs, that A2b is the predominant cytoplasmic isoform in neural cells, suggesting that it may play a key role in mRNA trafficking. The differential subcellular distribution patterns of the individual isoforms are determined by the presence or absence of alternative exons that also affect their dynamic behavior in different cellular compartments, as measured by fluorescence correlation spectroscopy. Expression of A2b is also differentially regulated with age, species and cellular development. Furthermore, coinjection of isoform‐specific antibodies and labeled RNA into live oligodendrocytes shows that the assembly of RNA granules is impaired by blockade of A2b function. These findings suggest that neural cells modulate mRNA trafficking by regulating alternative splicing of hnRNP A2/B1 and controlling expression levels of A2b, which may be the predominant mediator of cytoplasmic‐trafficking functions. These findings highlight the importance of considering isoform‐specific functions for alternatively spliced proteins.  相似文献   

11.
12.
13.
RGS proteins comprise a family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. Biochemical studies suggest that members of this protein family act as GTPase-activating proteins for certain Galpha subunits, thereby accelerating the turn-off mechanism of Galpha and terminating signaling by both Galpha and Gbetagamma subunits. In the present study, we used confocal microscopy to examine the intracellular distribution of several RGS proteins in COS-7 cells expressing RGS-green fluorescent protein (GFP) fusion proteins and in cells expressing RGS proteins endogenously. RGS2 and RGS10 accumulated in the nucleus of COS-7 cells transfected with GFP constructs of these proteins. In contrast, RGS4 and RGS16 accumulated in the cytoplasm of COS-7 transfectants. As observed in COS-7 cells, RGS4 exhibited cytoplasmic localization in mouse neuroblastoma cells, and RGS10 exhibited nuclear localization in human glioma cells. Deletion or alanine substitution of an N-terminal leucine repeat motif present in both RGS4 and RGS16, a domain identified as a nuclear export sequence in HIV Rev and other proteins, promoted nuclear localization of these proteins in COS-7 cells. In agreement with this observation, treatment of mouse neuroblastoma cells with leptomycin B to inhibit nuclear protein export by exportin1 resulted in accumulation of RGS4 in the nucleus of these cells. GFP fusions of RGS domains of RGS proteins localized in the nucleus, suggesting that nuclear localization of RGS proteins results from nuclear targeting via RGS domain sequences. RGSZ, which shares with RGS-GAIP a cysteine-rich string in its N-terminal region, localized to the Golgi complex in COS-7 cells. Deletion of the N-terminal domain of RGSZ that includes the cysteine motif promoted nuclear localization of RGSZ. None of the RGS proteins examined were localized at the plasma membrane. These results demonstrate that RGS proteins localize in the nucleus, the cytoplasm, or shuttle between the nucleus and cytoplasm as nucleo-cytoplasmic shuttle proteins. RGS proteins localize differentially within cells as a result of structural differences among these proteins that do not appear to be important determinants for their G protein-regulating activities. These findings suggest involvement of RGS proteins in more complex cellular functions than currently envisioned.  相似文献   

14.
15.
16.
We identified heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2, hnRNP A1, the translocase of the transporter outer membrane 40 (TOM40), and α‐tubulin as new interaction partners of anti‐apoptotic protein p35 using MS‐based functional proteomics with GST‐p35 fusion protein as a bait, and using a pull‐down assay with p35‐6His followed by Western blot analysis. p35 was localized in the cytoplasm and in distinct organelles such as the nucleus and mitochondria. p35 was more abundant in the cytoplasm than it was in the nucleus. It co‐localized with α‐tubulin in the cytoplasm in the absence of a death stimulus. However, while cells were undergoing death induced by actinomycin D, cytoplasmic p35 was translocated into the nucleus; this process was inhibited by deletions of the N‐ and C‐terminal domains containing leucine‐rich motifs. Gene delivery of p35 using recombinant adenoviruses inhibited cytoplasmic compartmentalization of hnRNP C1/C2 and hnRNP A1 in dying cells. This study demonstrated translocation of p35 into the nuclei, as well as protection of the hnRNPs from redistribution in cells undergoing death. We propose an active role for p35 in maintaining the integrity of nuclear proteins during cell death.  相似文献   

17.
Shi ST  Yu GY  Lai MM 《Journal of virology》2003,77(19):10584-10593
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 has previously been shown to bind mouse hepatitis virus (MHV) RNA at the 3' end of both plus and minus strands and modulate MHV RNA synthesis. However, a mouse erythroleukemia cell line, CB3, does not express hnRNP A1 but still supports MHV replication, suggesting that alternative proteins can replace hnRNP A1 in cellular functions and viral infection. In this study, we set out to identify these proteins. UV cross-linking experiments revealed that several CB3 cellular proteins similar in size to hnRNP A1 interacted with the MHV RNA. These proteins were purified by RNA affinity column with biotinylated negative-strand MHV leader RNA and identified by mass spectrometry to be hnRNP A2/B1, hnRNP A/B, and hnRNP A3, all of which belong to the type A/B hnRNPs. All of these proteins contain amino acid sequences with strong similarity to the RNA-binding domains of hnRNP A1. Some of these hnRNPs have previously been shown to replace hnRNP A1 in regulating RNA splicing. These proteins displayed MHV RNA-binding affinity and specificity similar to those of hnRNP A1. hnRNP A2/B1, which is predominantly localized to the nucleus and shuttles between the nucleus and the cytoplasm, was shown to relocalize to the cytoplasm in MHV-infected CB3 cells. Furthermore, overexpression of hnRNP A/B in cells enhanced MHV RNA synthesis. Our findings demonstrate that the functions of hnRNP A1 in MHV RNA synthesis can be replaced by other closely related hnRNPs, further supporting the roles of cellular proteins in MHV RNA synthesis.  相似文献   

18.
19.
20.
Heterogeneous nuclear RNA-ribonucleoprotein (hnRNP) fractions were isolated from Friend erythroleukemia cells and separated by 15-45% sucrose gradient centrifugation. The distribution of small nuclear RNAs (snRNAs) in hnRNP fractions indicated that the snRNAs are associated with hnRNP particles. HnRNP fractions were incubated with normal IgG or anti-U1 RNP IgG, and the resulting immunocomplexes were isolated by binding to a protein A-Sepharose column. HnRNP was found in bound fractions only when anti-U1 RNP IgG was used. By Northern hybridization of RNA extracted from the immunocomplexes with a beta-globin genomic DNA probe, 15S beta-globin mRNA precursors and 10S mature mRNA were detected. These findings suggest the existence of a complex of U1 RNP particles and hnRNP particles containing beta-globin pre-mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号