首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human indoleamine 2,3-dioxygenase (HuIDO) baculoviral construct, for expression of HuIDO protein with a hexa-histidine and FLAG (DYKDDDDK) tag, was produced using the BacPAK Baculovirus Expression System. HuIDO baculovirus was used to infect Sf21 insect cells to produce functionally active protein in large amounts. Conditions for protein purification by metal affinity chromatography were determined and optimized. Addition of haemin ensured optimal activity of the purified heme-containing oxygenase. The soluble purified protein was used to immunize a chicken to produce large quantities of polyclonal IgY against HuIDO. The anti-HuIDO IgY antibody specifically detected HuIDO produced by a range of cell types including transfectants and native HuIDO expression induced in IFN-gamma-stimulated cells. The antibody detected HuIDO in cell lysates by western blotting and in the cytoplasm of cells by microscopy. The antibody was unable to block the function of the enzyme, indicating that this antibody binds outside the active site of HuIDO.  相似文献   

2.
In order to obtain the recombinant human PACAP efficiently by intein-mediated single column purification, a gene encoding human PACAP was synthesized and cloned into Escherichia coli expression vector pKYB. The recombinant vector pKY-PAC was transferred into E. coli ER2566 cells and the target protein was over-expressed as  相似文献   

3.
A 33-kDa alkaline serine protease secreted by Penicillium citrinum strain 52-5 is shown to be an allergenic agent in this fungus. The protein, designated Pen c 1, was purified by sequential DEAE-Sepharose and carboxymethyl (CM)-Sepharose chromatographies. Pen c 1 has a molecular mass of 33 kDa and a pI of 7.1. The caseinolytic enzyme activity of this protein was studied. The protein binds to serum IgE from patients allergic to Penicillium citrinum. The cDNA encoding Pen c 1 is 1420 bp in length and contains an open reading frame for a 397-amino-acid polypeptide. Pen c 1 codes for a larger precursor containing a signal peptide, a propeptide and the 33-kDa mature protein. Sequence comparison revealed that Pen c 1 possesses several features in common with the alkaline serine proteases of the subtilisin family. The essential Asp, His, and Ser residues that make up the catalytic triad of serine proteases are well conserved. Northern blots demonstrated that mRNAs transcribed from this gene are present at early stages of culture. The allergen encoded by Pen c 1 gene was expressed in Escherichia coli as a fusion protein bearing an N-terminal histidine-affinity tag. The protein, purified by affinity chromatography with a yield of 130 mg of pure protein per liter of culture, was able to bind to both a monoclonal anti-Pen c 1 antibody and IgE from the serum of patients allergic to Penicillium. Recombinant Pen c 1 can therefore be expressed in E. coli in large quantities and should prove useful as a standardized specific allergen for immuno-diagnosis of atopic disorders. In addition, full caseinolytic enzyme activity could be generated in the purified recombinant protein by sulfonation and renaturation, followed by removal of the affinity tag, indicating that the refolded protein can assume the same conformation as the native protein.  相似文献   

4.
Stereospecificity of hepatic L-tryptophan 2,3-dioxygenase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Tryptophan 2,3-dioxygenase [L-tryptophan--oxygen 2,3-oxidoreductase (decyclizing), EC 1.13.11.11] has been reported to act solely on the L-isomer of tryptophan. However, by using a sensitive assay method with D- and L-[ring-2-14C]tryptophan and improved assay conditions, we were able to demonstrate that both the D- and L-stereoisomers of tryptophan were cleaved by the supernatant fraction (30000 g, 30 min) of liver homogenates of several species of mammals, including rat, mouse, rabbit and human. The ratio of activities toward D- and L-tryptophan was species variable, the highest (0.67) in ox liver and the lowest (0.07) in rat liver, the latter being hitherto exclusively used for the study of hepatic tryptophan 2,3-dioxygenase. In the supernatant fraction from mouse liver, the ratio was 0.23 but the specific activity with D-tryptophan was by far the highest of all the species tested. To identify the D-tryptophan cleaving enzyme activity, the enzyme was purified from mouse liver to apparent homogeneity. The specific activities toward D- and L-tryptophan showed a parallel rise with each purification step. The electrophoretically homogeneous protein had specific activities of 0.55 and 2.13 mumol/min per mg of protein at 25 degrees C toward D- and L-tryptophan, respectively. Additional evidence from heat treatment, inhibition and kinetic studies indicated that the same active site of a single enzyme was responsible for both activities. The molecular weight (150000), subunit structure (alpha 2 beta 2) and haem content (1.95 mol/mol) of the purified enzyme from mouse liver were similar to those of rat liver tryptophan 2,3-dioxygenase. The assay conditions employed in the previous studies on the stereospecificity of hepatic tryptophan 2,3-dioxygenase were apparently inadequate for determination of the D-tryptophan cleaving activity. Under the assay conditions in the present study, the purified enzyme from rat liver also acted on D-tryptophan, whereas the pseudomonad enzyme was strictly specific for the L-isomer.  相似文献   

5.
6.
Human cytomegalovirus protease (CMV PR) is a target for the development of antiviral therapeutics. To obtain large amounts of native protease, a 268-amino-acid polypeptide with a hexahistidinyl tag at the C terminus was expressed inEscherichia coli.The first 262 amino acids of the recombinant protein were identical to the amino acid sequence of native CMV PR, except for mutations introduced at the internal cleavage site to eliminate autoproteolysis at that site. The hexahistidinyl tag was placed downstream of amino acid 262 of the native CMV PR sequence. In this design, the Ala-Ser bond at amino acids 256–257 constitutes a site naturally cleaved by the protease during capsid maturation. The 268-amino-acid polypeptide with the (His)6tag was expressed at high levels inE. colias inclusion bodies. After solubilization of the inclusion bodies, the protease was purified to homogeneity by a single step using Ni2+affinity chromatography. The protease was refolded to an active enzyme using dialysis which leads to effective autocleavage of the Ala-Ser bond at amino acids 256–257 to remove 12 amino acids including the (His)6tag from the C terminus of the protein. This strategy yielded large amounts of highly purified CMV PR with the native N terminus and C terminus. Approximately 40 mg of purified CMV PR was obtained per liter of cell culture using this strategy. The enzymatic activity of CMV PR purified from inclusion bodies and refolded to an active enzyme was similar to the enzymatic activity of CMV PR expressed as a soluble protein inE. coli.In addition, the refolded CMV PR could be crystallized for X-ray diffraction.  相似文献   

7.
The hemoprotein indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in mammalian tryptophan metabolism. It has received considerable attention in recent years, particularly due to its role in the pathogenesis of many diseases. Here, we report attempts to improve soluble expression and purification of hexahistidyl-tagged recombinant human IDO from Escherichia coli (EC538, pREP4, and pQE9-IDO). Significant formation of inclusion bodies was noted at the growth temperature of 37 degrees C, with reduced formation at 30 degrees C. The addition of the natural biosynthetic precursor of protoporphrin IX, delta-aminolevulinic acid (ALA), coupled with optimisation of IPTG induction levels during expression at 30 degrees C and purification by nickel-agarose and size exclusion chromatography, resulted in protein with 1 mol of heme/mol of protein and a specific activity of 160 micromol of kynurenine/h/mg of protein (both identical to native human IDO). The protein was homogeneous in terms of electrophoretic analysis. Yields of soluble protein (3-5 mg/L of bacterial culture) and heme content are greater than previously reported.  相似文献   

8.
Prolidase is a Mn(2+)-dependent dipeptidase that cleaves imidodipeptides containing C-terminal proline or hydroxyproline. In humans, a lack of prolidase activity causes prolidase deficiency, a rare autosomal recessive disease, characterized by a wide range of clinical outcomes, including severe skin lesions, mental retardation, and infections of the respiratory tract. In this study, recombinant prolidase was produced as a fusion protein with an N-terminal histidine tag in eukaryotic and prokaryotic hosts and purified in a single step using immobilized metal affinity chromatography. The enzyme was characterized in terms of activity against different substrates, in the presence of various bivalent ions, in the presence of the strong inhibitor Cbz-Pro, and at different temperatures and pHs. The recombinant enzyme with and without a tag showed properties mainly indistinguishable from those of the native prolidase from fibroblast lysate. The protein yield was higher from the prokaryotic source, and a detailed long-term stability study of this enzyme at 37 degrees C was therefore undertaken. For this analysis, an 'on-column' digestion of the N-terminal His tag by Factor Xa was performed. A positive effect of Mn(2+) and GSH in the incubation mixture and high stability of the untagged enzyme are reported. Poly(ethylene glycol) and glycerol had a stabilizing effect, the latter being the more effective. In addition, no significant degradation was detected after up to 6 days of incubation with cellular lysate. Generation of the prolidase in Escherichia coli, because of its high yield, stability, and similarity to native prolidase, appears to be the best approach for future structural studies and enzyme replacement therapy.  相似文献   

9.
In this report, we describe some of the characteristics of the Comamonas testosteroni B-356 biphenyl (BPH)-chlorobiphenyl dioxygenase system, which includes the terminal oxygenase, an iron-sulfur protein (ISPBPH) made up of an alpha subunit (51 kDa) and a beta subunit (22 kDa) encoded by bphA and bphE, respectively; a ferredoxin (FERBPH; 12 kDa) encoded by bphF; and a ferredoxin reductase (REDBPH; 43 kDa) encoded by bphG. ISPBPH subunits were purified from B-356 cells grown on BPH. Since highly purified FERBPH and REDBPH were difficult to obtain from strain B-356, these two components were purified from recombinant Escherichia coli strains by using the His tag purification system. These His-tagged fusion proteins were shown to support BPH 2,3-dioxygenase activity in vitro when added to preparations of ISPBPH in the presence of NADH. FERBPH and REDBPH are thought to pass electrons from NADH to ISPBPH, which then activates molecular oxygen for insertion into the aromatic substrate. The reductase was found to contain approximately 1 mol of flavin adenine dinucleotide per mol of protein and was specific for NADH as an electron donor. The ferredoxin was found to contain a Rieske-type [2Fe-2S] center (epsilon 460, 7,455 M-1 cm-1) which was readily lost from the protein during purification and storage. In the presence of REDBPH and FERBPH, ISPBPH was able to convert BPH into both 2,3-dihydro-2,3-dihydroxybiphenyl and 3,4-dihydro-3,4-dihydroxybiphenyl. The significance of this observation is discussed.  相似文献   

10.
As a novel attempt for the intracellular recombinant protein over expression and easy purification from Pichia pastoris, the therapeutic cytokine human granulocyte macrophage colony stimulating factor (hGMCSF) gene was fused to an intein-chitin-binding domain (gene from pTYB11 vector) fusion tag by overlap extension PCR and inserted into pPICZB vector, allowing for the purification of a native recombinant protein without the need for enzymatic cleavage. The fusion protein under the AOX1 promoter was integrated into the P. pastoris genome (SMD 1168) and the recombinant Pichia clones were screened for multicopy integrants. Expression of hGMCSF was done using glycerol and methanol based synthetic medium by three stage cultivation in a bioreactor. Purification of the expressed hGMCSF fusion protein was done after cell disruption and binding of the solubilized fusion protein to chitin affinity column, followed by DTT induced on column cleavage of hGMCSF from the intein tag. In this study, final biomass of 89 g dry cell weight/l and purified hGMCSF of 120 mg/l having a specific activity of 0.657 x 10(7) IU/mg was obtained. This strategy has an edge over the other--His or--GST based fusion protein purification where non-specific protein binding, expensive enzymatic cleavage and further purification of the enzyme is required. It distinguishes itself from all other purification systems by its ability to purify, in a single chromatographic step.  相似文献   

11.
The conversion of glucose into glucose 6-phosphate (Glc 6-P)1 traps glucose in a chemical state in which it cannot leave the cell and hence commits glucose to metabolism. In human tissues there are at least three hexokinase isoenzymes responsible for hexose phosphorylation. These enzymes are constituted by a single polypeptide chain with a molecular weight of approximately 100 kDa. Among these isoenzymes, hexokinase type I is the most widely expressed in mammalian tissues and shows reversion of Glc 6-P inhibition by physiological levels of inorganic phosphate. In this work the hexokinase I from human brain was overexpressed in Escherichia coli, as a hexahistidine-tagged protein with the tag extending the C-terminal end. An average of 900 U per liter of culture was obtained. The expressed protein was one-step purified by metal chelate affinity chromatography performed in NTA-agarose column charged with Ni(2+) ions. In order to stabilize the enzymatic activity 0.5 M ammonium sulfate was added to elution buffer. The specific activity of purified hexokinase I was 67.8 U/mg. The recombinant enzyme shows kinetic properties in agreement with those described for the native enzyme, and thus it can be used for biophysical and biochemical investigation.  相似文献   

12.
Human flotillin-1 (reggie-2), a major hydrophobic protein of biomembrane microdomain lipid rafts, was cloned and expressed in Escherichia coli with four different fusion tags (hexahistidine, glutathione S-transferase, NusA, and thioredoxin) to increase the yield. The best expressed flotillin-1 with thioredoxin tag was solubilized from inclusion bodies, first purified by immobilized metal affinity column under denaturing condition and direct refolded on column by decreasing urea gradient method. The thioredoxin tag was cleaved by thrombin, and the flotillin-1 protein was further purified by anion exchanger and gel filtration column. The purified protein was verified by denaturing gel electrophoresis and Western blot. The typical yield was 3.4 mg with purity above 98% from 1L culture medium. Using pull-down assay, the interaction of both the recombinant flotillin-1 and the native flotillin-1 from human erythrocyte membranes with c-Cbl-associated protein or neuroglobin was confirmed, which demonstrated that the recombinant proteins were functional active. This is the first report describing expression, purification, and characterization of active recombinant raft specific protein in large quantity and highly purity, which would facilitate further research such as X-ray crystallography.  相似文献   

13.
Cysteine dioxygenase (CDO, EC 1.13.11.20) catalyzes the oxidation of cysteine to cysteine sulfinic acid, which is the first major step in cysteine catabolism in mammalian tissues. Rat liver CDO was cloned and expressed in Escherichia coli as a 26.8-kDa N-terminal fusion protein bearing a polyhistidine tag. Purification by immobilized metal affinity chromatography yielded homogeneous protein, which was catalytically active even in the absence of the secondary protein-A, which has been reported to be essential for activity in partially purified native preparations. As compared with those existing purification protocols for native CDO, the milder conditions used in the isolation of the recombinant CDO allowed a more controlled study of the properties and activity of CDO, clarifying conflicting findings in the literature. Apo-protein was inactive in catalysis and was only activated by iron. Metal analysis of purified recombinant protein indicated that only 10% of the protein contained iron and that the iron was loosely bound to the protein. Kinetic studies showed that the recombinant enzyme displayed a K(m) value of 2.5 +/- 0.4 mm at pH 7.5 and 37 degrees C. The enzyme was shown to be specific for l-cysteine oxidation, whereas homocysteine inhibited CDO activity.  相似文献   

14.
To devise an efficient approach for production of human hemangiopoietin (hHAPO), the gene of hHAPO was synthesized and subcloned into the pSUMO vector with a SUMO tag at the N-terminus. The expression construct was then transformed into the expression strain E. coli BL21(DE3). The fusion protein was expressed in soluble form and identified by SDS-PAGE and Western blotting. The fusion protein was purified to 90% purity by metal chelate chromatography with a yield of 45 mg per liter fermentation culture. The SUMO tag was removed by cleavage with SUMO protease at room temperature for 1 h, and the hHAPO was then re-purified by the metal chelate chromatography. Finally, about 21 mg hHAPO was obtained from 1 liter of fermentation culture with no less than 95% purity. The recombinant hHAPO significantly stimulated the proliferation of human umbilical vein endothelial cells.  相似文献   

15.
Formation of pyropheophorbide (PyroPheid) during chlorophyll metabolism in some higher plants has been shown to involve the enzyme pheophorbidase (PPD). This enzyme catalyzes the conversion of pheophorbide (Pheid) a to a precursor of PyroPheid, C-13(2)-carboxylPyroPheid a, by demethylation, and then the precursor is decarboxylated non-enzymatically to yield PyroPheid a. In this study, expression, purification, and biochemical characterization of recombinant PPD from radish (Raphanus sativus L.) were performed, and its properties were compared with those of highly purified native PPD. Recombinant PPD was produced using a glutathione S-transferase (GST) fusion system. The PPD and GST genes were fused to a pGEX-2T vector and expressed in Escherichia coli under the control of a T7 promoter as a fusion protein. The recombinant PPD-GST was expressed as a 55 kDa protein as measured by SDS-PAGE and purified by single-step affinity chromatography through a GSTrap FF column. PPD-GST was purified to homogeneity with a yield of 0.42 mg L(-1) of culture. The protein purified by this method was confirmed to be PPD by measuring its activity. The purified PPD-GST fusion protein revealed potent catalytic activity for demethylation of the methoxycarbonyl group of Pheid a and showed a pH optimum, substrate specificity, and thermal stability quite similar to the native enzyme purified from radish, except for the Km values toward Pheid a: 95.5 microM for PPD-GST and about 15 microM for native PPDs.  相似文献   

16.
A bacterial strain that grew on 4-amino-3-hydroxybenzoic acid was isolated from farm soil. The isolate, strain 10d, was identified as a species of Bordetella. Cell extracts of Bordetella sp. strain 10d grown on 4-amino-3-hydroxybenzoic acid contained an enzyme that cleaved this substrate. The enzyme was purified to homogeneity with a 110-fold increase in specific activity. The purified enzyme was characterized as a meta-cleavage dioxygenase that catalyzed the ring fission between C2 and C3 of 4-amino-3-hydroxybenzoic acid, with the consumption of 1 mol of O2 per mol of substrate. The enzyme was therefore designated as 4-amino-3-hydroxybenzoate 2,3-dioxygenase. The molecular mass of the native enzyme was 40 kDa based on gel filtration; the enzyme is composed of two identical 21-kDa subunits according to SDS/PAGE. The enzyme showed a high dioxygenase activity only for 4-amino-3-hydroxybenzoic acid. The Km and Vmax values for this substrate were 35 micro m and 12 micro mol.min-1.(mg protein)-1, respectively. Of the 2-aminophenols tested, only 4-aminoresorcinol and 6-amino-m-cresol inhibited the enzyme. The enzyme reported here differs from previously reported extradiol dioxygenases, including 2-aminophenol 1,6-dioxygenase, in molecular mass, subunit structure and catalytic properties.  相似文献   

17.
Cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus contain high specific activity (11 U/mg) of lysine aminopeptidase (KAP), as measured by the hydrolysis of L-lysyl-p-nitroanilide (Lys-pNA). The enzyme was purified by multistep chromatography. KAP is a homotetramer (38.2 kDa per subunit) and, as purified, contains 2.0 +/- 0.48 zinc atoms per subunit. Surprisingly, its activity was stimulated fourfold by the addition of Co2+ ions (0.2 mM). Optimal KAP activity with Lys-pNA as the substrate occurred at pH 8.0 and a temperature of 100 degrees C. The enzyme had a narrow substrate specificity with di-, tri-, and tetrapeptides, and it hydrolyzed only basic N-terminal residues at high rates. Mass spectroscopy analysis of the purified enzyme was used to identify, in the P. furiosus genome database, a gene (PF1861) that encodes a product corresponding to 346 amino acids. The recombinant protein containing a polyhistidine tag at the N terminus was produced in Escherichia coli and purified using affinity chromatography. Its properties, including molecular mass, metal ion dependence, and pH and temperature optima for catalysis, were indistinguishable from those of the native form, although the thermostability of the recombinant form was dramatically lower than that of the native enzyme (half-life of approximately 6 h at 100 degrees C). Based on its amino acid sequence, KAP is part of the M18 family of peptidases and represents the first prokaryotic member of this family. KAP is also the first lysine-specific aminopeptidase to be purified from an archaeon.  相似文献   

18.
Indoleamine 2,3-dioxygenase. Purification and some properties.   总被引:20,自引:0,他引:20  
Indoleamine 2,3-dioxygenase was purified from rabbit small intestine to apparent homogeneity as judged by polyacrylamide gel electrophoresis and analytical ultracentrifugation. The native enzyme was a monomeric protein of a molecular weight of 41,000 +/- 1,000 with an s020,w value of 3.45 S. It had a relative abundance of hydrophobic amino acids such as valine, leucine, and isoleucine, and contained approximately 5% carbohydrate by weight. The estimated content of sugar residues per mol of enzyme was: galactose, 1.2; mannose, 2.6; N-acetylglucosamine, 5.2; and sialic acid, 0.8. One mole of enzyme had 0.8 mol of protoheme IX as a prosthetic group. However, copper was not detected in a significant amount and the ratio of copper to heme was less than 0.03. EPR spectra of the nitric oxide complex of the ferrous enzyme indicated that a nitrogen atom, possibly in an imidazole group, might be coordinated as the fifth ligand of the heme coenzyme. The anisotropic g values were gx = 2.08, gy = 1.98, and gz = 2.01. A single enzyme protein catalyzed the oxygenative ring cleavage of D- and L-tryptophan, D- and L-5-hydroxytryptophan, tryptamine, and serotonin. In addition, the purified enzyme had a peroxidase activity with guaiacol and potassium iodide as hydrogen donors, but not a catalase activity.  相似文献   

19.
The cDNA encoding the goldfish (Carassius auratus) prolactin was expressed in Escherichia coli using the pRSETA expression vector. The recombinant goldfish prolactin (gfPRL) produced was a fusion protein containing a hexahistidyl sequence, which facilitated its purification on a Ni2+ column. The fusion protein was overexpressed in the bacteria as inclusion bodies and was successfully purified under denaturing conditions by one-step affinity chromatography. Repeated immunization of rabbits against the purified recombinant gfPRL allowed the production of a high-titer polyclonal antiserum. The IgG fraction of the antiserum was isolated on an immobilized Protein A–agarose column. The antibody recognized recombinant gfPRL, but not recombinant goldfish growth hormone (gfGH) or goldfish somatolactin (gfSL) on Western analyses. The purified antibody was able to recognize gfPRL, but not gfGH or gfSL, in a non-competitive antigen-capture ELISA. The assay was applied in monitoring the purification of native PRL from goldfish pituitaries.  相似文献   

20.
L Ni  K Guan  H Zalkin  J E Dixon 《Gene》1991,106(2):197-205
The purH cDNA, encoding 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR) transformylase-inosine monophosphate cyclohydrolase (ATIC), was cloned by functional complementation of an Escherichia coli purH mutant using a chicken liver cDNA expression library. This represents the first report of the cloning of any eukaryotic ATIC-encoding cDNA (PurH). The avian ATIC mRNA is 2.3 kb long and encodes a protein with an Mr of 64,422. The deduced amino acid sequence is 36% identical to the bacterial purH-encoded enzymes from Bacillus subtilis and E. coli. The avian cDNA was expressed as a glutathione S-transferase (GST) fusion protein that was purified in a single step by affinity chromatography. A novel vector was employed which permits rapid and highly efficient cleavage of the GST fusion protein yielding 10 mg of purified PurH product per liter of bacterial culture. Km values were determined with the purified fusion protein utilizing AICAR and (6-R)N10-formyl-tetrahydrofolate as substrates. These values compare favorably with the isolated avian enzyme, supporting the idea that kinetic, as well as other physical properties of the recombinant fusion protein are similar to the native avian enzyme. Large quantities of purified enzyme and the ability to generate site-directed mutations should make mechanistic studies possible. The recombinant enzyme also affords a simple and reliable approach to identifying new antifolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号