首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) are known to be involved in the pathogenesis of traumatic brain injury (TBI). Previous studies have shown that the susceptibility of mice to TBI-induced formation of cortical lesion is determined by the expression levels of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD, respectively). However, the underlying biochemical mechanisms are not understood. In this study, we measured the efficiency of mitochondrial respiration in mouse brains with altered expression of these two enzymes. While controlled cortical impact injury (CCII) with a deformation depth of 2 mm caused a drastic decrease in NAD-linked bioenergetic capacity in brain mitochondria of wild-type mice, the functional decrease was not observed in brains of littermate transgenic mice overexpressing CuZnSOD or MnSOD. In addition, a 1 mm CCII greatly compromised brain mitochondrial function in mice deficient in CuZnSOD or MnSOD, but not wild-type mice. Inclusion of the calcium-chelating agent, EGTA, in the assay solution could completely prevent dysfunction of oxidative phosphorylation in all mitochondrial samples, suggesting that the observed impairment of mitochondrial function was a result of calcium overloading. In conclusion, our results imply that mitochondrial dysfunction induced by superoxide anion radical contributes to lesion formation in mouse brain following physical trauma.  相似文献   

2.
Obesity increases circulating cell-endothelial cell interactions; an early marker of inflammation in laboratory model of sepsis, but little is known about the effect of different adipokines. Adiponectin is an anti-inflammatory adipokine secreted by adipocytes. Adiponectin deficiency is implicated in exaggerated proinflammatory phenotype in both obesity and sepsis via increased proinflammatory cytokine expression. However the effect of adiponectin deficiency on circulating cell-endothelial cell interactions in polymicrobial sepsis is unknown. Furthermore although brain dysfunction in septic patients is a known predictor of death, the pathophysiology involved is unknown. In the current study, we examined the effects of adiponectin deficiency on leukocyte (LA) and platelet adhesion (PA) in cerebral microcirculation of septic mice. Adiponectin deficient (Adipoq(-/-): Adko) and background strain C57Bl/6 (wild type (WT)) mice were used. Sepsis was induced using cecal ligation and puncture (CLP). We studied LA and PA in the cerebral microcirculation using intravital fluorescent video microscopy (IVM), blood brain barrier (BBB) dysfunction using Evans Blue (EB) leakage method and E-selectin expression using dual radiolabeling technique in different WT and Adko mice with CLP. Adiponectin deficiency significantly exaggerated LA (WT-CLP:201 ± 17; Adko-CLP: ± 53 cells/mm(2); P < 0.05) and PA (WT-CLP:125 ± 17; Adko-CLP:188 ± 20 cells/mm(2); P < 0.05) in cerebral microcirculation, EB leakage (WT-CLP:10 ± 3.7; Adko-CLP:24 ± 4.3 ng/g × μl plasma; P < 0.05) and E-selectin expression (WT-CLP:0.06 ± 0.11; Adko-CLP:0.44 ± 0.053 ng/g; P < 0.05) in the brain tissue of the mice with CLP. Furthermore, E-selectin monoclonal antibody (mAb) treatment attenuated cell adhesion and BBB dysfunction of Adko-CLP mice. Adiponectin deficiency is associated with exaggerated leukocyte and PA in cerebral microcirculation of mice with CLP via modulation of E-selectin expression.  相似文献   

3.
Long-lived proteins (LLPs) have recently emerged as vital components of intracellular structures whose function is coupled to long-term stability. Mitochondria are multifaceted organelles, and their function hinges on efficient proteome renewal and replacement. Here, using metabolic stable isotope labeling of mice combined with mass spectrometry (MS)–based proteomic analysis, we demonstrate remarkable longevity for a subset of the mitochondrial proteome. We discovered that mitochondrial LLPs (mt-LLPs) can persist for months in tissues harboring long-lived cells, such as brain and heart. Our analysis revealed enrichment of mt-LLPs within the inner mitochondrial membrane, specifically in the cristae subcompartment, and demonstrates that the mitochondrial proteome is not turned over in bulk. Pioneering cross-linking experiments revealed that mt-LLPs are spatially restricted and copreserved within protein OXPHOS complexes, with limited subunit exchange throughout their lifetimes. This study provides an explanation for the exceptional mitochondrial protein lifetimes and supports the concept that LLPs provide key structural stability to multiple large and dynamic intracellular structures.  相似文献   

4.
The aging brain suffers mitochondrial dysfunction and a reduced availability of energy in the form of ATP, which in turn may cause or promote the decline in cognitive, sensory, and motor function observed with advancing age. There is a need for animal models that display some of the pathological features of human brain aging in order to study their prevention by e.g. dietary factors. We thus investigated the suitability of the fast-aging senescence-accelerated mouse-prone 8 (SAMP8) strain and its normally aging control senescence-accelerated mouse-resistant 1 (SAMR1) as a model for the age-dependent changes in mitochondrial function in the brain. To this end, 2-months old male SAMR1 (n = 10) and SAMP8 mice (n = 7) were fed a Western type diet (control groups) for 5 months and one group of SAMP8 mice (n = 6) was fed an identical diet fortified with 500 mg curcumin per kg. Dissociated brain cells and brain tissue homogenates were analyzed for malondialdehyde, heme oxygenase-1 mRNA, mitochondrial membrane potential (MMP), ATP concentrations, protein levels of mitochondrial marker proteins for mitochondrial membranes (TIMM, TOMM), the mitochondrial permeability transition pore (ANT1, VDAC1, TSPO), respiration complexes, and fission and fusion (Fis, Opa1, Mfn1, Drp1). Dissociated brain cells isolated from SAMP8 mice showed significantly reduced MMP and ATP levels, probably due to significantly diminished complex V protein expression, and increased expression of TSPO. Fission and fusion marker proteins indicate enhanced mitochondrial fission in brains of SAMP8 mice. Treatment of SAMP8 mice with curcumin improved MMP and ATP and restored mitochondrial fusion, probably by up-regulating nuclear factor PGC1α protein expression. In conclusion, SAMP8 compared to SAMR1 mice are a suitable model to study age-dependent changes in mitochondrial function and curcumin emerges as a promising nutraceutical for the prevention of neurodegenerative diseases that are accompanied or caused by mitochondrial dysfunction.  相似文献   

5.
Lack of mitochondrial nitric oxide production in the mouse brain   总被引:4,自引:0,他引:4  
Based on our initial finding that the nitric oxide (NO) sensitive fluorochrome diaminofluorescein (DAF) was localized to mitochondria in cultured primary neurons, we investigated whether brain mitochondria produce NO through a mitochondrial NO synthase (mtNOS) enzyme. Isolated brain mitochondria were loaded with DAF and subjected to flow cytometry analysis. Neither the application of NOS inhibitors nor the genetic disruption of either NOS gene diminished the DAF-fluorescence. However, peroxynitrite scavengers reduced the mitochondrial DAF fluorescence, indicating that the DAF signal is not specific to NO. Chemiluminescence detection in the head space gas and a Clark-type NO-sensitive electrode in the solution failed to detect NO release in brain mitochondria. NOS activity in mitochondria was only 1% of the whole brain NOS activity level, which may be attributed to extramitochondrial contamination. Extensive immunoblotting and immunoprecipitation experiments failed to show the presence of endothelial, neuronal, or inducible NOS in mouse brain mitochondria using a variety of primary antibodies. Arginine, calmodulin or 2,5-ADP affinity purification protocols successfully concentrated eNOS and nNOS from full brain tissue but failed to show any signal in mitochondria. We conclude that mouse brain mitochondria do not contain NOS isoforms, nor do they produce NO through a NOS-dependent mechanism.  相似文献   

6.
Diabetes exacerbates neuronal injury induced by hyperglycemia mediated oxidative damage and mitochondrial dysfunction. The aim of the present study is to investigate the effects of curcuminoids, polyphenols of Curcuma longa (L.) on oxidative stress and mitochondrial impairment in the brain of streptozotocin (STZ)-induced diabetic rats. A marked increase in lipid peroxidation and nitrite levels with simultaneous decrease in endogenous antioxidant marker enzymes was observed in the diabetic rat brain, which was restored to normal levels on curcuminoids treatment. Down-regulation of mitochondrial complex I and IV activity caused by STZ induction was also up-regulated on oral administration of curcuminoids. Moreover, curcuminoids administration profoundly elevated the ATP level, which was earlier reduced in the diabetic brain. These results suggest that curcuminoids exhibit a protective effect by accelerating antioxidant defense mechanisms and attenuating mitochondrial dysfunction in the brain of diabetic rats. Curcuminoids thus may be used as a promising therapeutic agent in preventing and/or delaying the progression of diabetic complications in the brain.  相似文献   

7.
Epilepsy is a neurological disorder characterized by spontaneous, recurrent and paroxysmal cerebral discharge, clinically leading to persistent alterations in function and morphology of neurons. Oxidative stress is one of possible mechanisms in the pathogenesis of epilepsy. Oxidative stress resulting from mitochondrial dysfunction gradually disrupts the intracellular calcium homeostasis, which modulates neuronal excitability and synaptic transmission making neurons more vulnerable to additional stress, and leads to neuronal loss in epilepsy. In addition, the high oxidative status is associated with the severity and recurrence of epileptic seizure. Hence, treatment with antioxidants is critically important in epileptic patients through scavenging the excessive free radicals to protect the neuronal loss. In this review, we reviewed the recent findings that focus on the role for antioxidants in prevention of mitochondrial dysfunction and the correlation between oxidative status and disease prognosis in patients with epilepsy.  相似文献   

8.
A simple procedure for the simultaneous determination of morphine and monoamine transmitters was developed. The procedure consisted of (1) n-butanol extraction and (2) separation and quantitative determination by means of high-performance liquid chromatography combined with electrochemical detection. The maximum intracerebral concentration (210 ± 35 ng/g wet tissue) of morphine was detected 30 min after intramuscular injection (10 mg/kg), which agreed with previous research. Noradrenaline was significantly decreased by morphine injection, while dopamine and 5-hydroxytryptamine were unchanged. However, 3-methoxytyramine, a metabolite of dopamine, was increased, suggesting that the drug increased the turnover rate of dopamine. The procedure used revealed a direct correlation between pharmacokinetics (e.g., distribution of morphine) and pharmacodynamics (e.g. changes of monoamine concentrations) of the drug in vivo.  相似文献   

9.
Basic and clinical studies have reported that behavioral stress worsens the pathology of Alzheimer disease (AD), but the underlying mechanism has not been clearly understood. In this study, we determined the mechanism by which behavioral stress affects the pathogenesis of AD using Tg-APPswe/PS1dE9 mice, a murine model of AD. Tg-APPswe/PS1dE9 mice that were restrained for 2h daily for 16 consecutive days (2-h/16-day stress) from 6.5months of age had significantly increased Aβ(1-42) levels and plaque deposition in the brain. The 2-h/16-day stress increased oxidative stress and induced mitochondrial dysfunction in the brain. Treatment with glucocorticoid (corticosterone) and Aβ in SH-SY5Y cells increased the expression of 17β-hydroxysteroid dehydrogenase (ABAD), mitochondrial dysfunction, and levels of ROS, whereas blockade of ABAD expression by siRNA-ABAD in SH-SY5Y cells suppressed glucocorticoid-enhanced mitochondrial dysfunction and ROS accumulation. The 2-h/16-day stress up-regulated ABAD expression in mitochondria in the brain of Tg-APPswe/PS1dE9 mice. Moreover, all visible Aβ plaques were costained with anti-ABAD in the brains of Tg-APPswe/PS1dE9 mice. Together, these results suggest that behavioral stress aggravates plaque pathology and mitochondrial dysfunction via up-regulation of ABAD in the brain of a mouse model of AD.  相似文献   

10.
Previous phenotyping of glucose homeostasis and insulin secretion in a mouse model of hereditary hemochromatosis (Hfe(-/-)) and iron overload suggested mitochondrial dysfunction. Mitochondria from Hfe(-/-) mouse liver exhibited decreased respiratory capacity and increased lipid peroxidation. Although the cytosol contained excess iron, Hfe(-/-) mitochondria contained normal iron but decreased copper, manganese, and zinc, associated with reduced activities of copper-dependent cytochrome c oxidase and manganese-dependent superoxide dismutase (MnSOD). The attenuation in MnSOD activity was due to substantial levels of unmetallated apoprotein. The oxidative damage in Hfe(-/-) mitochondria is due to diminished MnSOD activity, as manganese supplementation of Hfe(-/-) mice led to enhancement of MnSOD activity and suppressed lipid peroxidation. Manganese supplementation also resulted in improved insulin secretion and glucose tolerance associated with increased MnSOD activity and decreased lipid peroxidation in islets. These data suggest a novel mechanism of iron-induced cellular dysfunction, namely altered mitochondrial uptake of other metal ions.  相似文献   

11.
Apoptosis is now recognized as a significant problem in mammalian cell culture. Therefore, in this study, a single gene and multigene approach to inhibit apoptosis has been examined. Stable Chinese hamster ovary (CHO) cell lines were generated to overexpress different single, dual, and triple combinations of three apoptosis inhibitor genes. Two upstream inhibitors involved in the mitochondrial pathway, Bcl-X(L) and Aven, were expressed in addition to a downstream inhibitor of caspases. The caspase inhibitor, a variant of XIAP containing only the caspase inhibitory BIR domains (XIAP-BIRs), has been shown previously to enhance viabilities in mammalian cultures. Stable clonal cell lines were generated and tested for three apoptotic insults: Sindbis virus infection, the chemical reagent etoposide, and spent medium. For all single gene experiments, the Bcl-X(L)-containing cell lines provided superior protection to either the Aven- or XIAP-BIRs-containing cell lines following initial exposure to the insults. However, the cell lines expressing two or more anti-apoptosis proteins were more effective at inhibiting cell death than those expressing just one anti-apoptosis gene. The cell lines overexpressing Bcl-X(L) in combination with XIAP-BIRs were especially effective in delaying cell death for all three apoptotic insults. Expression of all three anti-apoptosis genes in concert was only slightly more effective than using Bcl-X(L) and XIAP-BIRs for some insults. During exposure to spent medium, CHO-BIRS + Aven + BclX(L) was the best inhibitor of apoptosis (IAP) initially, whereas CHO-BIRs + BclX(L) was particularly effective at later times of the experiment. In conclusion, the utilization of a mitochondrial dysfunction inhibitor used in combination with a caspase inhibitor was more effective in thwarting the progression of apoptosis than either inhibitor expressed individually. Thus, the concurrent expression of multiple apoptosis inhibitors may be the most effective strategy to increase survival of mammalian cells in culture.  相似文献   

12.
Mitochondria have their own DNA (mitochondrial DNA [mtDNA]). Although mtDNA copy number is dependent on tissues and its decrease is associated with various neuromuscular diseases, detailed distribution of mtDNA copies in the brain remains uncertain. Using real-time quantitative PCR assay, we examined regional variation in mtDNA copy number in 39 brain regions of male mice. A significant regional difference in mtDNA copy number was observed (P<4.8×10(-35)). High levels of mtDNA copies were found in the ventral tegmental area and substantia nigra, two major nuclei containing dopaminergic neurons. In contrast, cerebellar vermis and lobes had significantly lower copy numbers than other regions. Hippocampal dentate gyrus also had a relatively low mtDNA copy number. This study is the first quantitative analysis of regional variation in mtDNA copy number in mouse brain. Our findings are important for the physiological and pathophysiological studies of mtDNA in the brain.  相似文献   

13.
Thapsigargin is a plant-derived inhibitor of the endoplasmic reticulum Ca(2+)-ATPase.Treatment with thapsigargin leads to a rapid, large and prolonged increase in the intracellular calcium ion concentration ([Ca(2+)](i)). Previously thapsigargin has been shown to inhibit proliferation and induce apoptosis. Here we report the results of thapsigargin treatment in thymocytes harvested from 10-day-old mice and in the P815 mastocytoma cell line. In thapsigargin-treated cells we observed enlarged mitochondria with disrupted cristae structure. These mitochondria closely resembled those observed after the induction of phase transition. To determine if the mitochondria were functioning normally the cells were stained with rhodamine 123 (R123) and analysed with flow cytometry. After thapsigargin treatment the R123 staining decreased, indicative of a loss of mitochondrial membrane potential. Furthermore intracellular ATP concentrations were also found to be reduced in cells treated with thapsigargin. Taken together these results indicate an increase in the [Ca(2+)](i) caused by thapsigargin treatment results in dysfunctional mitochondria and reduced ATP. We propose that this decrease in the concentration of ATP provokes the onset of thapsigargin-induced apoptosis. To investigate the effect of thapsigargin treatment on the cell cycle, rapidly cycling P815 cells were sorted into populations enriched for either G(0)/G(1) or S/G(2)/M phases, and these populations were then treated with thapsigargin. Thapsigargin treatment induced a cell cycle block before S phase. We propose that the block in the cell cycle induced by thapsigargin was a result of the decreased intracellular ATP concentration interfering with the energy requiring processes of DNA replication. The block could also be related to the high intracellular calcium ion concentration that would interfere with the subtle calcium transients involved in the cell's preparations for replication and mitosis. Apoptosis occurred to an equal extent in both populations of cells.  相似文献   

14.
In vitro studies have established the prevalent theory that the mitochondrial kinase PINK1 protects neurodegeneration by removing damaged mitochondria in Parkinson's disease(PD).However,difficulty in detecting endogenous PINK1 protein in rodent brains and cell lines has prevented the rigorous investigation of the in vivo role of PINK1.Here we report that PINK1 kinase form is selectively expressed in the human and monkey brains.CRISPR/Cas9-mediated deficiency of PINK1 causes similar neurodegeneration in the brains of fetal and adult monkeys as well as cultured monkey neurons without affecting mitochondrial protein expression and morphology.Importantly,PINK1 mutations in the primate brain and human cells reduce protein phosphorylation that is important for neuronal function and survival.Our findings suggest that PINK1 kinase activity rather than its mitochondrial function is essential for the neuronal survival in the primate brains and that its kinase dysfunction could be involved in the pathogenesis of PD.  相似文献   

15.
The cardiac toxicity of doxorubicin (DOX), a potent anticancer anthracycline antibiotic, is believed to be mediated through the generation of reactive oxygen species (ROS) in cardiomyocytes. This study aims to determine the function of cellular glutathione peroxidase (Gpx1), which is located in both mitochondria and cytosol, in defense against DOX-induced cardiomyopathy using a line of transgenic mice with cardiac overexpression of Gpx1. The Gpx1-overexpressing hearts were markedly more resistant than nontransgenic hearts to DOX-induced acute functional derangements, including impaired contractility and diastolic properties, decreased coronary flow rate, and reduced heart rate. In addition, DOX treatment impairs mitochondrial function of nontransgenic hearts as evident in a decreased rate of NAD-linked State 3 respiration, presumably a result of inactivation of complex I activity. This is associated with increases in the rates of NAD- and FAD-linked State 4 respiration and declines in P/O ratio, suggesting that the electron transfer and oxidative phosphorylation are uncoupled in these mitochondrial samples. These functional deficits of mitochondria could be largely prevented by Gpx1 overexpression. Taken together, these studies provide new evidence to further support the role of ROS, particularly H(2)O(2) and/or fatty acid hydroperoxides, in causing contractile and mitochondrial dysfunction in mouse hearts acutely exposed to DOX.  相似文献   

16.
Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIII inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.  相似文献   

17.
18.
19.
In the present study, to determine whether aging could increase the vulnerability of the brain to estrogen withdrawal-induced mitochondrial dysfunction, we measured the cytochrome c oxidase (COX) activity and mitochondrial adenosine triphosphate (ATP) content in hippocampi of 2 groups of ovariectomized (OVX) Wistar rats aged 2 months (young) and 9 months (middle-aged), respectively. In addition, effects of genistein and estradiol benzoate (EB) were tested also. We observed only a transient alteration of COX activity and mitochondrial ATP content in hippocampi of young OVX rats but a prolonged lowering of COX activity and mitochondrial ATP content in hippocampi of middle-aged OVX rats. This suggested that with aging compensatory mechanisms of mitochondrial function were attenuated, thus exacerbated estrogen withdrawal-induced mitochondrial dysfunction in hippocampi. Significantly, EB/genistein treatment reversed this estrogen withdrawal-induced mitochondrial dysfunction in both young and middle-aged rats suggesting that genistein may be used as a substitute for estradiol to prevent age-related disease such as Alzheimer’s disease in post-menopausal females.  相似文献   

20.
Tgalphaq44 mice with targeted overexpression of activated Galphaq protein in cardiomyocytes mimic many of the phenotypic characteristics of dilated cardiomyopathy in humans. However, it is not known whether the phenotype of Tgalphaq44 mice would also involve dysfunction of cardiac mitochondria. The aim of the present work was to examine changes in EPR signals of semiquinones and iron in Fe-S clusters, as compared to classical biochemical indices of mitochondrial function in hearts from Tgalphaq44 mice in relation to the progression of heart failure. Tgalphaq44 mice at the age of 14 months displayed pulmonary congestion, increased heart/body ratio and impairment of cardiac function as measured in vivo by MRI. However, in hearts from Tgalphaq44 mice already at the age of 10 months EPR signals of semiquinones, as well as cyt c oxidase activity were decreased, suggesting alterations in mitochondrial electron flow. Furthermore, in 14-months old Tgalphaq44 mice loss of iron in Fe-S clusters, impaired citrate synthase activity, and altered mitochondrial ultrastructure were observed, supporting mitochondrial dysfunction in Tgalphaq44 mice. In conclusion, the assessment of semiquinones content and Fe(III) analysis by EPR represents a rational approach to detect dysfunction of cardiac mitochondria. Decreased contents of semiquinones detected by EPR and a parallel decrease in cyt c oxidase activity occurs before hemodynamic decompensation of heart failure in Tgalphaq44 mice suggesting that alterations in function of cardiac mitochondria contribute to the development of the overt heart failure in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号