首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has earlier been shown that multiple positioning of nucleosomes on mouse satellite DNA is determined by its nucleotide sequence. To clarify whether other factors, such as boundary ones, can affect the positionings, we modified the environment of satellite DNA monomer by inserting it into a yeast plasmid between inducible GalCyc promoter and a structural region of the yeast FLP gene. We have revealed that the positions of nucleosomes on satellite DNA are identical to those detected upon reconstruction in vitro. The positioning signal (GAAAAA sequence) of satellite DNA governs nucleosome location at the adjacent nucleotide sequence as well. Upon promoter induction the nucleosome, translationally positioned on the GalCyc promoter, transfers to the satellite DNA and its location follows the positioning signal of the latter. Thus, the alternatives of positioning of a nucleosome on satellite DNA are controlled by its nucleotide sequence, though the choice of one of them is determined by the adjacent nucleosome.  相似文献   

2.
Positioning of nucleosomes in satellite I-containing chromatin of rat liver   总被引:3,自引:0,他引:3  
The location of nucleosomes on rat satellite I DNA has been investigated using a new approach. Nucleosome cores were prepared from rat liver nuclei with micrococcal nuclease, exonuclease III and nucleases S1. From the total population of core DNA fragments the satellite-containing fragments were isolated by molecular cloning and the complete sequence of 50 clones was determined. The location of nucleosomes along the satellite sequence was found to be non-random. Our results show that nucleosomes occupy a number of positions on satellite I DNA. About 35 to 50% of all nucleosomes are positioned in two corresponding major sites, the remainder in about 16 less preferred sites. The major nucleosome positions are apparently strictly defined with the precision of a single base-pair. These results were confirmed by other approaches, including restriction nuclease digestion experiments. There are good indications of a defined long-range organization of the satellite chromatin fiber in two or more oligonucleosomal arrays with distinct nucleosome configurations.  相似文献   

3.
X Y Zhang  F Fittler    W Hrz 《Nucleic acids research》1983,11(13):4287-4306
The question of nucleosome phasing on African Green Monkey (AGM) alpha-satellite DNA has been addressed by employing a new approach. Nucleosome cores were prepared from AGM nuclei with micrococcal nuclease, exonuclease III and nuclease S1. The core DNA population derived from alpha-satellite DNA containing chromatin was purified from total core DNA by denaturation of the DNA, reassociation to a low Cot value, and hydroxyapatite chromatography to separate the renatured satellite fraction. After end-labeling the termini of the alpha-satellite containing core DNA fragments were mapped by high resolution gel electrophoresis relative to known restriction sites along the 172 bp repeat unit of the satellite DNA. The results show that nucleosomes occupy eight strictly defined positions on the alpha-satellite DNA which could be determined with an accuracy of +/- 1 base pair. Approximately 35% of all nucleosomes are organized in one of these frames while the other seven registers contribute about 10% each.  相似文献   

4.
Restriction endonuclease cleavage of satellite DNA in intact bovine nuclei   总被引:1,自引:0,他引:1  
Lolya Lipchitz  Richard Axel 《Cell》1976,9(2):355-364
We have analyzed the efficiency with which specific nucleotide sequences within nucleosomes are recognized and cleaved by DNA restriction endonucleases. A system amenable to this sort of analysis is the cleavage of the bovine genome with the restriction endonuclease EcoRI. Bovine satellite I comprises 7% of the genome and is tandemly repetitious with an EcoRI site at 1400 base pair (bp) intervals within this sequence. The ease with which this restriction fragment can be measured permits an analysis of the accessibility of this sequence when organized in a nucleosomal array.Initial studies indicated that satellite I sequences are organized in a nucleosomal structure in a manner analogous to that observed for total genomic DNA. We then examined the accessibility of the EcoRI cleavage sites in satellite to endonucleolytic cleavage in intact nuclei. We find that whereas virtually all the satellite I sequences from naked DNA are cleaved into discrete 1400 bp fragments, only 33% of the satellite I DNA is liberated as this fragment from intact nuclei. These data indicate that 57% of the EcoRI sites in nuclei are accessible to cleavage and that cleavage can occur within the core of at least half the nucleosomal subunits. Analysis of the products of digestion suggests a random distribution of nucleosomes about the EcoRI sites of satellite I DNA.Finally, the observation that satellite sequences can be cleaved from nuclei to 1400 bp length fragments with their associated proteins provides a method for the isolation of specific sequences as chromatin. Using sucrose gradient velocity centrifugation, we have isolated a 70% pure fraction of satellite I chromatin. Nuclease digestion of this chromatin fraction reveals the presence of nucleosomal subunits and indicates that specific sequences can be isolated in this manner without gross disorganization of their subunit structure.  相似文献   

5.
DNase I was used to probe the higher order chromatin structure in whole nuclei. The digestion profiles obtained were the result of single-stranded cuts and were independent of pH, type of divalent ion and chromatin repeat length. Furthermore, the protection from digestion of the DNA at the entry/exit points on the nucleosome was found to be caused not by the H1/H5 histone tails, but by the compact structure that these proteins support. In order to resolve symmetry ambiguities, DNase I digestion fragments over several nucleosome repeat lengths were analysed quantitatively and compared with computer simulations using combinations of the experimentally obtained rate constants (some of which were converted to 0 to simulate steric protection from DNase I digestion). A clear picture of precisely defined, alternating, asymmetrically protected nucleosomes emerged. The linker DNA is inside the fibre, while the nucleosomes are positioned above and below a helical path and/or with alternating orientation towards the dyad axis. The dinucleosomal modulation of the digestion patterns comes from alternate protection of cutting sites inside the nucleosome and not from alternating exposure to the enzyme of the linker DNA.  相似文献   

6.
Examination of bovine satellite DNA I methylation within CpG dinucleotides has been made by restriction analysis. It is shown that variations in the methylation patterns occur between different tissues (brain, liver, thymus and sperm) . Some of the 8 Hpa II sites present per repeat are clearly undermethylated in sperm as compared to other tissues. Methylation is considered therefore, as a highly specific event. It is also shown that there is a spatial specificity in the methylation pattern of the 3 Hha I sites in all tissues. These results are discussed in the light of methylation and satellite DNA functions.  相似文献   

7.
G Roizes  M Pages    C Lecou 《Nucleic acids research》1980,8(17):3779-3792
The analysis of a large number of restriction sites within the long range periodicity calf satellite DNA I does not reveal a superimposable shorter repeat. Although some restriction sites are present in almost all the 100,000 tandemly arranged copies of the 1460 bp repetition unit, other sites such as Atu CI occur at much lower frequencies. When present they are distributed randomly along the satellite DNA molecules. The missing sites appear to result from random and presumably single base alterations. Digestion with the enzymes Hha I and Kpn I showed another type of variant to exist within the calf satellite DNA I. Unlike Atu CI the distributions of the variants detected by these enzymes are not random and organised on long stretches of satellite DNA. The possible functional significance and evolutionary implication of these results are discussed.  相似文献   

8.
The satellite I DNAs of domestic goat (Capra hircus) and domestic sheep (Ovis aries) have been studied using molecular hybridisation and restriction enzyme analysis. Both satellite DNAs are composed of repeat units of 820 base pairs in length, but their restriction maps, although similar, differ in certain respects. Thus the majority of sheep satellite I repeat units have two EcoRI sites and one AluI site, whereas the majority of goat satellite I repeat units have one EcoRI site and two AluI sites. The sheep satellite I repeat units with the two EcoRI sites are much more homogeneous than the repeats forming the remainder of the satellite, as judged by the difference in the melting temperatures of native and reassociated molecules. DNAs from species of wild sheep and goats were screened for the presence of these repeat units, and they appear to have been amplified during the radiation of the Ovis genus. Goat satellite I is composed of a single sequence type which has changed through base substitution until the sequence now shows considerable heterogeneity. It is proposed that the major sequence types of these two satellite DNAs were amplified by different saltatory replication events at different times in the evolution of the group.  相似文献   

9.
10.
The molecular basis underlying the sequence-specific positioning of nucleosomes on DNA was investigated. We previously showed that histone octamers occupy multiple specific positions on mouse satellite DNA in vivo and have now reconstituted the 234 bp mouse satellite repeat unit with pure core histones into mononucleosomes. Histones from mouse liver or chicken erythrocytes bind to the DNA in multiple precisely defined frames in perfect phase with a diverged 9 bp subrepeat of the satellite DNA. This is the first time that nucleosome positions on a DNA in vivo have been compared to those found on the same DNA by in vitro reconstitution. Most of the nucleosomes occupy identical positions in vivo and in vitro. There are, however, some characteristic differences. We conclude that sequence-dependent histone-DNA interactions play a decisive role in the positioning of nucleosomes in vivo, but that the nucleosome locations in native chromatin are subject to additional constraints.  相似文献   

11.
The location of nucleosomes on the nucleotide sequence of rat satellite I DNA was investigated using micrococcal nuclease, exonuclease III, and restriction nucleases as tools. Hae III cleaved the satellite DNA containing chromatin very preferentially in the linker region. Nucleosomes were found predominantly in three defined positions on the 370 bp satellite I monomer unit. This type of arrangement occurs on not more than half of the satellite DNA containing chromatin while the rest of this chromatin is arranged differently. The arrangement of nucleosomes with high probability in preferred frames and with low probability in less preferred frames may be a general phenomenon which can be discussed as a possible mechanism to modulate sequence recognition.  相似文献   

12.
13.
Component alpha DNA is a highly repetitive sequence that comprises nearly a quarter of the African green monkey (Cercopithecus aethiops) genome. A previous microbial restriction enzyme analysis showed that the repeat structure of component alpha DNA is based upon a monomeric unit of 176 +/- 4 base-pairs. An endonuclease, provisionally termed Case I, has been isolated from African green monkey testes that cleaves component alpha DNA into multimeric segments based upon the same repeat periodicity as that revealed by microbial restriction enzymes. The primary sites of Cae I cleavage in the component alpha sequence appear to be 120 +/- 6 base-pairs distant from the Hind III sites and 73 +/- 6 base-pairs distant from the Eco RI* sites. Cae I has been partially characterized with special reference to the effects of ATP and S-adenosylmethionine on the cleavage of component alpha DNA. Cae I may be a member of a class of similar site-specific nucleases present in mammalian cells. Cae I also cleaves mouse satellite DNA into a multimeric series of discrete segments: the periodicity of this series is shorter than that revealed by Eco RII retriction analysis of mouse satellite DNA.  相似文献   

14.
The positioning of nucleosomes has been analysed by comparing the pattern of cutting sites of a probing reagent on chromatin and naked DNA. For this purpose, high molecular weight DNA and nuclei from the liver of young (18±2 weeks) and old (100±5 weeks) Wistar male rats were digested with micrococcal nuclease (MNase) and hybridized with 32P-labelled rat satellite DNA probe. A comparison of the ladder generated by MNase with chromatin and nuclei indicates long range organization of the satellite chromatin fiber with distinct non-random positioning of nucleosomes. However, the positioning of nucleosomes on satellite DNA does not vary with age. For studying the periodicity and subunit structure of satellite DNA, high molecular weight DNA from the liver of young and old rats were digested with different restriction enzymes. Surprisingly, no noteworthy age-related change is visible in the periodicity and subunit structural organization of the satellite DNA. These results suggest that the nucleosome positioning and the periodicity of liver satellite DNA do not vary with age.  相似文献   

15.
M Carlson  D Brutlag 《Cell》1977,11(2):371-381
The sequence organization of the 1.688 satellite DNA (density 1.688 g/cm3 in CsCl) has been investigated, and this satellite has been found to differ from the other D. melanogaster satellite DNAs in having a much greater sequence complexity. Purification of 1.688 satellite DNA by successive equilibrium density centrifugations yielded a fraction 77% pure. Segments of satellite DNA were isolated by molecular cloning in the plasmid vector pSC101. One recombinant plasmid contained a segment of 1.688 satellite DNA 5.8 kilobase pairs in size and was stable during propagation in E. coli. Recognition sites for restriction enzymes from Haemophilus aegyptius (Hae III), Haemophilus influenzae f (Hinf) and Arthrobacter luteus (Alu I) were mapped in the satellite DNA of this hybrid plasmid. The spacing of Hae III, Hinf and two Alu I sites at regular intervals of about 365 base pairs is strong evidence that the sequence complexity of this satellite DNA is 365 base pairs. Further evidence comes from the finding that both gradient-purified and cloned 1.688 satellite DNA renature with their Hae III sites in register. The Hae III and Hinf sites in gradient-purified satellite DNA have been shown by Manteuil, Hamer and Thomas (1975) and Shen, Wiesehahn and Hearst (1976) to be distributed at intervals of 365 base pairs and integral multiples thereof. These investigators proposed that some of the sites in an otherwise regular array have been randomly inactivated. Cloned satellite DNA provided a hybridization probe for sensitive studies of the arrangement of these recognition sites in gradient-purified satellite DNA. Some regions of satellite DNA were found to contain many fewer recognition sites than expected from the proposed models. These findings suggest that different regions of 1.688 satellite DNA may exhibit different arrangements of Hae III and Hinf recognition sites.  相似文献   

16.
Phasing of nucleosomes in SV40 chromatin reconstituted in vitro   总被引:4,自引:0,他引:4  
  相似文献   

17.
C. S. Lee 《Chromosoma》1978,65(2):103-114
Chromatin structure can be probed by cross-linking DNA in situ using trioxsalen and irradiation with UV light. Presumably DNA within a nucleosome is protected from cross-linking so that this region appears as a single-strand loop in the electron microscope under a condition in which single-strands and double-strands are distinguished. Unprotected regions appear as duplex due to cross-linking.We have used this approach to investigate the structure of chromatins containing satellite DNAs of Drosophila nasutoides. We have previously shown that D. nasutoides has an unusually large autosome pair which is almost entirely heterochromatic. Its nuclear DNA reveals four major satellite components amounting up to 60% of the total genome. All of them are localized in this large heterochromatic chromosome. We wish to ask whether chromatins containing different satellite sequences have different arrangements of nucleosomes. Our results from cross-linking experiments show that all DNA components including main band DNA have different patterns of protected and unprotected regions: (a) The length distributions of protected regions show multiple peaks with the smallest unit lengths being 200 nucleotides for main band DNA, 180 for satellites I, II and III, and 160 for satellite IV. (b) The amounts of unprotected regions, presumably internucleosome DNA, vary from 16% for main band DNA to 60% for satellite IV, suggesting that satellite chromatins have fewer nucleosomes per given length of chromatin than main band DNA chromatin. The spacings between nucleosomes appear to be random in satellite chromatins.  相似文献   

18.
The periodicities of the restriction enzyme cleavage sites in highly repetitive DNAs of six mammalian species (monkey, mouse, sheep, human, calf and rat) appear related to the length of DNA contained in the nucleosome subunit of chromatin. We suggest that the nucleosome structure is an essential element in the generation and evolution of repeated DNA sequences in mammals (Brown et al., 1978; Maio et al., 1977). The possibility of a phase relation between DNA repeat sequences and associated nucleosome proteins is consistent with this hypothesis and has been tested by restriction enzyme and micrococcal nuclease digestions of repetitive DNA sequences in isolated, intact nuclei.Sites for four different restriction enzyme activities, EcoRI, EcoRI1, HindIII and HaeIII have been mapped within the repeat unit of component α DNA, a highly repetitive DNA fraction of the African green monkey. The periodicity of cleavage sites for each of the enzymes (176 ± 4 nucleotide base-pairs) corresponds closely to the periodicity (about 185 nucleotide base-pairs) of the sites attacked in the initial stages of micrococcal nuclease digestion of nuclear chromatin. In intact monkey nuclei, EcoRI-RI1 sites are accessible to restriction enzyme cleavage; the HindIII and HaeIII sites are not. The results suggest (1) that, in component α chromatin, the EcoRI-RI1 sites are found at the interstices of adjacent nucleosomes and (2) the HindIII and HaeIII sites are protected from cleavage by their location on the protein core of the nucleosome. This interpretation was confirmed by experiments in which DNA segments of mononucleosomes and nucleosome cores released from CV-1 nuclei by micrococcal nuclease were subsequently treated with EcoRI, EcoRI1 and HindIII. A major secondary segment of component α, about 140 nucleotide base-pairs in length, was released only by treatment with HindIII, in keeping with the location of the HindIII sites in the restriction map and their resistance to cleavage in intact nuclei.EcoRI reduces calf satellite I DNA to a segment of about 1408 nucleotide basepairs. In contrast, restriction of calf satellite I DNA with EcoRI1 produces six prominent segments ranging in size from 176 to 1408 nucleotide base-pairs. Treatment of isolated calf nuclei with either EcoRI or EcoRI1 did not produce segments shorter than 1408 base-pairs, indicating that while canonical EcoRI sites are accessible to attack, the irregularly spaced EcoRI1 sites are specifically blocked. The results are consistent with a phase relation between the repeat sequence of calf satellite I DNA and an octameric array of nucleosomes.  相似文献   

19.
Organization of 5S genes in chromatin of Xenopus laevis.   总被引:5,自引:2,他引:3       下载免费PDF全文
The chromatin organization of the genes coding for 5S RNA in Xenopus laevis has been investigated with restriction endonucleases and micrococcal nuclease. Digestion of nuclei from liver, kidney, blood and kidney cells maintained in culture with micrococcal nuclease reveals that these Xenopus cells and tissues have shorter nucleosome repeat lengths than the corresponding cells and tissues from other higher organisms. 5S genes are organized in nucleosomes with repeat lengths similar to those of the bulk chromatin in liver (178 bp) and cultured cells (165 bp); however, 5S gene chromatin in blood cells has a shorter nucleosome repeat (176 bp) than the bulk of the genome in these cells (184 bp). From an analysis of the 5S DNA fragments produced by extensive restriction endonuclease cleavage of chromatin in situ, no special arrangement of the nucleosomes with respect to the sequence of 5S DNA can be detected. The relative abundance of 5S gene multimers follows a Kuhn distribution, with about 57% of all HindIII sites cleaved. This suggests that HindIII sites can be cleaved both in the nucleosome core and linker regions.  相似文献   

20.
alpha-Satellite DNA containing chromatin from African green monkey cells (CV-1 cells) has been used to study the question whether or not nucleosomes are arranged in phase with the 172 bp repeat unit of the satellite DNA. Digestion experiments with DNAase II led us to exclude a simple phase relationship between the nucleosomal and the satellite DNA repeats. Digestion of CV-1 nuclei with micrococcal nuclease and endogenous nuclease (s) produced a series of sharp bands in the satellite DNA register over a background of heterogeneous length fragments. This observation is explained by a preferential cleavage of certain nucleotide sequences by these nucleases and is not in contradiction to our conclusion that a simple phase relationship does not exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号