首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii PKO1, and Burkholderia cepacia G4) were attracted to toluene. In each case, the response was dependent on induction by growth with toluene. Pseudomonas mendocina KR1 and P. putida PaW15 did not show a convincing response. The chemotactic responses of P. putida F1 to a variety of toxic aromatic hydrocarbons and chlorinated aliphatic compounds were examined. Compounds that are growth substrates for P. putida F1, including benzene and ethylbenzene, were chemoattractants. P. putida F1 was also attracted to trichloroethylene (TCE), which is not a growth substrate but is dechlorinated and detoxified by P. putida F1. Mutant strains of P. putida F1 that do not oxidize toluene were attracted to toluene, indicating that toluene itself and not a metabolite was the compound detected. The two-component response regulator pair TodS and TodT, which control expression of the toluene degradation genes in P. putida F1, were required for the response. This demonstration that soil bacteria can sense and swim towards the toxic compounds toluene, benzene, TCE, and related chemicals suggests that the introduction of chemotactic bacteria into selected polluted sites may accelerate bioremediation processes.  相似文献   

2.
The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight]−1 h−1). All four strains were maintained in the mixed culture at comparable numbers when TCE was absent. After the start of the addition of TCE, the viabilities of B. cepacia G4 and P. putida F1 and GJ31 decreased 50- to 1,000-fold in 1 month. These bacteria can degrade TCE, although at considerably different rates. P. putida mt-2, which did not degrade TCE, became the dominant organism. Kinetic analysis showed that the presence of TCE caused up to a ninefold reduction in the affinity for toluene of the three disappearing strains, indicating that inhibition of toluene degradation by TCE occurred. While P. putida mt-2 took over the culture, mutants of this strain which could no longer grow on p-xylene arose. Most of them had less or no meta-cleavage activity and were able to grow on toluene with a higher growth rate. The results indicate that cometabolic degradation of TCE has a negative effect on the maintenance and competitive behavior of toluene-utilizing organisms that transform TCE.  相似文献   

3.
Various microbial activities determine the effectiveness of bioremediation processes. In this work, we evaluated the feasibility of gene array hybridization for monitoring the efficiency of biodegradation processes. Biodegradation of 14C-labelled naphthalene and toluene by the aromatic hydrocarbon-degrading Pseudomonas putida F1, P. putida mt-2 and P. putida G7 was followed in mixed liquid culture microcosm by a preliminary, nylon membrane-based gene array. In the beginning of the study, toluene was degraded rapidly and increased amount of toluene degradation genes was detected by the preliminary gene array developed for the study. After toluene was degraded, naphthalene mineralization started and the amount of naphthalene degradation genes increased as biodegradation proceeded. The amount of toluene degradation genes decreased towards the end of the study. The hybridization signal intensities determined by preliminary gene array were in good agreement with mineralization of naphthalene and toluene and with the amount of naphthalene dioxygenase and toluene dioxygenase genes quantified by dot blot hybridization. The clear correlation between the results obtained by the preliminary array and the biodegradation process suggests that gene array methods can be considered as a promising tool for monitoring the efficiency of biodegradation processes.  相似文献   

4.
The oxygenase component of toluene dioxygenase from Pseudomonas putida F1 is an iron-sulfur protein (ISPTOL) consisting of α (TodC1) and β (TodC2) subunits. Purified TodC1 gave absorbance and electron paramagnetic resonance spectra identical to those given by purified ISPTOL. TodC1 was reduced by NADH and catalytic amounts of ReductaseTOL and FerredoxinTOL. Reduced TodC1 did not oxidize toluene, and catalysis was strictly dependent on the presence of purified TodC2.  相似文献   

5.
6.
Catechol and 3-methylcatechol were produced from benzene and toluene respectively using different mutants of Pseudomonas putida. P. putida 2313 lacked the extradiol cleavage enzyme, catechol 2,3-oxygenase, allowing overproduction of 3-methylcatechol from toluene to a level of 11.5 mM (1.27 g·1-1) in glucose fed-batch culture. P. putida 6(12), a mutant of P. putida 2313, lacked both catechol-oxygenase and catechol 1,2-oxygenase, and accumulated catechol from benzene to a level of 27.5mM(3g·1-1).

In both biotransformations product formation ceased within 10 hours of feeding the aromatic substrate, and this was due to product inhibition by the catechols. The primary site of catechol toxicity was inhibition of the aromatic dioxygenase. Neither cis-toluene dihydrodiol cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene), nor cis-benzene dihydrodiol (cis-l,2-dihydroxy-3-methylcyclohexa-3,5-diene) dehydrogenase was significantly inhibited by catechol overproduction whereas both ring activating dioxygenases were inhibited within 4-6 hours of the maximum product concentration being attained.

3-Methylcatechol overproduction from toluene was also studied using a continuous product removal system. Granular activated charcoal removed 3-methylcatechol efficiently and was easily regenerated by washing with ethyl acetate. Using P. putida 2313, it was shown that the final product concentration increased approximately fourfold. Additional products were formed and the significance of these are discussed.  相似文献   

7.
Pseudomonas putida F1 can metabolize toluene, ethylbenzene, and benzene for growth. Previously, we identified proteins involved in the utilization of these compounds by P. putida F1 through culture in liquid media. However, it was unclear whether laboratory analysis of bacterial activity and catabolism accurately reflected the soil environment. We identified proteins involved in the degradation of toluene, ethylbenzene, and benzene growth in soil using two-dimensional gel electrophoresis (2-DE) or standard SDS-PAGE combined with liquid chromatography–tandem mass spectrometry (LC–MS/MS). According to 2-DE/LC–MS/MS analysis, 12 of 22 key enzymes involved in the degradation of toluene, ethylbenzene, and benzene were detected. In standard SDS-PAGE/LC–MS/MS analysis of soil with ethylbenzene, approximately 1,260 cellular proteins were identified in P. putida F1. All key enzymes and transporter and sensor proteins involved in ethylbenzene degradation were up-regulated similar to that noted in liquid cultures. In P. putida F1, aromatic hydrocarbon response in soil is the same as that observed in liquid media.  相似文献   

8.
Benzene, toluene, and o-xylene (BTX) degradation by immobilized Pseudomonas putida F1 of postconsumer agave-fiber/polymer foamed-composites (AFPFC) and suspended cultures was studied under controlled conditions. Analyses using FTIR-ATR and SEM showed that P. putida F1 adhered onto the composite surface and developed a biofilm. In this sense, the AFPFC were successfully used as a support for bacterial immobilization. Both systems, immobilized and suspended cells of P. putida F1, were able to completely degrade benzene and toluene from initial concentrations of 15, 30, 60, and 90 mg l−1. An inhibitory effect of the intermediary catechol from benzene degradation was observed in suspended cultures but it was not presented in the immobilized system. The degradation of o-xylene was partially accomplished in both systems. The Monod equation was used to model the experimental data obtained from the biodegradation kinetics, and they were adequately described with this model.  相似文献   

9.
13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation.  相似文献   

10.
Co-metabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 was investigated in a novel bioreactor with a fibrous bed. A pseudo-first-order rate constant for TCE degradation was 1.4 h–1 for 2.4 to 100 mg TCE l–1. Competitive inhibition of toluene on TCE removal could be prevented in this bioreactor. 90% TCE was removed over 4 h when 95 mg toluene l–1 was presented simultaneously.  相似文献   

11.
The stability of Pseudomonas putida F1, a strain harbouring the genes responsible for toluene degradation in the chromosome was evaluated in a bioscrubber under high toluene loadings and nitrogen limiting conditions at two dilution rates (0.11 and 0.27 h−1). Each experiment was run for 30 days, period long enough for microbial instability to occur considering previously reported studies carried out with bacterial strains encoding the catabolic genes in the TOL plasmid. At all tested conditions, P. putida F1 exhibited stable performance as shown by the constant values of the specific toluene degradation yield, CO2 produced versus toluene degraded yield, and biomass concentration within each steady state. Benzyl alcohol, a curing agent causing TOL plasmid deletion in Pseudomonas strains, was present in the cultivation medium as a result of the monooxygenation of toluene by the diooxygenase system of P. putida F1. However, no mutant population growing at the expense of the extracellular excreted carbon or lysis products was established in the chemostat as confirmed by the constant dissolved total organic carbon (TOC) concentration and fraction of toluene degrading cells (approx. 100%). In addition, batch experiments conducted with both lysis substrate and toluene simultaneously confirmed that P. putida F1 preferentially consumed toluene rather than extracellular excreted carbon.  相似文献   

12.
The solvent-tolerant strain Pseudomonas putida DOT-T1E has been engineered for biotransformation of toluene into 4-hydroxybenzoate (4-HBA). P. putida DOT-T1E transforms toluene into 3-methylcatechol in a reaction catalyzed by toluene dioxygenase. The todC1C2 genes encode the α and β subunits of the multicomponent enzyme toluene dioxygenase, which catalyzes the first step in the Tod pathway of toluene catabolism. A DOT-T1EΔtodC mutant strain was constructed by homologous recombination and was shown to be unable to use toluene as a sole carbon source. The P. putida pobA gene, whose product is responsible for the hydroxylation of 4-HBA into 3,4-hydroxybenzoate, was cloned by complementation of a Pseudomonas mendocina pobA1 pobA2 double mutant. This pobA gene was knocked out in vitro and used to generate a double mutant, DOT-T1EΔtodCpobA, that was unable to use either toluene or 4-HBA as a carbon source. The tmo and pcu genes from P. mendocina KR1, which catalyze the transformation of toluene into 4-HBA through a combination of the toluene 4-monoxygenase pathway and oxidation of p-cresol into the hydroxylated carboxylic acid, were subcloned in mini-Tn5Tc and stably recruited in the chromosome of DOT-T1EΔtodCpobA. Expression of the tmo and pcu genes took place in a DOT-T1E background due to cross-activation of the tmo promoter by the two-component signal transduction system TodST. Several independent isolates that accumulated 4-HBA in the supernatant from toluene were analyzed. Differences were observed in these clones in the time required for detection of 4-HBA and in the amount of this compound accumulated in the supernatant. The fastest and most noticeable accumulation of 4-HBA (12 mM) was found with a clone designated DOT-T1E-24.  相似文献   

13.
The protein components of the 2-nitrotoluene (2NT) and nitrobenzene dioxygenase enzyme systems from Acidovorax sp. strain JS42 and Comamonas sp. strain JS765, respectively, were purified and characterized. These enzymes catalyze the initial step in the degradation of 2-nitrotoluene and nitrobenzene. The identical shared reductase and ferredoxin components were monomers of 35 and 11.5 kDa, respectively. The reductase component contained 1.86 g-atoms iron, 2.01 g-atoms sulfur, and one molecule of flavin adenine dinucleotide per monomer. Spectral properties of the reductase indicated the presence of a plant-type [2Fe-2S] center and a flavin. The reductase catalyzed the reduction of cytochrome c, ferricyanide, and 2,6-dichlorophenol indophenol. The ferredoxin contained 2.20 g-atoms iron and 1.99 g-atoms sulfur per monomer and had spectral properties indicative of a Rieske [2Fe-2S] center. The ferredoxin component could be effectively replaced by the ferredoxin from the Pseudomonas sp. strain NCIB 9816-4 naphthalene dioxygenase system but not by that from the Burkholderia sp. strain LB400 biphenyl or Pseudomonas putida F1 toluene dioxygenase system. The oxygenases from the 2-nitrotoluene and nitrobenzene dioxygenase systems each had spectral properties indicating the presence of a Rieske [2Fe-2S] center, and the subunit composition of each oxygenase was an α3β3 hexamer. The apparent Km of 2-nitrotoluene dioxygenase for 2NT was 20 μM, and that for naphthalene was 121 μM. The specificity constants were 7.0 μM−1 min−1 for 2NT and 1.2 μM−1 min−1 for naphthalene, indicating that the enzyme is more efficient with 2NT as a substrate. Diffraction-quality crystals of the two oxygenases were obtained.  相似文献   

14.
Toluene dioxygenase (TDO) is ubiquitous in nature and has a broad substrate range, including benzene, toluene, ethylbenzene and xylenes (BTEX). Pseudomonas putida F1 (PpF1) induced on toluene is known to produce indigo from indole through the activity of TDO. In this work, a spectrophotometric assay previously developed to measure indole to indigo production rates was modified to characterize the effects of various ethanol concentrations on toluene aerobic biodegradation activity and assess catabolite repression of TDO. Indigo production rate by cells induced on toluene alone was 0.0012 ± 0.0006 OD610 min−1. The presence of ethanol did not fully repress TDO activity when toluene was also available as a carbon source. However, indigo production rates by PpF1 grown on ethanol:toluene mixtures (3:1 w/w) decreased by approximately 50%. Overall, the proposed spectrophotometric assay is a simple approach to quantify TDO activity, and demonstrates how the presence of ethanol in groundwater contaminated with reformulated gasoline is likely to interfere with naturally occurring microorganisms from fully expressing their aerobic catabolic potential towards hydrocarbons bioremediation.  相似文献   

15.
The rate of trichloroethylene (TCE) degradation by toluene dioxygenase (TDO) in resting cells of Pseudomonas putida F1 gradually decreased and eventually stopped within 1.5 h, as in previous reports. However, the subsequent addition of toluene, which is the principal substrate of TDO, resulted in its immediate degradation without a lag phase. After the consumption of toluene, degradation of TCE restarted at a rate similar to its initial degradation, suggesting that this degradation was mediated by TDO molecules that were present before the cessation of TCE degradation. The addition of benzene and cumene, which are also substrates of TDO, also caused restoration of TCE degradation activity: TCE was degraded simultaneously with cumene, and a larger amount of TCE was degraded after cumene was added than after toluene or benzene was added. But substrates that were expected to supply the cells with NADH or energy did not restore TCE degradation activity. This cycle of pseudoinactivation and restoration of TCE degradation was observed repeatedly without a significant decrease in the number of viable cells, even after six additions of toluene spread over 30 h. The results obtained in this study demonstrate a new type of restoration of TCE degradation that has not been previously reported.  相似文献   

16.
Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPTT) which had the ability to degrade toluene as well as enhance growth of host plant. The frequency of transformation was recorded 5.7 × 10−6. DPT produced IAA, siderophore, chitinase, HCN, ACC deaminase, solubilized inorganic phosphate, fixed atmospheric nitrogen and inhibited the growth of Fusarium oxysporum and Macrophomina phaseolina in vitro. During pot assay, 50 ppm toluene in soil was found to inhibit the germination of Cajanus cajan seeds. However when the seeds bacterized with toluene degrading P. putida or R. leguminosarum DPT were sown in pots, again no germination was observed. Non-bacterized as well as bacterized seeds germinated successfully in toluene free soil as control. The results forced for an alternative mode of application of bacteria for rhizoremediation purpose. Hence bacterial suspension was mixed with soil having 50 ppm of toluene. Germination index in DPT treated soil was 100% while in P. putida it was 50%. Untreated soil with toluene restricted the seeds to germinate.  相似文献   

17.
We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Pseudomonas mendocina KR1 in liquid and soil systems. P. putida DOT-T1 tolerated concentrations of heptane, propylbenzene, octanol, and toluene of at least 10% (vol/vol), while P. putida F1 and EEZ15 grew well in the presence of 1% (vol/vol) propylbenzene or 10% (vol/vol) heptane, but not in the presence of similar concentrations of octanol or toluene. P. mendocina KR1 grew only in the presence of heptane. All three P. putida strains were able to become established in a fluvisol soil from the Granada, Spain, area, whereas P. mendocina KR1 did not survive in this soil. The tolerance to organic solvents of all three P. putida strains was therefore assayed in soil. The addition to soil of 10% (vol/wt) heptane or 10% (vol/wt) propylbenzene did not affect the survival of the three P. putida strains. However, the addition of 10% (vol/wt) toluene led to an immediate decrease of several log units in the number of CFU per gram of soil for all of the strains, although P. putida F1 and DOT-T1 subsequently recovered. This recovery was influenced by the humidity of the soil and the incubation temperature. P. putida DOT-T1 recovered from the shock faster than P. putida F1; this allowed the former strain to become established at higher densities in polluted sites into which both strains had been introduced.  相似文献   

18.
Escherichia coli JM109 strains expressing either toluene dioxygenase from Pseudomonas putida F1 or biphenyl dioxygenase from Pseudomonas pseudoalcaligenes KF707 were examined for their ability to catalyze flavones. Biphenyl dioxygenase produced metabolites from flavone and 5,7-dihydroxyflavone which were not found in the control experiments. The absorption maxima of UV-visible spectra for the metabolites from flavone and 5,7-dihydroxyflavone were found at 337 and 348 nm respectively by using a photodiode array detector in the HPLC. Liquid chromatography/mass spectroscopy (LC/MS) showed molecular weights 256 and 288 for the metabolites, respectively. The metabolite of flavone, which was isolated and purified from the bacterial culture, was further subjected to analysis by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Based on the LC/MS and NMR results, biphenyl dioxygenase inserted oxygen at C2′ and C3′ on the B-ring of flavone, resulting in the formation of flavone cis-2′, 3′-dihydrodiol (2-[3,4-dihydroxy-1.5-cyclohexadienyl]-4H-chromen-4-one). Since this product is not found in Chemical Abstracts, this compound is considered a novel one. In addition, biotransformation of flavones by biphenyl dioxygenase suggested a potential role of bacterial dioxygenase to synthesize novel compounds from plant secondary metabolites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The response of Pseudomonas putida F1 to process fluctuations and operational failures during toluene biodegradation was evaluated in a chemostat suspended growth bioreactor. The ability of P. putida F1 to rapidly increase its specific toluene degradation capacity resulted in no significant variation in process removal efficiency when toluene load was increased from 188 to 341 g m−3 h−1. Likewise, bacterial activity rapidly reached steady state performance (in less than 1.5 h after the restoration of steady state operational conditions) following an 8 h process shutdown, or after episodes of toluene or mineral nutrients deprivation. Process performance was however highly sensitive to pH, as pH levels below 4.5 dramatically inhibited bacterial activity, decreasing severely process robustness and inducing a cycle of periodic process collapses and recoveries. This pH mediated deterioration of bacterial activity was confirmed by further respirometric tests, which revealed a 50–60% reduction in the O2 consumption rate during the degradation of both toluene and 3-methyl catechol when pH decreased from 5.05 to 4.55. Finally, process robustness was quantified according to methods previously described in literature.  相似文献   

20.
Pseudomonas putida NCIMB 11767 oxidized phenol, monochlorophenols, several dichlorophenols and a range of alkylbenzenes (C1–C6) via an inducible toluene dioxygenase enzyme system. Biphenyl and naphthalene were also oxidized by this enzyme. Growth on toluene and phenol induced the meta-ring-fission enzyme, catechol 2,3-oxygenase, whereas growth on benzoate, which did not require expression of toluene dioxygenase, induced the ortho-ringcleavage enzyme, catechol 1,2-oxygenase. Monochlorobenzoate isomers and 2,3,5-trichlorophenol were gratuitous inducers of toluene dioxygenase, whereas 3,4-dichlorophenol was a fortuitous oxidation substrate of the enzyme. The organism also grew on 2,4- and 2,5-dichloro isomers of both phenol and benzoate, on 2,3,4-trichlorophenol and on 1-phenylheptane. During growth on toluene in nitrogen-limited chemostat culture, expression of both toluene dioxygenase and catechol 2,3-oxygenase was positively correlated with increase in specific growth rate (0.11–0.74 h-1), whereas the biomass yield coefficient decreased. At optimal dilution rates, the predicted performance of a 1-m3 bioreactor supplied with 1 g nitrogen l-1 for removal of toluene was 57 g day-1 and for removal of trichloroethylene was 3.4 g day-1. The work highlights the oxidative versatility of this bacterium with respect to substituted hydrocarbons and shows how growth rate influences the production of competent cells for potential use as bioremediation catalysts. Received: 26 June 1995 / Received revision: 4 September 1995 / Accepted: 20 September 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号