首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents spatiotemporal gait parameters of arboreal locomotion in the colobine Rhinopithecus bieti in its natural habitat. While adult females used exclusively either extended-elbow vertical climbing or pulse climbing, the much larger adult males preferred the less demanding flexed-elbow vertical climbing on thin trees or on trunks with handholds. If sex-specific differences are taken into consideration, the differences between flexed-elbow and extended-elbow vertical climbing in Rhinopithecus parallel those observed in Ateles. During flexed-elbow vertical climbing, the gait parameters of R. bieti are very similar to those of spider monkeys (Ateles fusciceps) or bonobos (Pan paniscus). Maximum limb joint excursions also lie in the range of hominoids and atelines and are clearly larger than in Macaca fuscata. It seems likely that climbing kinematics may differ more between Rhinopithecus and macaques than between Rhinopithecus and hominoids or atelines.  相似文献   

2.
This long-term study of woolly monkey (Lagothrix) locomotor and postural behaviour employs methods identical to those used during a previous study of the locomotion and posture of two species of Ateles, allowing a detailed comparison between the two genera, which are strong competitors in extensive parts of the Amazon basin and northern Andes. As in Ateles, Lagothrix locomotion can be divided into five patterns, based on limb usage: quadrupedal walking and running, suspensory locomotion, climbing, bipedalism (very rare in wild woolly monkeys) and leaping. Lagothrix differs from Ateles primarily in its greater reliance on quadrupedal locomotion during both travel and feeding and on its de-emphasis of the use of suspensory locomotion as compared to Ateles, while the use of climbing and leaping is roughly equal in the two genera. Lagothrix exhibits more generalised (primitive) locomotive behaviour in accordance with its morphology, in comparison to the more specialised Ateles. The generic differences reflect differences in habitat use and particularly foraging ecology.  相似文献   

3.
Vertical climbing is widely accepted to have played an important role in the origins of both primate locomotion and of human bipedalism. Yet, only a few researchers have compared climbing mechanics in quadrupedal primates that vary in their degree of arboreality. It is assumed that primates using vertical climbing with a relatively high frequency will have morphological and behavioral specializations that facilitate efficient climbing mechanics. We test this assumption by examining whether time spent habitually engaged in climbing influences locomotor parameters such as footfall sequence, peak forces, and joint excursions during vertical climbing. Previous studies have shown that during climbing, the pronograde and semiterrestrial Macaca fuscata differs in these parameters compared to the more arboreal and highly specialized, antipronograde Ateles geoffroyi. Here, we examine whether a fully arboreal, quadrupedal primate that does not regularly arm-swing will exhibit gait and force distribution patterns intermediate between those of Macaca fuscata and Ateles geoffroyi. We collected footfall sequence, limb peak vertical forces, and 3D hindlimb excursion data for Macaca fascicularis during climbing on a stationary pole instrumented with a force transducer. Results show that footfall sequences are similar between macaque species, whereas peak force distributions and hindlimb excursions for Macaca fascicularis are intermediate between values reported for M. fuscata and Ateles geoffroyi. These results support the notion that time spent climbing is reflected in climbing mechanics, even though morphology may not provide for efficient mechanics, and highlight the important role of arboreal locomotor activity in determining the pathways of primate locomotor evolution.  相似文献   

4.
Field study of the locomotor behavior of sympatric woolly monkeys (Lagothrix lagothricha) and spider monkeys (Ateles belzebuth) in undisturbed rainforest of northern Ecuador revealed similar patterns in use of plant forms (categorized tree and liana structure), and substantial differences in the frequencies of use of different grouped modes (aggregates of kinematically similar specific modes). Lagothrix progressed more than Ateles by leaping/dropping and quadrupedal walking/running, whereas Ateles exhibited more suspensory locomotion. Grouped modes are associated with different plant forms in similar ways in the two species. In contrast, the species differed in use of tree zone (trunk/bole, major branches, intermediate branches, and terminal branches), with Lagothrix using intermediate branches and Ateles terminal branches more. Correlated with this difference was greater use by Lagothrix of quadrupedal movement, especially on intermediate branches, and greater use of suspensory modes by Ateles, especially in the terminal zone. Further research is needed to determine how these patterns are facilitated and constrained by morphological mechanisms. Analysis of specific locomotor modes within groups shows several interspecific differences in relative frequencies.  相似文献   

5.
Among primates there is striking variation in the extent of the origin of pectoralis major from the clavicle. A significant clavicular attachment (pars clavicularis) occurs only in Alouatta, Lagothrix, Hylobates, Pan (troglodytes, paniscus and gorilla), and Homo. Interpreting this trait in nonhuman primates as an adaptation to frequent use of a mobile forelimb in climbing and suspension is contraindicated by the absence of a clavicular origin in Ateles and Pongo. We have undertaken a telemetered electromyographic study to determine any special role of the most cranial part of the pectoralis major in comparison to its caudal part, and to the deltoid, during vertical climbing, pronograde quadrupedalism, and armswinging in Ateles, Lagothrix, Alouatta, and Hylobates. The results show that the cranial pectoralis major possesses a role not shared by the caudal fibers: initiation of the recovery phase of the locomotor cycle. When ability to execute rapid or powerful recovery of the adducted forelimb is required in an animal with a shoulder joint lying on a plane cranial to that of the manubrium, the movement will be facilitated if the origin of the pectoralis major is extended onto the clavicle. Such is the case in nonhuman primates possessing this trait. The absence of a clavicular origin in Ateles and Pongo may be related to diminished selective pressures to perfect locomotor modes such as pronograde quadrupedalism, armswinging, or climbing thick vertical trunks, that demand rapid or powerful recovery of the adducted forelimb. If the arboreal ancestor of humans had evolved a clavicular origin of pectoralis major, this animal would be preadapted for certain uses of the forelimb in its bipedal descendant.  相似文献   

6.
Syntopic Alouatta seniculus, Ateles chamek and Lagothrix cana (Atelidae) were studied in southwestern Amazonia. Primate populations were first surveyed, and then the party size, diet and vertical spacing were monitored over a 5-month period. Atelids accounted for more than half the survey sightings and Lagothrix was the most abundant. Party sizes recorded for both Alouatta and Lagothrix during monitoring were significantly larger than those recorded during surveys, but no such difference was found for Ateles. Monitored parties were significantly larger in Lagothrix in comparison with either Alouatta or Ateles, as were groups of Ateles in comparison with Alouatta. Mean party size in Ateles decreased progressively during the course of the study, from 8.9 +/- 3.4 in June to 3.9 +/- 2.3 in October. Moraceae was the most important dietary resource for Ateles and Lagothrix, in terms of both feeding records and number of species exploited. There was considerable overlap in the plant taxa exploited, but some notable differences, such as the exclusive use of Hymenaea courbaril (Caesalpinaceae) by Lagothrix and of Euterpe precatoria (Arecaceae) by Ateles. As at other sites in the region, Ateles occupied significantly higher forest strata in comparison with Lagothrix. Despite the preliminary nature of the study, the results indicate a number of ecological differences between species that undoubtedly play an important role in niche separation.  相似文献   

7.
The locomotor behavior, of seven sympatric species of New World monkeys—Saguinus midas midas, Saimiri sciureus, Pithecia pithecia, Chiropotes satanas chiropotes, Cebus apella apella, Alouatta seniculus, and Ateles paniscus panisus—was studied at the Raleighvallen-Voltzberg Nature Reserve in Central Surinam. This paper examines the way in which locomotor behavior is related to body size and to ecological parameters such as forest stratification, forest type, and diet. Locomotor behavior is clearly related to the size of the species; with increasing size, the amount of climbing increases and the amount of leaping decreases. In general, larger monkeys use larger arboreal supports; however, Saguinus midas midas uses relatively larger, and Ateles paniscus paniscus relatively smaller supports than expected from body size alone. Leaping is associated with use of the forest understory and with use of liane forest. Other types of locomotion are associated with main canopy use in a variety of forest types. There are no consistent associations between diet and either locomotor behavior or forest utilization; rather, monkeys with similar diets show locomotor and habitat differentiation.  相似文献   

8.
The caudal myology of prehensile-tailed monkeys (Cebus apella, Alouatta palliata, Alouatta seniculus, Lagothrix lagotricha, and Ateles paniscus) and nonprehensile-tailed primates (Eulemur fulvus, Aotus trivirgatus, Callithrix jacchus, Pithecia pithecia, Saimiri sciureus, Macaca fascicularis, and Cercopithecus aethiops) was examined and compared in order to identify muscular differences that correlate with osteological features diagnostic of tail prehensility. In addition, electrophysiological stimulation was carried out on different segments of the intertransversarii caudae muscle of an adult spider monkey (Ateles geoffroyi) to assess their action on the prehensile tail. Several important muscular differences characterize the prehensile tail of New World monkeys compared to the nonprehensile tail of other primates. In atelines and Cebus, the mass of extensor caudae lateralis and flexor caudae longus muscles is more uniform along the tail, and their long tendons cross a small number of vertebrae before insertion. Also, prehensile-tailed monkeys, especially atelines, are characterized by well-developed flexor and intertransversarii caudae muscles compared to nonprehensile-tailed primates. Finally, Ateles possesses a bulkier abductor caudae medialis and a more cranial origin for the first segment of intertransversarii caudae than do other prehensile-tailed platyrrhines. These myological differences between nonprehensile-tailed and prehensile-tailed primates, and among prehensile-tailed monkeys, agree with published osteological and behavioral data. Caudal myological similarities and differences found in Cebus and atelines, combined with tail-use data from the literature, support the hypothesis that prehensile tails evolved in parallel in Cebus and atelines. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Colour vision varies within the family Atelidae (Primates, Platyrrhini), which consists of four genera with the following cladistic relationship: {Alouatta[Ateles (Lagothrix and Brachyteles)]}. Spider monkeys (Ateles) and woolly monkeys (Lagothrix) are characteristic of platyrrhine monkeys in possessing a colour vision polymorphism. The polymorphism results from allelic variation of the single-locus middle-to-long wavelength (M/L) cone opsin gene on the X-chromosome. The presence in the population of alleles coding for different M/L photopigments results in a variety of colour vision phenotypes. Such a polymorphism is absent in howling monkeys (Alouatta), which, alone among platyrrhines, acquired uniform trichromatic vision similar to that of Old World monkeys, apes, and humans through opsin gene duplication. Dietary and morphological similarities between howling monkeys and muriquis (Brachyteles) raise the possibility that the two genera share a similar form of colour vision, uniform trichromacy. Yet parsimony predicts that the colour vision of Brachyteles will resemble the polymorphism present in Lagothrix and Ateles. Here we test this assumption. We obtained DNA from the blood or faeces of 18 muriquis and sequenced exons 3 and 5 of the M/L opsin gene. Our results affirm the existence of a single M/L cone opsin gene in the genus Brachyteles. We detected three alleles with predicted lambdamax values of 530, 550, and 562 nm. Two females were heterozygous and are thus predicted to have different types of M/L cone pigment. We discuss the implication of this result towards understanding the evolutionary ecology of trichromatic vision.  相似文献   

10.
Evolutionary relationships between New World monkeys and marmoset genera and the place of the Ceboidea within the primates are considered in terms of the immunological specificity of ceboid proteins. Antigenic distances between the New World primates are measured using antisera produced in rabbits to nine ceboid genera: Alouatta, Aotes, Ateles, Callicebus, Cebus, Chiropotes, Lagothrix, Saimiri and Saguinus. A cladogram constructed on the basis of increasing degrees of antigenic distance between branches depicts Ceboidea as a monophyletic assemblage within which Alouatta is grouped with the Atelinae genera, Lagothrix and Ateles, Chiropotes joins Cacajao and Cebus joins Saimiri. The joining of the cebid genera Aotes and Callicebus with callithricid genera Callimico and Saguinus into a single complex lineage suggests that Cebidae is a paraphyletic or polyphyletic taxon. A phylogenetic taxonomy for Platyrrhini is proposed.  相似文献   

11.
Locomotor researchers have long known that adult primates employ a unique footfall sequence during walking. Most mammals use lateral sequence (LS) gaits, in which hind foot touchdowns are followed by ipsilateral forefoot touchdowns. In contrast, most quadrupedal primates use diagonal sequence (DS) gaits, in which hind foot touchdowns are followed by contralateral forefoot touchdowns. However, gait selection in immature primates is more variable, with infants and juveniles frequently using LS gaits either exclusively or in addition to DS gaits. I explored the developmental bases for this phenomenon by examining the ontogeny of gait selection in juvenile squirrel monkeys walking on flat and simulated arboreal substrates (i.e., a raised pole). Although DS gaits predominated throughout development, the juvenile squirrel monkeys nonetheless utilized LS gaits in one-third of the ground strides and in one-sixth of pole strides. Multiple logistic regression analyses showed that gait selection within the juvenile squirrel monkey sample was not significantly associated with either age or body mass per se, arguing against the oft-cited argument that general neuromuscular maturation is responsible for ontogenetic changes in preferred footfall sequence. Rather, lower level biomechanical variables, specifically the position of the whole-body center of mass and the potential for interference between ipsilateral fore and hindlimbs, best explained variation in footfall patterns. Overall, results demonstrate the promise of developmental studies of growth and locomotor development to serve as "natural laboratories" in which to explore how variability in morphology is, or is not, associated with variability in locomotor behavior.  相似文献   

12.
The dynamic role of the prehensile tail of atelines during locomotion is poorly understood. While some have viewed the tail of Ateles simply as a safety mechanism, others have suggested that the prehensile tail plays an active role by adjusting pendulum length or controlling lateral sway during bimanual suspensory locomotion. This study examines the bony and muscular anatomy of the prehensile tail as well as the kinematics of tail use during tail-assisted brachiation in two primates, Ateles and Lagothrix. These two platyrrhines differ in anatomy and in the frequency and kinematics of suspensory locomotion. Lagothrix is stockier, has shorter forelimbs, and spends more time traveling quadrupedally and less time using bimanual suspensory locomotion than does Ateles. In addition, previous studies showed that Ateles exhibits greater hyperextension of the tail, uses its tail to grip only on alternate handholds, and has a larger abductor caudae medialis muscle compared to Lagothrix. In order to investigate the relationship between anatomy and behavior concerning the prehensile tail, osteological data and kinematic data were collected for Ateles fusciceps and Lagothrix lagothricha. The results demonstrate that Ateles has more numerous and smaller caudal elements, particularly in the proximal tail region. In addition, transverse processes are relatively wider, and sacro-caudal articulation is more acute in Ateles compared to Lagothrix. These differences reflect the larger abductor muscle mass and greater hyperextension in Ateles. In addition, Ateles shows fewer side-to-side movements during tail-assisted brachiation than does Lagothrix. These data support the notion that the prehensile tail represents a critical dynamic element in the tail-assisted brachiation of Ateles, and may be useful in developing inferences concerning behavior in fossil primates.  相似文献   

13.
Spider monkeys and howler monkeys are the only Neotropical primates that eat soil from mineral licks. Not all species within these genera visit mineral licks, and geophagy has been restricted to populations of Ateles belzebuth belzebuth,Ateles belzebuth chamek and Alouatta seniculus in western Amazonian rainforests. With the aid of a camera trap we studied the visitation patterns of a group of brown spider monkeys (Ateles hybridus) to a mineral lick at Serrania de Las Quinchas, in Colombia. Spider monkeys visited the lick frequently throughout the year, with a monthly average of 21.7 ± 7.2 visits per 100 days of camera trapping (n = 14 months). Spider monkeys visited the mineral lick almost always on days with no rain, or very little (<3 mm) rain, suggesting that proximate environmental variables might determine spider monkeys' decisions to come to the ground at the licks. This study expands the geographical occurrence of mineral lick use by spider monkeys providing additional data for future assessments on the biogeographical correlates of mineral lick use by platyrrhines.  相似文献   

14.
A comparative field study of the locomotion of woolly monkeys (Lagothrix lagothricha) and spider monkeys (Ateles belzebuth) in undisturbed rainforest of northeastern Ecuador reveals substantial differences in their use of suspensory modes. Ateles performed both more brachiation (by forelimbs and tail, with trunk rotation), and forelimb swing (similar to brachiation, but without trunk rotation) than Lagothrix. In contrast, in Lagothrix 20% of suspensory movement was by pronograde forelimb swing, which resembles forelimb swing except that the body is held in a pronograde orientation due to the tail and/or feet intermittently grasping behind the trailing forelimb. Ateles never exhibited this mode. Both brachiation and forelimb swing by Ateles were more dynamic than in Lagothrix, consisting of higher proportions of full-stride bouts (versus single-step). Both species used smaller supports for suspensory than for quadrupedal locomotion, and Ateles used both smaller and larger supports for suspension than did Lagothrix. Analysis of support inclination shows that both species tended to perform more above-support movement on horizontal supports and more below-support (suspensory) movement from oblique supports. Our attempt to elucidate the aspects of canopy structure that favor suspension suggests the need for additional kinds of observational data, focusing on the "immediate structural context" of positional events.  相似文献   

15.
This study investigates the phylogenetic relationships of 10 species of platyrrhine primates using RFLP analysis of mtDNA. Three restriction enzymes were used to determine the restriction site haplotypes for a total of 276 individuals. Phylogenetic analysis using maximum parsimony was employed to construct phylogenetic trees. We found close phylogenetic relationships between Alouatta, Lagothrix and Ateles. We also found a close relationship between Cebus and Aotus, with Saimiri clustering with the atelines. Haplotype diversity was found in four of the species studied, in Cebus albifrons, Saimiri sciureus, Lagothrix lagotricha and Ateles fusciceps. These data provide additional information concerning the phylogenetic relationships between these platyrrhine genera and species.  相似文献   

16.
Studies of skeletal pathology indicate that injury from falling accounts for most long bone trauma in free‐ranging primates, suggesting that primates should be under strong selection to manifest morphological and behavioral mechanisms that increase stability on arboreal substrates. Although previous studies have identified several kinematic and kinetic features of primate symmetrical gaits that serve to increase arboreal stability, very little work has focused on the dynamics of primate asymmetrical gaits. Nevertheless, asymmetrical gaits typify the rapid locomotion of most primates, particularly in smaller bodied taxa. This study investigated asymmetrical gait dynamics in growing marmosets and squirrel monkeys moving on terrestrial and simulated arboreal supports (i.e., an elevated pole). Results showed that monkeys used several kinematic and kinetic adjustments to increase stability on the pole, including reducing peak vertical forces, limiting center of mass movements, increasing substrate contact durations, and using shorter and more frequent strides (thus limiting disruptive whole‐body aerial phases). Marmosets generally showed greater adjustment to pole locomotion than did squirrel monkeys, perhaps as a result of their reduced grasping abilities and retreat from the fine‐branch niche. Ontogenetic increases in body size had relatively little independent influence on asymmetrical gait dynamics during pole locomotion, despite biomechanical theory suggesting that arboreal instability is exacerbated as body size increases relative to substrate diameter. Overall, this study shows that 1) symmetrical gaits are not the only stable way to travel arboreally and 2) small‐bodied primates utilize specific kinematic and kinetic adjustments to increase stability when using asymmetrical gaits on arboreal substrates. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Most New World monkeys have an X-chromosome opsin gene polymorphism that produces a variety of different colour vision phenotypes. Howler monkeys (Alouatta), one of the four genera in the family Atelidae lack this polymorphism. Instead, they have acquired uniform trichromatic colour vision similar to that of Old World monkeys, apes and people through opsin gene duplication. In order to determine whether closely related monkeys share this arrangement, spectral sensitivity functions that allow inferences about cone pigments were measured for 56 monkeys from two other Atelid genera, spider monkeys (Ateles) and woolly monkeys (Lagothrix). Unlike howler monkeys, both spider and woolly monkeys are polymorphic for their middle- and long-wavelength cone photopigments. However, they also differ from other polymorphic New World monkeys in having two rather than three possible types of middle- and long-wavelength cone pigments. This feature directly influences the relative numbers of dichromatic and trichromatic monkeys.  相似文献   

18.
All primates regularly move within three-dimensional arboreal environments and must often climb, but little is known about the energetic costs of this critical activity. Limited previous work on the energetics of incline locomotion suggests that there may be differential selective pressures for large compared to small primates in choosing to exploit a complex arboreal environment. Necessary metabolic and gait data have never been collected to examine this possibility and biomechanical mechanisms that might explain size-based differences in the cost of arboreal movement. Energetics and kinematics were collected for five species of primate during climbing and horizontal locomotion. Subjects moved on a treadmill with a narrow vertical substrate and one with a narrow horizontal substrate at their maximum sustainable speed for 10–20 min while oxygen consumption was monitored. Data during climbing were compared to those during horizontal locomotion and across size. Results show that climbing energetic costs were similar to horizontal costs for small primates (<0.5 kg) but were nearly double for larger species. Spatio-temporal gait characteristics suggest that the relationship between the cost of locomotion and the rate of force production changes between the two locomotor modes. Thus, the main determinants of climbing costs are fundamentally different from those during horizontal locomotion. These new results combining spatiotemporal and energetic data confirm and expand on our previous argument (Hanna et al.: Science 320 (2008) 898) that similar costs of horizontal and vertical locomotion in small primates facilitated the successful occupation of a fine-branch arboreal milieu by the earliest primates.  相似文献   

19.
Information on the use of space, activity patterns, diet, and social interactions were recorded for a group of woolly monkeys (Lagothrix lagotricha) during 13 months at Tinigua National Park, Macarena, Colombia. In this region, fruit abundance changes throughout the year with a peak during March–April (beginning of the rainy season) and less fruit during September-November (end of rainy season). Woolly monkeys spent most of their time in mature forest where fruit abundance is higher than in opendegraded or flooded forests. Changes in habitat used by monkeys were coupled with changes in fruit supply across vegetation types. On an annual basis, woolly monkeys spent 24% of point samples locomoting, 36% resting, 36% feeding, and 4% on other activities. However, these proportions varied across the year depending on fruit availability. Based on instantaneous samples, the diet consisted mostly of fruits (60%), arthropods (23%), vegetative parts and flowers (17%), and other items (1%). Non-lactating females and juveniles spent more time eating insects than adult males and lactating females; however, significant differences between classes were detected only during the period of fruit scarcity. These differences are probably due to the high extent to which non-lactating females and juveniles were excluded from fruiting trees by males. The high proportion of arthropods in their diet is unusual for primates with large body size and is a possible factor influencing group cohesiveness in woolly monkeys. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Nucleotide sequences, each spanning approximately 7 kb of the contiguous gamma1 and gamma2 globin genomic loci, were determined for seven species representing all extant genera (Ateles, Lagothrix, Brachyteles, and Alouatta) of the New World monkey subfamily Atelinae. After aligning these seven ateline sequences with outgroup sequences from several other primate (non-ateline) genera, they were analyzed by maximum parsimony, maximum likelihood, and neighbor-joining algorithms. All three analyzes estimated the same phylogenetic relationships: [Alouatta [Ateles (Brachyteles, Lagothrix)]]. Brachyteles and Lagothrix are sister-groups supported by 100% of bootstrap replications in the parsimony analyses. Ateles joins this clade, followed by the basal genus Alouatta; these joinings were strongly supported, again with 100% bootstrap values. This cladistic pattern for the four ateline genera is congruent with that obtained in previous studies utilizing epsilon-globin, IRBP, and G6PD nuclear genomic sequences as well as mitochondrial COII sequences. Because the number of aligned nucleotide positions is much larger in the present datasetoff than in any of these other datasets, much stronger support was obtained for the cladistic classification that divides subfamily Atelinae into tribes Alouattini (Alouatta) and Atelini, while the latter divides into subtribes Atelina (Ateles) and Brachytelina (Brachyteles and Lagothrix).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号