首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The alpha(v)beta(3) integrin has been shown to bind several ligands, including osteopontin and vitronectin. Its role in modulating cell migration and downstream signaling pathways in response to specific extracellular matrix ligands has been investigated in this study. Highly invasive prostate cancer PC3 cells that constitutively express alpha(v)beta(3) adhere and migrate on osteopontin and vitronectin in an alpha(v)beta(3)-dependent manner. However, exogenous expression of alpha(v)beta(3) in noninvasive prostate cancer LNCaP (beta(3)-LNCaP) cells mediates adhesion and migration on vitronectin but not on osteopontin. Activation of alpha(v)beta(3) by epidermal growth factor stimulation is required to mediate adhesion to osteopontin but is not sufficient to support migration on this substrate. We show that alpha(v)beta(3)-mediated cell migration requires activation of the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (PKB/AKT) pathway since wortmannin, a PI 3-kinase inhibitor, prevents PC3 cell migration on both osteopontin and vitronectin; furthermore, alpha(v)beta(3) engagement by osteopontin and vitronectin activates the PI 3-kinase/AKT pathway. Migration of beta(3)-LNCaP cells on vitronectin also occurs through activation of the PI 3-kinase pathway; however, AKT phosphorylation is not increased upon engagement by osteopontin. Furthermore, phosphorylation of focal adhesion kinase (FAK), known to support cell migration in beta(3)-LNCaP cells, is detected on both substrates. Thus, in PC3 cells, alpha(v)beta(3) mediates cell migration and PI 3-kinase/AKT pathway activation on vitronectin and osteopontin; in beta(3)-LNCaP cells, alpha(v)beta(3) mediates cell migration and PI 3-kinase/AKT pathway activation on vitronectin, whereas adhesion to osteopontin does not support alpha(v)beta(3)-mediated cell migration and PI 3-kinase/AKT pathway activation. We conclude therefore that alpha(v)beta(3) exists in multiple functional states that can bind either selectively vitronectin or both vitronectin and osteopontin and that can differentially activate cell migration and intracellular signaling pathways in a ligand-specific manner.  相似文献   

2.
Podosomes are adhesion structures in osteoclasts and are structurally related to focal adhesions mediating cell motility during bone resorption. Here we show that gelsolin coprecipitates some of the focal adhesion-associated proteins such as c-Src, phosphoinositide 3-kinase (PI3K), p130(Cas), focal adhesion kinase, integrin alpha(v)beta(3), vinculin, talin, and paxillin. These proteins were inducibly tyrosine-phosphorylated in response to integrin activation by osteopontin. Previous studies have defined unique biochemical properties of gelsolin related to phosphatidylinositol 3,4,5-trisphosphate in osteoclast podosomes, and here we demonstrate phosphatidylinositol 3,4,5-trisphosphate/gelsolin function in mediating organization of the podosome signaling complex. Overlay and GST pull-down assays demonstrated strong phosphatidylinositol 3,4,5-trisphosphate-PI3K interactions based on the Src homology 2 domains of PI3K. Furthermore, lipid extraction of lysates from activated osteoclasts eliminated interaction between gelsolin, c-Src, PI3K, and focal adhesion kinase despite equal amounts of gelsolin in both the lipid-extracted and unextracted experiment. The cytoplasmic protein tyrosine phosphatase (PTP)-proline-glutamic acid-serine-threonine amino acid sequences (PEST) was also found to be associated with gelsolin in osteoclast podosomes and with stimulation of alpha(v)beta(3)-regulated phosphorylation of PTP-PEST. We conclude that gelsolin plays a key role in recruitment of signaling proteins to the plasma membrane through phospholipid-protein interactions and by regulation of their phosphorylation status through its association with PTP-PEST. Because both gelsolin deficiency and PI3K inhibition impair bone resorption, we conclude that phosphatidylinositol 3,4,5-trisphosphate-based protein interactions are critical for osteoclast function.  相似文献   

3.
Osteoclasts are unique cells that utilize podosomes instead of focal adhesions for matrix attachment and cytoskeletal remodeling during motility. We have shown that osteopontin (OP) binding to the alpha(v)beta(3) integrin of osteoclast podosomes stimulated cytoskeletal reorganization and bone resorption by activating a heteromultimeric signaling complex that includes gelsolin, pp(60c-src), and phosphatidylinositol 3'-kinase. Here we demonstrate that gelsolin deficiency blocks podosome assembly and alpha(v)beta(3)-stimulated signaling related to motility in gelsolin-null mice. Gelsolin-deficient osteoclasts were hypomotile due to retarded remodeling of the actin cytoskeleton. They failed to respond to the autocrine factor, OP, with stimulation of motility and bone resorption. Gelsolin deficiency was associated with normal skeletal development and endochondral bone growth. However, gelsolin-null mice had mildly abnormal epiphyseal structure, retained cartilage proteoglycans in metaphyseal trabeculae, and increased trabecular thickness. With age, the gelsolin-deficient mice expressed increased trabecular and cortical bone thickness producing mechanically stronger bones. These observations demonstrate the critical role of gelsolin in podosome assembly, rapid cell movements, and signal transduction through the alpha(v)beta(3) integrin.  相似文献   

4.
We have studied the role of phosphatidylinositol 3-kinases (PI 3-kinases) in the regulation of the actin cytoskeleton in MTLn3 rat adenocarcinoma cells. Stimulation of MTLn3 cells with epidermal growth factor (EGF) induced a rapid increase in actin polymerization, with production of lamellipodia within 3 min. EGF-stimulated lamellipodia were blocked by 100 nM wortmannin, suggesting the involvement of a class Ia PI 3-kinase. MTLn3 cells contain equal amounts of p110alpha and p110beta, and do not contain p110delta. Injection of specific inhibitory antibodies to p110alpha induced cell rounding and blocked EGF-stimulated lamellipod extension, whereas control or anti-p110beta antibodies had no effect. In contrast, both antibodies inhibited EGF-stimulated DNA synthesis. An in situ assay for actin nucleation showed that EGF-stimulated formation of new barbed ends was blocked by injection of anti-p110alpha antibodies. In summary, the p110alpha isoform of PI 3-kinase is specifically required for EGF-stimulated actin nucleation during lamellipod extension in breast cancer cells.  相似文献   

5.
Rho plays a regulatory role in the formation of actin stress fibers and focal adhesions, and it is also involved in integrin-mediated signaling events. To study the role of Rho in alpha(v)beta(3)/gelsolin-dependent signaling, the HIV-Tat peptide, hemagglutinin (HA)-tagged Rho(Val-14) (constitutively active) and Rho(Asn-19) (dominant negative) were transduced into avian osteoclasts. Protein transduction by HA-Tat was highly efficient, and 90-100% of the cells were transduced with HA-tagged proteins. We demonstrate here that Rho(Val-14) transduction (100 nM) stimulated gelsolin-associated phosphatidylinositol 3-kinase activity, podosome assembly, stress fiber formation, osteoclast motility, and bone resorption, mimicking osteoclast stimulation by osteopontin/alpha(v)beta(3.) The effects of Rho(Val-14) transduction stimulation was time-dependent. C3 exoenzyme blocked the effects of Rho(Val-14) and induced podosome disassembly, loss of motility, and inhibition of bone resorption. Transduction of Rho(Asn-19) produced podosome disassembly, and blocked osteopontin stimulation. These data demonstrate that integrin-dependent activation of phosphoinositide synthesis, actin stress fiber formation, podosome reorganization for osteoclast motility, and bone resorption require Rho stimulation.  相似文献   

6.
We have recently identified integrin alpha(v)beta(3) and the associated CD47/integrin-associated protein (IAP) together with three other proteins as the potential tumor cell receptors for the alpha(3) chain of basement membrane type IV collagen (Shahan, T.A., Ziaie, Z., Pasco, S., Fawzi, A., Bellon, G., Monboisse, J. C., and Kefalides, N. A. (1999) Cancer Res. 59, 4584-4590). Using different cell lines expressing alpha(v)beta(3), alpha(IIb)beta(3), and/or CD47 and a liquid phase receptor capture assay, we now provide direct evidence that the synthetic and biologically active alpha3(IV)185-206 peptide, derived from the alpha3(IV) chain, interacts with the beta(3) subunit of integrin alpha(v)beta(3), independently of CD47. Increased alpha3(IV) peptide binding was observed on transforming growth factor-beta(1)-stimulated HT-144 cells shown to up-regulate alpha(v)beta(3) independently of CD47. Also, incubation of HT-144 melanoma cells in suspension induced de novo exposure of ligand-induced binding site epitopes on the beta(3) subunit similar to those observed following Arg-Gly-Asp-Ser (RGDS) stimulation. However, RGDS did not prevent HT-144 cell attachment and spreading on the alpha3(IV) peptide, suggesting that the alpha3(IV) binding domain on the beta(3) subunit is distinct from the RGD recognition site. alpha3(IV) peptide binding to HT-144 cells in suspension stimulated time-dependent tyrosine phosphorylation, while the RGDS peptide did not. Two major phosphotyrosine proteins of 120-130 and 85 kDa were immunologically identified as focal adhesion kinase and phosphatidylinositol 3-kinase (PI3-kinase). A direct involvement of PI3-kinase in alpha3(IV)-dependent beta(3) integrin signaling could be documented, since pretreatment of HT-144 cells with wortmannin, a PI3-kinase inhibitor, reverted the known inhibitory effect of alpha3(IV) on HT-144 cell proliferation as well as membrane type 1-matrix metalloproteinase gene expression. These results provide evidence that the alpha3(IV)185-206 peptide, by directly interacting with the beta(3) subunit of alpha(v)beta(3), activates a signaling cascade involving focal adhesion kinase and PI3-kinase.  相似文献   

7.
The adhesive function of integrins is regulated through cytoplasmic signaling. The present study was performed to investigate the relevance of cytoplasmic signaling and cytoskeletal assembly to integrin-mediated adhesion induced by chemokines. Adhesion of T cells induced by chemokines macrophage inflammatory protein (MIP)-1alpha and MIP-1beta was inhibited by pertussis toxin, wortmannin, and cytochalasin B, suggesting that both G protein-sensitive phosphatidylinositol (PI) 3-kinase activation and cytoskeletal assemblies are involved. The chemokine-induced T cell adhesion could be mimicked by expression of small G proteins, fully activated H-RasV12, or H-RasV12Y40C mutant, which selectively binds to PI 3-kinase, in T cells, inducing activated form of LFA-1alpha and LFA-1-dependent adhesion to ICAM-1. H-Ras expression also induced F-actin polymerization which colocalized with profilin in T cells. Adult T cell leukemia (ATL) cells spontaneously adhered to ICAM-1, which depended on endogenous MIP-1alpha and MIP-1beta through activation of G protein-sensitive PI 3-kinase. H-Ras signal pathway, leading to PI 3-kinase activation, also induced active configuration of LFA-1 and LFA-1-mediated adhesion of ATL cells, whereas expression of a dominant-negative H-Ras mutant failed to do. Profilin-dependent spontaneous polymerization of F-actin in ATL cells was reduced by PI 3-kinase inhibitors. In this paper we propose that H-Ras-mediated activation of PI 3-kinase can be involved in induction of LFA-1-dependent adhesion of T cells, which is relevant to chemokine-mediated signaling, and that profilin may form an important link between chemokine- and/or H-Ras-mediated signals and F-actin polymerization, which results in triggering of LFA-1 on T cells or leukemic T cells.  相似文献   

8.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates cellular glucose uptake by decreasing the apparent K(m) for substrate transport through facilitative glucose transporters on the plasma membrane. Little is known about this signal transduction pathway and the role of the alpha subunit of the GM-CSF receptor (alpha GMR) in modulating transporter activity. We examined the function of phosphatidylinositol 3-kinase (PI 3-kinase) in GM-CSF-stimulated glucose uptake and found that PI 3-kinase inhibitors, wortmannin and LY294002, completely blocked the GM-CSF-dependent increase of glucose uptake in Xenopus oocytes expressing the low affinity alpha GMR and in human cells expressing the high affinity alpha beta GMR complex. We identified a Src homology 3 domain-binding motif in alpha GMR at residues 358-361 as a potential interaction site for the PI 3-kinase regulatory subunit, p85. Physical evidence for p85 binding to alpha GMR was obtained by co-immunoprecipitation with antibodies to alpha GMR and p85, and an alpha GMR mutant with alteration of the Src homology 3 binding domain lost the ability to bind p85. Experiments with a construct eliminating most of the intracellular portion of alpha GMR showed a 50% reduction in GM-CSF-stimulated glucose uptake with residual activity blocked by wortmannin. Searching for a proximally generated diffusible factor capable of activating PI 3-kinase, we identified hydrogen peroxide (H(2)O(2)), generated by ligand or antibody binding to alpha GMR, as the initiating factor. Catalase treatment abrogated GM-CSF- or anti-alpha GMR antibody-stimulated glucose uptake in alpha GMR-expressing oocytes, and H(2)O(2) activated PI 3-kinase and led to some stimulation of glucose uptake in uninjected oocytes. Human myeloid cell lines and primary explant human lymphocytes expressing high affinity GM-CSF receptors responded to alpha GMR antibody with increased glucose uptake. These results identify the early events in the stimulation of glucose uptake by GM-CSF as involving local H(2)O(2) generation and requiring PI 3-kinase activation. Our findings also provide a mechanistic explanation for signaling through the isolated alpha subunit of the GM-CSF receptor.  相似文献   

9.
Dynamic regulation of beta(2) integrin-dependent adhesion is critical for a wide array of T cell functions. We previously showed that binding of high-affinity alpha(4)beta(1) integrins to VCAM-1 strengthens alpha(L)beta(2) integrin-mediated adhesion to ICAM-1. In this study, we compared beta(2) integrin-mediated adhesion of T cells to ICAM-1 under two different functional contexts: alpha(4) integrin signaling during emigration from blood into tissues and CD3 signaling during adhesion to APCs and target cells. Cross-linking either alpha(4) integrin or CD3 on Jurkat T cells induced adhesion to ICAM-1 of comparable strength. Adhesion was dependent on phosphatidylinositol (PI) 3-kinase but not p44/42 mitogen-activated protein kinase (extracellular regulated kinase 1/2), because it was inhibited by wortmannin and LY294002 but not U0126. These data suggest that PI 3-kinase is a ubiquitous regulator of beta(2) integrin-mediated adhesion. A distinct morphological change consisting of Jurkat cell spreading and extension of filopodia was induced by alpha(4) integrin signaling. In contrast, CD3 induced radial rings of cortical actin polymerization. Inhibitors of PI 3-kinase and extracellular regulated kinase 1/2 did not affect alpha(4) integrin-induced rearrangement of the actin cytoskeleton, but treatment with ionomycin, a Ca(2+) ionophore, modulated cell morphology by reducing filopodia and promoting lamellipodia formation. Qualitatively similar morphological and adhesive changes to those observed with Jurkat cells were observed following alpha(4) integrin or CD3 stimulation of human peripheral blood T cells.  相似文献   

10.
Oncogenic signaling stimulates the dynamic remodeling of actin microfilaments and substrate adhesions, essential for cell spreading and motility. Transformation is associated with increased expression of beta1,6GlcNAc-branched N-glycans, products of Golgi beta1,6-acetylglucosaminyltransferase V (Mgat5) and the favored ligand for galectins. Herein we report that fibronectin fibrillogenesis and fibronectin-dependent cell spreading are deficient in Mgat5(-/-) mammary epithelial tumor cells and inhibited in Mgat5(+/+) cells by blocking Golgi N-glycan processing with swainsonine or by competitive inhibition of galectin binding. At an optimum dosage, exogenous galectin-3 added to Mgat5(+/+) cells activates focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K), recruits conformationally active alpha5beta1-integrin to fibrillar adhesions, and increases F-actin turnover. RGD peptide inhibits PI3K-dependent fibronectin matrix remodeling and fibronectin-dependent cell motility, while galectin-3 stimulates and overrides the inhibitory effects of RGD. Antibodies to the galectin-3 N-terminal oligomerization domain stimulate alpha5beta1 activation and recruitment to fibrillar adhesions in Mgat5(+/+) cells, an effect that is blocked by disrupting galectin-glycan binding. Our results demonstrate that fibronectin polymerization and tumor cell motility are regulated by galectin-3 binding to branched N-glycan ligands that stimulate focal adhesion remodeling, FAK and PI3K activation, local F-actin instability, and alpha5beta1 translocation to fibrillar adhesions.  相似文献   

11.
Activation of cytoskeleton regulator Rho-kinase during ischemia–reperfusion (I/R) plays a major role in I/R injury and apoptosis. Since Rho-kinase is a negative regulator of the pro-survival phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, we hypothesized that inhibition of Rho-kinase can prevent I/R-induced endothelial cell apoptosis by maintaining PI3-kinase/Akt activity and that protective effects of Rho-kinase inhibition are facilitated by prevention of F-actin rearrangement. Human umbilical vein endothelial cells were subjected to 1 h of simulated ischemia and 1 or 24 h of simulated reperfusion after treatment with Rho-kinase inhibitor Y-27632, PI3-kinase inhibitor wortmannin, F-actin depolymerizers cytochalasinD and latrunculinA and F-actin stabilizer jasplakinolide. Intracellular ATP levels decreased following I/R. Y-27632 treatment reduced I/R-induced apoptosis by 31% (P < 0.01) and maintained Akt activity. Both effects were blocked by co-treatment with wortmannin. Y-27632 treatment prevented the formation of F-actin bundles during I/R. Similar results were observed with cytochalasinD treatment. In contrast, latrunculinA and jasplakinolide treatment did not prevent the formation of F-actin bundles during I/R and had no effect on I/R-induced apoptosis. Apoptosis and Akt activity were inversely correlated (R 2 = 0.68, P < 0.05). In conclusion, prevention of F-actin rearrangement by Rho-kinase inhibition or by cytochalasinD treatment attenuated I/R-induced endothelial cell apoptosis by maintaining PI3-kinase and Akt activity.  相似文献   

12.
In osteoclasts, polyphosphoinositides such as phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5 trisphosphate (PI(3,4,5)P3) are produced in response to integrin alphavbeta3 signaling and they have a critical role in actin cytoskeleton remodeling. The levels of PI(4,5)P2 and PI(3,4,5)P3 are regulated by Rho GTPase through the activation of phosphatidylinositol 4-phosphate 5-kinase (PI4P-5 kinase) and phospatidylinositol 3-kinase (PI3 kinase), respectively. Interaction of PI(4,5)P2 with gelsolin and Wiscott-Aldrich syndrome protein (WASP) is critical for podosome assembly/disassembly and actin ring formation in osteoclasts. Interaction of PI(3,4,5)P3 with gelsolin functions in orchestrating the podosome signaling complex consisting of several key signaling molecules. Gelsolin deficiency has been shown to block podosome assembly and motility in mouse osteoclasts. However, these osteoclasts are able to form a WASP-containing actin ring and retain their resorptive function. The TAT-mediated delivery of gelsolin phosphoinositide-binding domains into osteoclasts resulted in production of podosome clusters and disruption of actin ring formation. Hence, these osteoclasts were hypomotile and less resorptive. Our observations suggest that both PI(4,5)P2 and PI(3,4,5)P3 are involved in regulating osteoclast functions through modulation of severing, capping, and nucleating functions of actin-binding proteins.  相似文献   

13.
Acquisition of motility is an important step in malignant progression of tumor cells and involves dynamic changes in actin filament architecture orchestrated by many actin binding proteins. A role for the actin-binding protein gelsolin has been demonstrated in fibroblast motility. In this report, we investigated the role of gelsolin in bronchial epithelial cell motility. The non-tumorigenic bronchial epithelial cell line, NL20 migrated towards EGF in a modified Boyden chamber cell motility assay. However, the tumorigenic NL20-TA cell line derived from the NL20 cells and lacking gelsolin, did not migrate towards EGF. Ectopic expression of gelsolin in NL20-TA cells restored the EGF response, while motility of NL20-TA derived cells towards serum, PDGF, and fibronectin was independent of gelsolin expression. PI3-kinase inhibition failed to block EGF-stimulated motility in gelsolin transfected NL20-TA cells. Furthermore, EGF stimulated a motility response in cells lacking gelsolin in the presence of fibronectin or fibrinogen that was blocked with PI3-kinase inhibition. Thus, EGF-stimulated motility in NL20 cells and its derivatives are gelsolin dependent and PI3-kinase independent, while fibronectin and fibrinogen enhances EGF-stimulated motility through a pathway independent of gelsolin and dependent upon PI3-kinase.  相似文献   

14.
15.
Signal transduction mediated by phosphatidylinositol 3-kinase (PI 3-kinase) is regulated by hydrolysis of its products, a function performed by the 145-kDa SH2 domain-containing inositol phosphatase (SHIP). Here, we show that bone marrow macrophages of SHIP(-/-) animals have elevated levels of phosphatidylinositol 3,4,5-trisphosphate [PI (3,4,5)P(3)] and displayed higher and more prolonged chemotactic responses to macrophage colony-stimulating factor (M-CSF) and elevated levels of F-actin relative to wild-type macrophages. We also found that the small GTPase Rac was constitutively active and its upstream activator Vav was constitutively phosphorylated in SHIP(-/-) macrophages. Furthermore, we show that Vav in wild-type macrophages is recruited to the membrane in a PI 3-kinase-dependent manner through the Vav pleckstrin homology domain upon M-CSF stimulation. Dominant inhibitory mutants of both Rac and Vav blocked chemotaxis. We conclude that Vav acts as a PI 3-kinase-dependent activator for Rac activation in macrophages stimulated with M-CSF and that SHIP regulates macrophage M-CSF-triggered chemotaxis by hydrolysis of PI (3,4,5)P(3).  相似文献   

16.
We have investigated the effects of wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), on antigen-mediated signaling in the RBL-2H3 mast cell model. In RBL-2H3 cells, the cross-linking of high affinity IgE receptors (Fc epsilon R1) activates at least two cytoplasmic protein tyrosine kinases, Lyn and Syk, and stimulates secretion, membrane ruffling, spreading, pinocytosis, and the formation of actin plaques implicated in increased cell-substrate adhesion. In addition, Fc epsilon R1 cross-linking activates PI 3-kinase. It was previously shown that wortmannin causes a dose-dependent inhibition of PI 3-kinase activity and also inhibits antigen-stimulated degranulation. We report that the antigen-induced synthesis of inositol(1,4,5)P3 is also markedly inhibited by wortmannin. Consistent with evidence in other cell systems implicating phosphatidylinositol(3,4,5)P3 in ruffling, pretreatment of RBL-2H3 cells with wortmannin inhibits membrane ruffling and fluid pinocytosis in response to Fc epsilon R1 cross-linking. However, wortmannin does not inhibit antigen-induced actin polymerization, receptor internalization, or the actin-dependent processes of spreading and adhesion plaque formation that follow antigen stimulation in adherent cells. Wortmannin also fails to inhibit either of the Fc epsilon R1-coupled tyrosine kinases, Lyn or Syk, or the activation of mitogen-activated protein kinase as measured by in vitro kinase assays. Strikingly, there is substantial in vitro serine/threonine kinase activity in immunoprecipitates prepared from Fc epsilon R1-activated cells using antisera to the p85 subunit of PI 3-kinase. This activity is inhibited by pretreatment of the cells with wortmannin or by the direct addition of wortmannin to the kinase assay, suggesting that PI 3-kinase itself is capable of acting as a protein kinase. We conclude that Fc epsilon R1 cross-linking activates both lipid and protein kinase activities of PI 3-kinase and that inhibiting these activities with wortmannin results in the selective block of a subset of Fc epsilon R1-mediated signaling responses.  相似文献   

17.
Abstract: Several lines of evidence suggest that phosphorylated products of phosphatidylinositol play critical functions in the regulation of membrane trafficking along the secretory pathway. To probe the possible involvement of phosphatidylinositol 3-kinase (PI 3-kinase) in regulated exocytosis, we have examined its subcellular distribution in cultured chromaffin cells by immunoreplica analysis and confocal immunofluorescence. We found that the PI 3-kinase heterodimer consisting of the regulatory and catalytic subunits was associated essentially with the subplasmalemmal cytoskeleton in both resting and nicotine-stimulated chromaffin cells. Attempts to immunoprecipitate PI 3-kinase with anti-phosphotyrosine antibodies failed, suggesting that the activity of PI 3-kinase was not modulated by tyrosine phosphorylation and/or physical interaction with SH2-containing proteins in stimulated chromaffin cells. LY294002 [2-(4-morpholinyl)-8-phenyl-4 H -1-benzopyran-4-one], a potent inhibitor of PI 3-kinase, produced a dose-dependent inhibition of catecholamine secretion evoked by various secretagogues. Furthermore, cytochemical experiments with rhodamine-labeled phalloidin revealed that LY294002 blocked the disassembly of cortical actin in chromaffin cells stimulated by a depolarizing concentration of potassium. Our results suggest that PI 3-kinase may be one of the important regulatory exocytotic components involved in the signaling cascade controlling actin rearrangements required for catecholamine secretion.  相似文献   

18.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

19.
20.
The signaling pathways linking receptor activation to actin stress fiber rearrangements during growth factor-induced cell shape change are still to be determined. Recently our laboratory demonstrated the involvement of p70 S6 kinase (p70(s6k)) activation in thrombin-induced stress fiber formation in Swiss 3T3 cells. The present work shows that thrombin-induced p70(s6k) activation is inhibited by the PI 3-kinase inhibitors wortmannin and LY-294002. These inhibitors also significantly reduced thrombin-induced stress fiber formation, demonstrating a role for PI 3-kinase activity in this process, most likely upstream of p70(s6k). Furthermore, the p110alpha form of PI 3-kinase was localized to actin stress fibers, as was previously shown for p70(s6k), as well as to a golgi-like distribution. In contrast, PI 3-kinase p110gamma colocalized with microtubules. The PI 3-kinase p85 subunit, known to be capable of association with p110alpha, was present in a predominantly golgi-like distribution with no presence on actin filaments, suggesting the existence of distinctly localized PI 3-kinase pools. Immunodepletion of p85 from cell lysates resulted in only partial depletion of p110alpha and p110alpha-associated PI 3-kinase activity, confirming the presence of a p85-free p110alpha pool located on the actin stress fibers. Our data, therefore, point to the importance of subcellular localization of PI 3-kinase in signal transduction and to a novel action of p85 subunit-independent PI 3-kinase p110alpha in the stimulation by thrombin of p70(s6k) activation and actin stress fiber formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号