首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Endothelial nitric-oxide synthase (eNOS) is regulated by signaling pathways involving multiple sites of phosphorylation. The coordinated phosphorylation of eNOS at Ser(1179) and dephosphorylation at Thr(497) activates the enzyme, whereas inhibition results when Thr(497) is phosphorylated and Ser(1179) is dephosphorylated. We have identified two further phosphorylation sites, at Ser(617) and Ser(635), by phosphopeptide mapping and matrix-assisted laser desorption ionization time of flight mass spectrometry. Purified protein kinase A (PKA) phosphorylates both sites in purified eNOS, whereas purified Akt phosphorylates only Ser(617). In bovine aortic endothelial cells, bradykinin (BK), ATP, and vascular endothelial growth factor stimulate phosphorylation of both sites. BK-stimulated phosphorylation of Ser(617) is Ca(2+)-dependent and is partially inhibited by LY294002 and wortmannin, phosphatidylinositol 3-kinase inhibitors, suggesting signaling via Akt. BK-stimulated phosphorylation of Ser(635) is Ca(2+)-independent and is completely abolished by the PKA inhibitor, KT5720, suggesting signaling via PKA. Activation of PKA with isobutylmethylxanthine also causes Ser(635), but not Ser(617), phosphorylation. Mimicking phosphorylation at Ser(635) by Ser to Asp mutation results in a greater than 2-fold increase in activity of the purified protein, whereas mimicking phosphorylation at Ser(617) does not alter maximal activity but significantly increases Ca(2+)-calmodulin sensitivity. These data show that phosphorylation of both Ser(617) and Ser(635) regulates eNOS activity and contributes to the agonist-stimulated eNOS activation process.  相似文献   

2.
beta-Adrenergic receptors (betaAR) play an important role in vasodilation, but the mechanisms whereby adrenergic pathways regulate the endothelial isoform of nitric-oxide synthase (eNOS) are incompletely understood. We found that epinephrine significantly increases eNOS activity in cultured bovine aortic endothelial cells (BAEC). Epinephrine-dependent eNOS activation was accompanied by an increase in phosphorylation of eNOS at Ser(1179) and with decreased eNOS phosphorylation at the inhibitory phosphoresidues Ser(116) and Thr(497). Epinephrine promoted activation of the small G protein Rac1 and also led to the activation of protein kinase A. All of these responses to epinephrine in BAEC were blocked by the beta(3)AR blocker SR59230A. We transfected and validated duplex small interfering RNA (siRNA) constructs to selectively "knock down" specific signaling proteins in BAEC. siRNA-mediated knockdown of Rac1 completely blocked all beta(3)AR signaling to eNOS and also abrogated epinephrine-dependent cAMP-dependent protein kinase (PKA) and Akt activation. However, siRNA-mediated knockdown of PKA did not affect Rac1 activation by epinephrine but did attenuate Akt activation by epinephrine. These findings indicate that Rac1 is an upstream regulator of beta(3)AR signaling to PKA and to eNOS and identify a novel beta(3)AR --> Rac1 --> PKA --> Akt pathway in endothelium. We exploited the p21-activated kinase pulldown assay to identify proteins associated with activated Rac1 and found that epinephrine stimulated the association of eNOS with Rac1; epinephrine-stimulated eNOS-Rac1 interactions were blocked by the beta(3)AR antagonist SR59230A. Co-transfection of eNOS cDNA with constitutively active Rac1 enhanced beta(3)AR-promoted eNOS-Rac1 association; co-transfection of eNOS with dominant negative Rac1 completely blocked the eNOS-Rac1 association. We also found that epinephrine-induced Rac1 --> PKA --> Akt pathway mediates beta(3)AR-mediated endothelial cell migration. Taken together, our data establish that the small G protein Rac1 is a key regulator of beta(3)AR signaling in cultured aortic endothelial cells with potentially important implications for the pathways involved in adrenergic modulation of eNOS pathways in the vascular wall.  相似文献   

3.
Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid that elicits numerous biological responses in endothelial cells mediated by a family of G protein-coupled EDG receptors. Stimulation of EDG receptors by S1P has been shown to activate the endothelial isoform of nitric-oxide synthase (eNOS) in heterologous expression systems (Igarashi, J., and Michel, T. (2000) J. Biol. Chem. 275, 32363-32370). However, the signaling pathways that modulate eNOS regulation by S1P/EDG in vascular endothelial cells remain less well understood. We now report that S1P treatment of bovine aortic endothelial cells (BAEC) acutely increases eNOS enzyme activity; the EC(50) for S1P activation of eNOS is approximately 10 nm. The magnitude of eNOS activation by S1P in BAEC is equivalent to that elicited by the agonist bradykinin. S1P treatment activates Akt, a protein kinase implicated in phosphorylation of eNOS. S1P treatment of BAEC leads to eNOS phosphorylation at Ser(1179), a residue phosphorylated by Akt; an eNOS mutant in which this Akt phosphorylation site is inactivated shows attenuated S1P-induced eNOS activation. S1P-induced activation both of Akt and of eNOS is inhibited by pertussis toxin, by the phosphoinositide 3-kinase inhibitor wortmannin, and by the intracellular calcium chelator BAPTA (1,2-bis(aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). By contrast to S1P, activation of G protein-coupled bradykinin B2 receptors neither activates kinase Akt nor promotes Ser(1179) eNOS phosphorylation despite robustly activating eNOS enzyme activity. Understanding the differential regulation of protein kinase pathways by S1P and bradykinin may lead to the identification of new points for eNOS regulation in vascular endothelial cells.  相似文献   

4.
Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction between Akt and PKA may be an important mechanism by which eNOS activity is regulated in response to physiological stimuli such as shear stress.  相似文献   

5.
Endothelial NO synthase (eNOS) is critically modulated by kinases via the phosphorylation of its Ser(1179) (bovine) or Ser(1177) (human) residue. Reactive oxygen species such as H(2)O(2) was reported to activate Akt, leading to increased eNOS Ser(1179) phosphorylation and activity. But reactive oxygen species are also known to attenuate eNOS function in cardiovascular diseases. Prior studies showing H(2)O(2)-stimulated eNOS phosphorylation were performed on serum-starved cells, and only the short term effect of H(2)O(2) was examined. Here we found that the effects of H(2)O(2) on eNOS Ser(1179) phosphorylation and function were bidirectional. With endothelial cells cultured with serum, H(2)O(2) initially raised eNOS Ser(1179) phosphorylation and activity. However, after the peak increase at 30 min, eNOS Ser(1179) phosphorylation dramatically declined. Parallel to the alterations of eNOS Ser(1179) phosphorylation, Akt was transiently activated by H(2)O(2) and subsequently became dormant. In contrast, AMP-activated protein kinase (AMPK) was progressively activated in H(2)O(2)-treated cells. Blocking Akt activation abolished the initial rise of eNOS Ser(1179) phosphorylation after H(2)O(2) treatment. In long term H(2)O(2)-treated cells where Akt was deactivated, significant amounts of Ser(1179)-phosphorylated eNOS remained. AMPK inhibition eradicated the remaining eNOS Ser(1179) phosphorylation. Taken together, these studies revealed that Akt and AMPK orchestrated a bidirectional action on eNOS Ser(1179) phosphorylation in H(2)O(2)-treated cells. Long term H(2)O(2) exposure decreased eNOS Ser(1179) phosphorylation, and this might account for the loss of eNOS function in cardiovascular diseases where chronic oxidative injury occurs.  相似文献   

6.
Endothelial nitric-oxide synthase (eNOS) is phosphorylated at Ser-1179 (bovine sequence) by Akt after growth factor or shear stress stimulation of endothelial cells, resulting in increased eNOS activity. Purified eNOS is also phosphorylated at Thr-497 by purified AMP-activated protein kinase, resulting in decreased eNOS activity. We investigated whether bradykinin (BK) stimulation of bovine aortic endothelial cells (BAECs) regulates eNOS through Akt activation and Ser-1179 or Thr-497 phosphorylation. Akt is transiently activated in BK-stimulated BAECs. Activation is blocked completely by wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase, suggesting that Akt activation occurs downstream from phosphatidylinositol 3-kinase. BK stimulates a transient phosphorylation of eNOS at Ser-1179 that is correlated temporally with a transient dephosphorylation of eNOS at Thr-497. Phosphorylation at Ser-1179, but not dephosphorylation at Thr-497, is blocked by wortmannin and LY294002. BK also stimulates a transient nitric oxide (NO) release from BAECs with a time-course similar to Ser-1179 phosphorylation and Thr-497 dephosphorylation. NO release is not altered by wortmannin. BK-stimulated dephosphorylation of Thr-497 and NO release are blocked by the calcineurin inhibitor, cyclosporin A. These data suggest that BK activation of eNOS in BAECs primarily involves deinhibition of the enzyme through calcineurin-mediated dephosphorylation at Thr-497.  相似文献   

7.
3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors, statins, provide beneficial effects independent of their lipid-lowering effects. One beneficial effect appears to involve acute activation of endothelial nitric oxide (NO) synthase (eNOS) and increased NO release. However, the mechanism of acute statin-stimulated eNOS activation is unknown. Therefore, we hypothesized that eNOS activation may be coupled to altered eNOS phosphorylation. Bovine aortic endothelial cells (BAECs), passages 2-6, were treated with either lovastatin or pravastatin from 0 to 30 min. eNOS phosphorylation was examined by Western blot by use of phosphospecific antibodies for Ser-1179, Ser-635, Ser-617, Thr-497, and Ser-116. Statin stimulation of BAECs increased eNOS phosphorylation at Ser-1179 and Ser-617, which was blocked by the phosphatidylinositol 3-kinase (PI3-kinase)/Akt inhibitor wortmannin, and at Ser-635, which was blocked by the protein kinase A (PKA) inhibitor KT-5720. Statin treatment of BAECs transiently increased NO release by fourfold, measured by cGMP accumulation, and was attenuated by N-nitro-l-arginine methyl ester, wortmannin, and KT-5720 but not by mevalonate. In conclusion, these data demonstrate that eNOS is acutely activated by statins independent of HMG-CoA reductase inhibition and that in addition to Ser-1179, eNOS phosphorylation at Ser-635 and Ser-617 through PKA and Akt, respectively, may explain, in part, a mechanism by which eNOS is activated in response to acute statin treatment.  相似文献   

8.
Ginsenosides have been shown to stimulate nitric oxide (NO) production in aortic endothelial cells. However, the signaling pathways involved have not been well studied in human aortic endothelial cells. The present study was designed to examine whether purified ginsenoside Rb1, a major active component of ginseng could actually induce NO production and to clarify the signaling pathway in human aortic endothelial cells. NO production was rapidly increased by Rb1. The rapid increase in NO production was abrogated by treatment with nitric oxide synthetase inhibitor, L-NAME. Rb1 stimulated rapid phosphorylation of Akt (Ser473), ERK1/2 (Thr202/Thr204) and eNOS (Ser1177). Rapid phosphorylation of eNOS (Ser1177) was prevented by SH-5, an Akt inhibitor or wortmannin, PI3-kinase inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. Interestingly, NO production and eNOS phosphorylation at Ser1177 by Rb1 were abolished by androgen receptor antagonist, nilutamide. The results suggest that PI3kinase/Akt and MEK/ERK pathways and androgen receptor are involved in the regulation of acute eNOS activation by Rb1 in human aortic endothelial cells.  相似文献   

9.
Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.  相似文献   

10.
Fluid shear stress generated by blood flowing over the endothelium is a major determinant of arterial tone, vascular remodeling, and atherogenesis. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an essential role in regulation of vascular function and structure by blood flow. Although cyclosporin A (CsA), an inhibitory ligand of cyclophilin A, is a widely used immunosuppressive drug, it causes arterial hypertension in part by impairing eNOS-dependent vasodilation. Here we show that CsA inhibits fluid shear stress-mediated eNOS activation in endothelial cells via decreasing cholesterol content in caveolae. Exposure of cultured bovine aortic endothelial cells to 1 mum CsA for 1 h significantly inhibited NO production and eNOS phosphorylation at Ser-1179 induced by flow (shear stress=dynes/cm2). The effect of CsA was not related to inhibition of two known eNOS kinases, protein kinase B (Akt) and protein kinase A, because CsA did not affect Akt or protein kinase A activation. In rabbit aorta perfused ex vivo, CsA also significantly inhibited flow-induced eNOS phosphorylation at Ser-1179 but had no effect on Akt measured by phosphorylation at Ser-473. However, CsA treatment decreased cholesterol content in caveolae and displaced eNOS from caveolae, which may be caused by CsA disrupting the association of caveolin-1 and cyclophilin A. The magnitude of the cholesterol depleting effect was similar to that of beta-cyclodextrin, a cholesterol-binding molecule, and beta-cyclodextrin had a similar inhibitory effect on flow-mediated eNOS activation. Treating bovine aortic endothelial cells for 24 h with 30 mug/ml cholesterol blocked the CsA effect and restored eNOS phosphorylation in response to flow. These data suggest that decreasing cholesterol content in caveolae by CsA is a potentially important pathogenic mechanism for CsA-induced endothelial dysfunction and hypertension.  相似文献   

11.
During pregnancy, VEGF (vascular endothelial growth factor) regulates in part endothelial angiogenesis and vasodilation. In the present study we examine the relative roles of VEGFRs (VEGF receptors) and associated signalling pathways mediating the effects of VEGF(165) on eNOS (endothelial nitric oxide synthase) activation. Despite equal expression levels of VEGFR-1 and VEGFR-2 in UAECs (uterine artery endothelial cells) from NP (non-pregnant) and P (pregnant) sheep, VEGF(165) activates eNOS at a greater level in P- compared with NP-UAEC, independently of Akt activation. The selective VEGFR-1 agonist PlGF (placental growth factor)-1 elicits only a modest activation of eNOS in P-UAECs compared with VEGF(165), whereas the VEGFR-2 kinase inhibitor blocks VEGF(165)-stimulated eNOS activation, suggesting VEGF(165) predominantly activates eNOS via VEGFR-2. Although VEGF(165) also activates ERK (extracellular-signal-regulated kinase)-1/2, this is not necessary for eNOS activation since U0126 blocks ERK-1/2 phosphorylation, but not eNOS activation, and the VEGFR-2 kinase inhibitor inhibits eNOS activation, but not ERK-1/2 phosphorylation. Furthermore, the inability of PlGF to activate ERK-1/2 and the ability of the VEGFR-2 selective agonist VEGF-E to activate ERK-1/2 and eNOS suggests again that both eNOS and ERK-1/2 activation occur predominantly via VEGFR-2. The lack of VEGF(165)-stimulated Akt phosphorylation is consistent with a lack of robust phosphorylation of Ser(1179)-eNOS. Although VEGF(165)-stimulated eNOS phosphorylation is observed at Ser(617) and Ser(635), pregnancy does not significantly alter this response. Our finding that VEGF(165) activation of eNOS is completely inhibited by wortmannin but not LY294002 implies a downstream kinase, possibly a wortmannin-selective PI3K (phosphoinositide 3-kinase), is acting between the VEGFR-2 and eNOS independently of Akt.  相似文献   

12.
Black tea improves endothelial function in patients with coronary artery disease. We sought to determine the responsible components of black tea and elucidate the underlying cell signaling mechanisms. We exposed porcine aortic endothelial cells to components of black tea and found that the polyphenol fraction acutely enhanced nitric oxide bioactivity. This effect involved endothelial nitric-oxide synthase (eNOS) phosphorylation at Ser-1177 and dephosphorylation at Thr-495, consistent with increased eNOS activity. These effects were calcium-dependent, as removal of extracellular calcium prevented eNOS phosphorylation at Ser-1177, whereas inhibition of intracellular calcium mobilization with TMB-8 blunted Thr-495 dephosphorylation. Black tea polyphenol-induced eNOS activation appeared dependent upon the phosphatidylinositol 3-kinase-Akt pathway, as it was significantly inhibited by LY294002 and a dominant negative Akt, respectively. Pharmacological inhibition of p38 mitogen-activated protein kinase (p38 MAPK) with either SB202190 or SB203580 as well as overexpression of a dominant negative p38 MAPKalpha attenuated both eNOS activation and phosphorylation changes in response to black tea polyphenols. Inhibition of p38 MAPKalpha also blunted Akt activation in response to black tea polyphenols, suggesting that p38alpha MAPK is upstream of Akt in this pathway. Finally, a constitutively active mutant of MKK6bE, an upstream kinase for p38 MAPK, enhanced both the basal and stimulated activity of Akt, leading to increased eNOS activity. Taken together, these data identify the p38 MAPK as an upstream component of Akt-mediated eNOS activation.  相似文献   

13.
Endothelial nitric oxide synthase (eNOS) is a key enzyme in NO-mediated cardiovascular homeostasis and its activity is modulated by a variety of hormonal and mechanical stimuli via phosphorylation modification. Our previous study has demonstrated that epoxyeicosatrienoic acids (EETs), the cytochrome P450 (CYP)-dependent metabolites of arachidonic acid, could robustly up-regulate eNOS expression. However, the molecular mechanism underlying the effects of EETs on eNOS remains elusive. Particularly, whether and how EETs affect eNOS phosphorylation is unknown. In the present study, we investigated the effects of EETs on eNOS phosphorylation with cultured bovine aortic endothelial cells (BAECs). BAECs were either treated with exogenous EETs or infected with recombinant adeno-associated virus (rAAV) carrying CYP2C11-CYPOR, CYP102 F87V mutant and CYP2J2, respectively, to increase endogenous EETs. Both addition of EETs and CYP epoxygenase transfection markedly increased eNOS phosphorylation at its Ser1179 and Thr497 residues. Inhibition of phosphatidylinositol 3-kinase (PI3K) with LY294002 prevented EETs-induced increases of eNOS-Ser(P)1179 but had no effect on the phosphorylation status of Thr497. However, inhibitors of protein kinase B (Akt), mitogen-activated protein kinase (MAPK) and MAPK kinase could block phosphorylation of eNOS at both sites. Inhibition of these kinases also attenuated the up-regulation of eNOS expression by EETs. Finally, administration of viral CYP epoxygenases expression vectors into rats enhanced eNOS phosphorylation and function in vivo. Thus, in addition to up-regulating eNOS expression, EETs also augment eNOS function by enhancing eNOS phosphorylation. EETs-induced up-regulation of eNOS phosphorylation and expression appears to involve in both PI3K/Akt and MAPK pathways.  相似文献   

14.
Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid that elicits diverse biological responses, including angiogenesis, via the activation of G protein-coupled EDG receptors. S1P activates the endothelial isoform of nitric-oxide synthase (eNOS), associated with eNOS phosphorylation at Ser-1179, a site phosphorylated by protein kinase Akt. We explored the proximal signaling pathways that mediate Akt activation and eNOS regulation by S1P/EDG receptors. Akt is regulated by the lipid kinase phosphoinositide 3-kinase (PI3-K). We found that bovine aortic endothelial cells (BAEC) express both alpha and beta isoforms of PI3-K, while lacking the gamma isoform. S1P treatment led to the rapid and isoform-specific activation of PI3-Kbeta in BAEC. PI3-Kbeta can be regulated by G protein betagamma subunits (Gbetagamma). The overexpression of a peptide inhibitor of Gbetagamma attenuated S1P-induced eNOS enzyme activation, as well as S1P-induced phosphorylation of eNOS and Akt. In contrast, bradykinin, a classical eNOS agonist, neither activated any PI3-K isoform nor induced eNOS phosphorylation at Ser-1179, despite activating eNOS in BAEC. Vascular endothelial growth factor activated both PI3-Kalpha and PI3-Kbeta via tyrosine kinase pathways and promoted eNOS phosphorylation that was unaffected by Gbetagamma inhibition. These findings indicate that PI3-Kbeta (regulated by Gbetagamma) may represent a novel molecular locus for eNOS activation by EDG receptors in vascular endothelial cells. These studies also indicate that different eNOS agonists activate distinct signaling pathways that diverge proximally following receptor activation but converge distally to activate eNOS.  相似文献   

15.
Green tea consumption is associated with reduced cardiovascular mortality in some epidemiological studies. Epigallocatechin gallate (EGCG), a bioactive polyphenol in green tea, mimics metabolic actions of insulin to inhibit gluconeogenesis in hepatocytes. Because signaling pathways regulating metabolic and vasodilator actions of insulin are shared in common, we hypothesized that EGCG may also have vasodilator actions to stimulate production of nitric oxide (NO) from endothelial cells. Acute intra-arterial administration of EGCG to mesenteric vascular beds isolated ex vivo from WKY rats caused dose-dependent vasorelaxation. This was inhibitable by L-NAME (NO synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), or PP2 (Src family kinase inhibitor). Treatment of bovine aortic endothelial cells (BAEC) with EGCG (50 microm) acutely stimulated production of NO (assessed with NO-specific fluorescent dye DAF-2) that was inhibitable by l-NAME, wortmannin, or PP2. Stimulation of BAEC with EGCG also resulted in dose- and time-dependent phosphorylation of eNOS that was inhibitable by wortmannin or PP2 (but not by MEK inhibitor PD98059). Specific knockdown of Fyn (but not Src) with small interfering RNA inhibited both EGCG-stimulated phosphorylation of Akt and eNOS as well as production of NO in BAEC. Treatment of BAEC with EGCG generated intracellular H(2)O(2) (assessed with H(2)O(2)-specific fluorescent dye CM-H(2)DCF-DA), whereas treatment with N-acetylcysteine inhibited EGCG-stimulated phosphorylation of Fyn, Akt, and eNOS. We conclude that EGCG has endothelial-dependent vasodilator actions mediated by intracellular signaling pathways requiring reactive oxygen species and Fyn that lead to activation of phosphatidylinositol 3-kinase, Akt, and eNOS. This mechanism may explain, in part, beneficial vascular and metabolic health effects of green tea consumption.  相似文献   

16.
Peroxynitrite (ONOO(-)), a nitric oxide-derived oxidant, uncouples endothelial nitric oxide synthase (eNOS) and increases enzymatic production of superoxide anions (O(2)()) (Zou, M. H., Shi, C., and Cohen, R. A. (2002) J. Clin. Invest. 109, 817-826). Here we studied how ONOO(-) influences eNOS activity. In cultured bovine aortic endothelial cells (BAEC), ONOO(-) increased basal and agonist-stimulated Ser(1179) phosphorylation of eNOS, whereas it decreased nitric oxide production and bioactivity. However, ONOO(-) strongly inhibited the phosphorylation and activity of Akt, which is known to phosphorylate eNOS-Ser(1179). Moreover, expression of an Akt dominant-negative mutant did not prevent ONOO(-)-enhanced eNOS-Ser(1179) phosphorylation. In contrast to Akt, ONOO(-) significantly activated 5'-AMP-activated kinase (AMPK), as evidenced by its increased Thr(172) phosphorylation as well as increased Ser(92) phosphorylation of acetyl-coenzyme A carboxylase, a downstream target of AMPK. Associated with the increased release of O(2)(), ONOO(-) significantly increased the co-immunoprecipitation of eNOS with AMPK. Further, overexpression of the AMPK-constitutive active adenovirus significantly enhanced ONOO(-) up-regulated eNOS-Ser(P)(1179). In contrast, overexpression of a dominant-negative AMPK mutant attenuated the ONOO(-)-enhanced eNOS-Ser(1179) phosphorylation as well as O(2)() release. We conclude that ONOO(-) inhibits Akt and increases AMPK-dependent Ser(1179) phosphorylation of eNOS resulting in enhanced O(2)() release.  相似文献   

17.
Bradykinin (BK) acutely increases endothelial nitric oxide (NO) production by activating endothelial NO synthase (eNOS), and this increase is in part correlated with enhanced phosphorylation/dephosphorylation of eNOS by several protein kinases and phosphatases. However, the signaling mechanisms producing this increase are still controversial. In an attempt to delineate the acute effect of BK on endothelial NO production, confluent bovine aortic endothelial cells were incubated with BK, and NO production was measured by NO-specific chemiluminescence. Significant increase in NO levels was detected as early as 1 min after BK treatment, with concomitant increase in the phosphorylation of Ser(1179) (bovine sequence) site of eNOS (eNOS-Ser(1179)). This acute effect of BK on both increases was blocked only by treatment of protein kinase A inhibitor H-89, but not by the inhibitors of calmodulin-dependent kinase II and protein kinase B, suggesting that the rapid increase in NO production by BK is mediated by the PKA-dependent phosphorylation of eNOS-Ser(1179).  相似文献   

18.
We have demonstrated that VEGF-induced dilation of bovine pulmonary arteries is associated with activation of cytochrome P-450 family 4 (CYP4) enzymes and eNOS. We hypothesized that VEGF and the CYP4 product 20-HETE would trigger common downstream pathways of intracellular signaling to activate eNOS. We treated bovine pulmonary artery endothelial cells (BPAECs) with 20-HETE (1 microM) or VEGF (8.3 nM) and examined three molecular events known to activate eNOS: 1) phosphorylation at serine 1179, 2) phosphorylation of protein kinase B (Akt), which subsequently phosphorylates eNOS, and 3) association of eNOS with 90-kDa heat shock protein (Hsp90). Both 20-HETE and VEGF increase the phosphorylation of eNOS at serine 1179 and Akt at serine 473. The CYP4 inhibitor dibromododecynyl methyl sulfonamide (DDMS) blocks VEGF-induced phosphorylation of eNOS. VEGF had no effect on the binding of Hsp90 with eNOS, whereas 20-HETE decreased the association of the protein partners. Inhibition of Akt-phosphatidylinositol 3-kinase with wortmannin blocks both 20-HETE and VEGF-induced relaxation of pulmonary arteries, supporting the functional contribution of Akt phosphorylation to the vasoactive actions of both agents. Treatment with radicicol had no effect on 20-HETE-induced relaxation of pulmonary arteries, consistent with an absence of effect on association of Hsp90 to eNOS, whereas radicicol partially blocked VEGF-evoked relaxations, possibly secondary to effects on endpoints other than Hsp90 association with eNOS. In conclusion, VEGF and 20-HETE share eNOS activation pathways, including phosphorylation of serine 1179 and phosphorylation of Akt. Unlike aortic endothelial cells, eNOS activation in BPAECs by either VEGF or 20-HETE does not appear to require increased association of Hsp90.  相似文献   

19.
5-Hydroxytryptamine (5-HT) is a vasoactive substance that is taken up by endothelial cells to activate endothelial nitrite oxide synthase (eNOS). The activation of eNOS results in the production of nitric oxide (NO), which is responsible for vasodilation of blood vessels. NO also interacts with superoxide anion (O2*-) to form peroxynitrite (ONOO-), a potent oxidant that has been shown to induce vascular endothelial dysfunction. We examined the ability of 3-morpholinosyndnonimine (SIN-1), an ONOO- generator, to inhibit 5-HT-induced phosphorylation of eNOS in cultured bovine aortic endothelial cells (BAECs). We observed that 5-HT phosphorylates Ser1179 eNOS in a time- and concentration-dependent manner. Maximum phosphorylation occurred at 30 sec using a concentration of 1.0 microM 5-HT. BAECs treated with SIN-1 (1-1000 microM) for 30 min showed no significant increase in eNOS phosphorylation. However, 5-HT-induced eNOS phosphorylation was inhibited in cells treated with various concentrations of SIN-1 for 30 min and stimulated with 5-HT. These data suggest that an increase in ONOO- as a result of an increase in the production of O2*-, may feedback to inhibit 5-HT-induced eNOS phosphorylation at Ser1179 and therefore, contribute to endothelial dysfunction associated with cardiovascular diseases.  相似文献   

20.
Interleukin 6 (IL-6) is an independent predictor of type 2 diabetes and cardiovascular disease and is correlated with insulin resistance. Insulin stimulates nitric oxide (NO) production through the IRS-1/PI3-kinase/Akt/eNOS pathway (where IRS-1 is insulin receptor substrate 1, PI3-kinase is phosphatidylinositol 3-kinase, and eNOS is endothelial NO synthase). We asked if IL-6 affects insulin vasodilator action both in human umbilical vein endothelial cells (HUVEC) and in the aortas of C57BL/6J mice and whether this inhibitory effect was caused by increased Ser phosphorylation of IRS-1. We observed that IL-6 increased IRS-1 phosphorylation at Ser(312) and Ser(616); these effects were paralleled by increased Jun N-terminal protein kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and reversed by JNK and ERK1/2 inhibition. In addition, IL-6 treatment resulted in impaired IRS-1 phosphorylation at Tyr(612), a site essential for engaging PI3-kinase. Furthermore, IL-6 treatment reduced insulin-stimulated phosphorylation of eNOS at the stimulatory Ser(1177) site and impaired insulin-stimulated eNOS dephosphorylation at the inhibitory Thr(495) site. Insulin-stimulated eNOS activation and NO production were also inhibited by IL-6; these effects were reversed by inhibition of JNK and ERK1/2. Treatment of C57BL/6J mice with IL-6 resulted in impaired insulin-dependent activation of the Akt/eNOS pathway in the aorta as a result of JNK and ERK1/2 activation. Our data suggest that IL-6 impairs the vasodilator effects of insulin that are mediated by the IRS-1/PI3-kinase/Akt/eNOS pathway through activation of JNK and ERK1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号