首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was conducted to investigate the possible effect of 60 Hz circularly polarized magnetic fields (MFs) as promoters of genetically initiated lymphoma in AKR mice. One hundred sixty female animals were divided into four different groups. They were exposed to four different intensities of circularly polarized MFs. Animals received exposure to 60 Hz circularly polarized MF at field strengths (rms‐value) of 0 µT (sham control, T1, Group I), 5 µT(T2, Group II), 83.3 µT (T3, Group III), or 500 µT(T4, Group IV), for 21 h/day from the age of 4–6 weeks to the age of 44–46 weeks. There were no exposure‐related changes in mean survival time, clinical signs, body weights, hematological values, micronucleus assay, gene expression arrays, analysis of apoptosis, and necropsy findings. At histopathological examination, lymphoma was seen in all the groups. The tumor incidence was 31/40(78%), 30/40(75%), 32/40(80%), and 31/40(78%) in sham control, 5, 83.3, and 500 µT groups, respectively. However, there were no differences in the tumor incidence between the sham control (T1) and circularly polarized MF exposure groups (T2–T4). In conclusion, there was no evidence that exposure to 60 Hz circularly polarized MF strengths up to 500 µT promoted lymphoma in AKR mice. Bioelectromagnetics 31:130–139, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The present study was conducted to investigate the possible effect of 60 Hz magnetic fields as promoters of brain tumors initiated transplacentally by ethylnitrosourea (ENU) in F344 rats. One hundred twenty mated animals were divided into six different groups and exposed in utero on day 18 of gestation to a single intravenous dose of either Saline (vehicle control, Group I), or ENU 10 mg/kg (Groups II-VI). In the present study, a total of 480 offspring was used. The offspring in group II were given no further treatment while the offspring in Groups III-VI were exposed to four different intensities of magnetic fields. Animals received exposure to 60 Hz magnetic field at field strengths of 0 Tesla (sham control, T1, Group III), 5 muT (T2, Group IV), 83.3 muT (T3, Group V), or 500 muT (T4, Group VI), for 21 h/day from the age of 4 weeks to the age of 32 or 42 weeks. At histopathological examination, tumors of the nervous system were seen in all the ENU-treated groups. The tumor incidence of the ENU group at 32nd and 42nd week necropsy was higher than that of the vehicle control group. The incidence of glial tumors at 42nd week necropsy was higher than the 32nd week necropsy. However, there were no differences in the tumor incidence between the sham control (T1) and ENU + magnetic field exposure groups (T2-T4). In conclusion, there was no evidence that exposure of offspring to 60 Hz at magnetic field strengths up to 500 muT to the age of 32 or 42 weeks promoted ENU-initiated brain tumors in rats.  相似文献   

3.
The carcinogenic or cocarcinogenic potential of extremely low frequency (ELF; 50 or 60 Hz) magnetic fields (MFs) has been evaluated worldwide in diverse animal model systems. Though most results have been negative, weakly positive or equivocal results have been reported in several cancer models, including the rat DMBA (7,12-dimethylbenz[a]anthracene) model of mammary cancer. Based on the experimental conditions used in studies in which cocarcinogenic effects of ELF MF were found, it was recently proposed that MF exposure may potentiate the effects of known carcinogens only when the animals are exposed to both MF and carcinogen during an extended period of tumor development, i.e., when the carcinogen is given repeatedly during MF exposure. This review summarizes a series of experiments from our group, showing cocarcinogenic MF effects in the DMBA breast cancer model in rats, to test whether the above proposal is confirmed by existing data. Flux densities of 50 or 100 microT significantly increased the growth of mammary tumors, independent of whether DMBA was given in a single administration or repeatedly over a prolonged period. Thus, these data do not substantiate the hypothesis requiring repeated doses of DMBA during MF exposure. Instead, several other aspects of study design and experimental factors are identified that seem to be critical for the detection of cocarcinogenic effects of MF exposure in the rat DMBA mammary cancer model. These include the rat subline used, the dose of DMBA, the duration of MF exposure, the flux density, the background (sham control) tumor incidence, and the location of mammary tumors in the mammary gland complex. These and other experimental aspects may explain why some laboratories did not detect cocarcinogenic MF effects in the DMBA model. We hope that direct comparison of MF bioeffects in different rat sublines and further evaluation of other experimental differences between studies on MF exposure in the DMBA model will eventually determine which genetic and environmental factors are critical for potential carcinogenic or cocarcinogenic effects of ELF MF exposure.  相似文献   

4.
This paper describes preliminary findings on the influence of 60-Hz (2-mT) magnetic fields on tumor promotion and co-promotion in the skins of mice. The effect of magnetic fields on natural killer (NK) cell activity in spleen and blood was also examined. Groups of 32 juvenile female mice were exposed to the magnetic field as described in part I. The dorsal skin of all animals was treated with a subthreshold dose of the carcinogen 7,12-dimethyl-benz(a)anthracene (DMBA). One week after the treatment, two groups were sham exposed (group A) or field exposed at 2 mT (group B) 6 h/day for 21 weeks, to test whether the field would act as a tumor promoter. No tumors developed in these two groups of mice. To test whether the magnetic field would modify tumor development by directly affecting tumor growth or by suppressing immune surveillance, two additional groups of mice were treated weekly with the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) and then either sham exposed (group C) or field exposed (group D). The time to appearance of tumors was shorter (but not statistically so) in the group exposed to magnetic fields and TPA. Some differences in NK cell activity and spleen size were observed between the sham- and field-exposed groups.  相似文献   

5.
We recently reported that continuous exposure, for 8 weeks, of extremely low frequency (ELF) magnetic field (MF) of 0.1 or 0.5 mT might induce testicular germ cell apoptosis in BALB/c mice. In that report, the ELF MF exposure did not significantly affect the body weight or testicular weight, but significantly increased the incidence of testicular germ cell death. In the present study, we aimed to further characterize the effect of a 16-week continuous exposure to ELF MF of 14 or 200 microT on testicular germ cell apoptosis in mice. There were no significant effects of MF on body weight and testosterone levels in mice. In TUNEL staining (In situ terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling), germ cells showed a significantly higher apoptotic rate in exposed mice than in sham controls (P < 0.001). TUNEL-positive cells were mainly spermatogonia. In an electron microscopic study, degenerating spermatogonia showed condensation of nuclear chromatin similar to apoptosis. These results indicate that apoptosis may be induced in spermatogenic cells in mice by continuous exposure to 60 Hz MF of 14 microT.  相似文献   

6.
Some epidemiological studies suggest association of childhood cancer with occupational exposure of the parents to magnetic fields. To test this relationship, 50 each of C57BL/6J female and C3H/HeJ male mice were exposed for 2 and 9 weeks, respectively, to 50 Hz sham (group A), 0.5 (group B), and 5 mT (group C) sinusoidal alternating magnetic fields. They were mated under the exposure for up to 2 weeks, and the exposure was continued until parturition. All the B6C3F1 offspring, without adjusting numbers of animals, were clinically observed without exposure to magnetic field for a nominal 78 weeks from 6-8 weeks of age after weaning and then euthanized for pathological examination according to a routine carcinogenicity test. 540 pups entered the test, and the survival rate was 96.7%. No F1 mouse died of tumoral diseases before a male in A group died of stomach cancer at 43 weeks of age. The first animal death in the exposed groups due to tumor occurred at 71 weeks of age. Eighteen animals died before necropsy at 84-86 weeks of age. No significant difference was detected in the final number of survivors and incidence of tumors between groups A and B, or A and C. Concerning reproduction total implants in group B were less than in group A and the difference was on the borderline of significance (P=.05). This difference was not reproduced in a later duplicate experiment.  相似文献   

7.
The possibility that magnetic fields (MF) cause antitumor activity in vivo has been investigated. Two different experiments have been carried out on nude mice bearing a subcutaneous human colon adenocarcinoma (WiDr). In the first experiment, significant increase in survival time (31%) was obtained in mice exposed daily to 70 min modulated MF (static with a superimposition of 50 Hz) having a time average total intensity of 5.5 mT. In the second independent experiment, when mice bearing tumors were exposed to the same treatment for four consecutive weeks, significant inhibition of tumor growth (40%) was reported, together with a decrement in tumor cell mitotic index and proliferative activity. A significant increase in apoptosis was found in tumors of treated animals, together with a reduction in immunoreactive p53 expression. Gross pathology at necroscopy, hematoclinical/hematological and histological examination did not show any adverse or abnormal effects. Since pharmacological rescue of mutant p53 conformation has been recently demonstrated, the authors suggest that MF exposure may obtain a similar effect by acting on redox chemistry connected to metal ions which control p53 folding and its DNA-binding activity. These findings support further investigation aimed at the potential use of magnetic fields as anti-cancer agents.  相似文献   

8.
Effects of 50 Hz magnetic field exposure on tumor experimental models   总被引:3,自引:0,他引:3  
The aim of this study was to investigate the interaction between a 50 Hz, 2 mT magnetic field (MF) exposure and cell growth of mammary murine adenocarcinoma, injected into experimental mice. Six different experimental protocols were performed over 2 years; several different protocols of timing of exposure were tested. X-ray radiation was adopted as the positive control. Tumor incidence and the tumor development time were calculated. No effect was observed in any experiment, and there was no statistically significant difference related to time courses among the protocols used. Neither the time of tumor cell injection nor the time of exposure produced differences between unexposed, sham, and exposed mice. When X-ray radiation was applied, the cytotoxic effect of ionizing radiation was clear, but was not increased or modified by MF exposure. Finally, the study revealed how the host-tumor system has shown a distinctive variability, unmodified by MF exposure.  相似文献   

9.
A series of epidemiological studies have indicated associations between exposure to magnetic fields (MFs) and a variety of cancers, including breast cancer. In order to test the possibility that MF acts as a cancer promoter or copromoter, four separate experiments have been conducted in rats in which the effects of chronic exposure to MFs on the development of mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) were determined. Female rats were exposed in magnetic coils for 91 days (24 h/day) to either alternating current (AC; 50 Hz)-MF or direct current (DC)-MF. Magnetic flux density of the DC-MF was 15 mT. Two AC-MF exposures used a homogeneous field with a flux density of 30 mT (rms); one used a gradient field with flux density ranging from 0.3–1 μT. DMBA (5 mg) was administered orally at the onset of MF exposure and was repeated thrice at intervals of 1 week. In each experiment, 18–36 animals were exposed in 6 magnetic coils. The same number of rats were used as sham-exposed control. These control animals were treated with DMBA and were placed in dummy coils in the same room as the MF-exposed rats. Furthermore, groups of age-matched rats (reference controls) were treated with DMBA but housed in another room to exclude any MF exposure due to the magnetic stray field from the MF produced by coils. At the end of the exposure or sham-exposure period, tumor number and weight or size of tumors were determined at necropsy. Results were as follows: In sham-exposed animals or reference controls, the tumor incidence varied between 50 and 78% in the 4 experiments. The average number of mammary tumors per tumor-bearing animal varied between 1.6 and 2.9. In none of the experiments did MFs significantly alter tumor incidence, but in one of the experiments with AC-MF exposure at 30 mT, the number of tumors per tumor-bearing animal was significantly increased. Furthermore, exposure to a DC-MF at 15 mT significantly enhanced the tumor weight. Exposure to a gradient AC-MF at 0.3–1 μT exerted no significant effects. These experiments seem to indicate that MFs at high flux densities may act as a promoter or copromoter of breast cancer. However, this interpretation must be considered only a tentative conclusion because of the limitations of this study, particularly the small sample size used for MF exposure and the lack of repetition of data. © 1993 Wiley-Liss. Inc.  相似文献   

10.
Resting EEG is affected by exposure to a pulsed ELF magnetic field   总被引:8,自引:0,他引:8  
An increasing number of reports have demonstrated a significant effect of extremely low frequency magnetic fields (ELF MFs) on aspects of animal and human behavior. Recent studies suggest that exposure to ELF MFs affects human brain electrical activity as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here we report that exposure to a pulsed ELF MF with most power at frequencies between 0 and 500 Hz, known to affect aspects of analgesia and standing balance, also affects the human EEG. Twenty subjects (10 males; 10 females) received both a magnetic field (MF) and a sham session in a counterbalanced design for 15 min. Analysis of variance (ANOVA) revealed that alpha activity was significantly higher over the occipital electrodes (O1, Oz, O2) [F(1,16) = 6.858; P =.019, eta2 = 0.30] and marginally higher over the parietal electrodes (P3, Pz, P4) [F(1,16) = 4.251; P =.056, eta2 = 0.21] post MF exposure. This enhancement of alpha activity was transient, as it marginally decreased over occipital [F(1,16) = 4.417; P =.052; eta2 = 0.216] and parietal electrodes [F(1,16) = 4.244; P =.056; eta2 = 0.21] approximately 7 min after MF exposure compared to the sham exposure. Significantly higher occipital alpha activity is consistent with other experiments examining EEG responses to ELF MFs and ELF modulated radiofrequency fields associated with mobile phones. Hence, we suggest that this result may be a nonspecific physiological response to the pulsed MFs.  相似文献   

11.
The controversy over whether magnetic fields (MF) produced by electrical wiring and appliances contribute to diseases such as cancer has been debated in the literature for more than 2 decades. These extremely low frequency fields at 50 or 60 Hz are omnipresent in the industrialized world and have been linked to various forms of cancer by epidemiological studies. Little has been published investigating any possible role of MF and cardiovascular disease, and this is the first study looking specifically at the effect of exposure to high-intensity MF on the development and progression of restenosis. A mouse arteriovenous bypass model was used, and mice were exposed to MF for periods of 1, 2, or 3 weeks. Neointima formation, infiltration of mononuclear cells, and heat shock protein 60 expression were all studied at the conclusion of the exposure regimen. Animals exposed to the MF for 1 week showed significantly smaller neointima formation compared with control mice exposed to a null field, although this difference was not observed in mice exposed for 2 or 3 weeks. No difference was found between mice exposed to MF and controls in any of the other parameters investigated.  相似文献   

12.
We investigated the premorbid behavioral changes produced by the administration of cocaine and acute exposure to extremely low frequency (ELF) magnetic field (MF) in the mouse. ICR mice received intraperitoneal injections of cocaine at two doses (65 and 70 mg/kg) and were subsequently exposed to one of eight ELF-MF fields (2, 3, 4, 8, 10, 15, 25, or 60 Hz) of about 20 G (2 mT) intensity immediately after injection. Twelve mice were used for each of applied cocaine dose and ELF-MF level. For a given dose of cocaine, the applied MF frequencies were randomly ordered, and blind tests were carried out in which the behavior observer did not know the frequencies of MF. The premorbid behaviors were defined in the ICR mice and their changes were observed over the exposure of various ELF-MFs. Our data show that the onset times of stop rearing and tonic-clonic seizure in the 4 Hz MF exposure group are significantly different from those of the sham group.  相似文献   

13.
We investigated the effects of weak combined magnetic fields (MFs) produced by superimposing a constant MF (in the range 30 - 150 µT) and an alternating MF (100 or 200 nT) on cytokine production in healthy Balb/C male mice exposed 2 h daily for 14 days. The alternating magnetic field was a sum of several frequencies (ranging from 2.5 - 17.5 Hz). The frequencies of the alternating magnetic field were calculated formally based on the cyclotron resonance of ions of free amino acids (glutamic and aspartic acids, arginine, lysine, histidine, and tyrosine). The selection of different intensity and frequency combinations of constant and alternating magnetic fields was performed to find the optimal characteristics for cytokine production stimulation in immune cells. MF with a constant component of 60 μT and an alternating component of 100 nT, which was a sum of six frequencies (from 5 to 7 Hz), was found to stimulate the production of tumor necrosis factor-α, interferon-gamma, interleukin-2, and interleukin-3 in healthy mouse cells and induce cytokine accumulation in blood plasma. Then, we studied the effect of this MF on tumor-bearing mice with solid tumors induced by Ehrlich ascite carcinoma cells by observing tumor development processes, including tumor size, mouse survival rate, and average lifespan. Tumor-bearing mice exposed to a combined constant magnetic field of 60 μT and an alternating magnetic field of 100 nT containing six frequencies showed a strong suppression of tumor growth with an increase in survival rate and enhancement of average lifespan.  相似文献   

14.
Female C3H/Bi mice develop spontaneous viral mammary carcinoma which can metastasize to the lungs. Two hundred and forty tumoral mice were either exposed to a toro?dal pulsed magnetic field, 12 Hz, 100 Hz or 460 Hz in frequency or used as controls. The exposure was mainly done 10 min. a day, 3 days a week, or 30 minutes once a week from about 2 to 3 weeks after the appearance of the tumors until death. In comparison with the controls, the exposed mice showed lighter spleens and lungs; this last observation could mean fewer pulmonary metastases. The weight of the tumors has been found lighter for 460 Hz MF, not changed for 100 Hz MF, heavier for 12 Hz MF, but lifespans were not altered by the exposure.  相似文献   

15.
In previous studies we have demonstrated that 50 Hz, 100 μT magnetic field (MF) exposure of female Sprague-Dawley rats for 13 weeks significantly enhances the development and growth of mammary tumors in a breast cancer model. The present study was designed to test the hypothesis that, at least in part, the tumor (co)promoting effect of MF exposure is due to MF effects on the immune surveillance system, which is of critical importance in protecting an organism against the development and growth of tumors. For this purpose, female Sprague-Dawley rats of the same age as in the mammary tumor experiments were continuously exposed for different periods (2, 4, 8, and 13 weeks) to a 50 Hz, 100 μT MF. Control groups were sham-exposed simultaneously. Following the different exposure periods, splenic lymphocytes were cultured and the proliferative responses to the T-cell-selective mitogen concanavalin A (Con A) and the B-cell-selective pokeweed mitogen (PWM) were determined. Furthermore, the production of interleukin-1 (IL-1) was determined in the splenocyte cultures. The mitogenic responsiveness of T cells was markedly enhanced after 2 weeks of MF exposure, suggesting a co-mitogenic action of MF. A significant, but less marked increase in T-cell mitogenesis was seen after 4 weeks of MF exposure, whereas no difference from sham controls was determined after 8 weeks, indicating adaptation or tolerance to this effect of MF exposure. Following 13 weeks of MF exposure, a significant decrease in the mitogenic responsiveness of lymphocytes to Con A was obtained. This triphasic alteration in T-cell function (i.e., activation, tolerance, and suppression) during prolonged MF exposure resembles alterations observed during chronic administration of mild stressors, substantiating the hypothesis that cells respond to MF in the same way as they do to other environmental stresses. In contrast to T cells, the mitogenic responsiveness of B cells and IL-1 production of PWM-stimulated cells were not altered during MF exposure. The data demonstrate that MF in vivo exposure of female rats induces complex effects on the mitogenic responsiveness of T cells, which may lead to impaired immune surveillance after long-term exposure. Bioelectromagnetics 19:259–270, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Extremely low frequency (ELF, <300 Hz) magnetic fields (MF) have been reported to modulate cognitive performance in humans. However, little research exists with MF exposures comparable to the highest levels experienced in occupations like power line workers and industrial welders. This research aims to evaluate the impact of a 60 Hz, 3 mT MF on human cognitive performance. Ninety‐nine participants completed the double‐blind protocol, performing a selection of psychometric tests under two consecutive MF exposure conditions dictated by assignment to one of three groups (sham/sham, MF exposure/sham, or sham/MF exposure). Data were analyzed using a 3 × 2 mixed model analysis of variance. Performance between repetitions improved in 11 of 15 psychometric parameters (practice effect). A significant interaction effect on the digit span forward test (F = 5.21, P < 0.05) revealed an absence of practice effects for both exposure groups but not the control group. This memory test indicates MF‐induced abolition of the improvement associated with practice. Overall, this study does not establish any clear MF effect on human cognition. It is speculated that an ELF MF may interfere with the neuropsychological processes responsible for this short‐term learning effect supported by brain synaptic plasticity. Bioelectromagnetics. Bioelectromagnetics 32:620–633, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
To identify possible effects of horizontally polarized magnetic field (MF) exposure on maintenance of pregnancy and embryo-fetal development, an MF exposure system was designed and constructed and 96 time-mated female Sprague-Dawley (SD) rats (24/group) received continuous exposure to 60 Hz MF at field strengths of 0 (sham control) and 5, 83.3, or 500 microT (50, 833, or 5000 mG). Dams received MF or sham exposures for 22 h/day on gestational day 6-20. MF was monitored continuously throughout the study. There were no evidences of maternal toxicity or developmental toxicity in any MF exposed groups. Mean maternal body weight, organ weights, and hematological and serum biochemical parameters in groups exposed to MF did not differ from those in sham control. No exposure related differences in fetal deaths, fetal body weight, and placental weight were observed between MF exposed groups and sham control. External, visceral, and skeletal examination of fetuses demonstrated no significant differences in the incidence of fetal malformations between MF exposed and sham control groups. In conclusion, exposure of pregnant rats to 60 Hz at MF strengths up to 500 microT during gestation day 6-20 did not produce any biologically significant effect in either dams or fetuses.  相似文献   

18.
In a series of experiments with the chemical carcinogen DMBA (7, 12-dimethyl[a]anthracene), we recently found that exposure of female Sprague-Dawley rats in 50 Hz magnetic fields (MF) in the microtesla range significantly facilitates the development and growth of mammary tumors. One possible explanation for this finding would be enhanced proliferation of breast epithelial stem cells by MF exposure, thereby increasing the sensitivity of these cells to chemical carcinogens. In line with this possibility, we previously determined that 50 Hz, 50 microT MF exposure induces increases in ornithine decarboxylase (ODC), i.e., a key enzyme in cell proliferation, in the mammary gland of female Sprague-Dawley rats. In the present study, we examined the time course of this effect, by using different periods of exposure to a 50 Hz, 100 microT MF. Furthermore, we determined ODC in different mammary complexes of the rat mammary gland to evaluate whether differences in response to MF exist over the anterior-posterior extension of this organ. Exposure of young female Sprague-Dawley rats induced marked increases in ODC in the mammary gland that were similar to ODC increases seen in "positive control" experiments with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). However, this effect of MF critically depended on the duration of MF exposure, with no effect, or at least no consistent effect, for short (<1 week) or long (8 weeks and above) exposure periods, but a robust and reproducible enhancing effect on ODC activity after 2 weeks of exposure. Furthermore, we found that the effect of MF exposure depends on the part of the mammary complexes examined, the cranial thoracic (or cervical) complexes being particularly sensitive to ODC alterations in response to MF. This is in line with recent DMBA experiments of our group in which MF-induced increases in tumor development and growth were predominantly seen in this large cranial/cervical part of the mammary gland. The most likely explanation for the observed ODC changes after MF exposure is the "melatonin hypothesis," although other cellular and molecular effects of MF might be involved as well.  相似文献   

19.
We investigated the comparative effects of 4 and 60 Hz magnetic fields on pentylenetetrazole (PTZ)-induced seizure in mice. For this study, we measured the latent time to seizure, seizure duration, and lethality induced by PTZ in mice exposed to 4 and 60 Hz magnetic fields (MF) for 30 min. Compared to sham-exposed controls, the latent time to tail twitching and seizure in the 4 Hz MF group was significantly decreased while the latent time to seizure in the 60 Hz MF group was significantly increased. The seizure duration in the 4 Hz MF group was significantly decreased while that in the 60 Hz MF group was significantly increased. More importantly, while the mice exposed to a 60 Hz MF experienced significantly increased lethality after seizure convulsion, those exposed to a 4 Hz MF showed no lethality, with a shortening of the duration of seizure. This beneficial effect of a 4 Hz MF on seizure has the same implication as the anti-oxidative effects of a 4 Hz MF observed in our previous work. The results of our current and previous works indicate that a 4 Hz MF may be used as a therapeutic physical agent for the treatment of oxidative stress-induced diseases, including seizure, with or without chemical drugs.  相似文献   

20.
Experiments using the dwarf Siberian hamster Phodopus sungorus were carried out to determine possible neuroendocrine consequences of one-time and repeated exposures to 60 Hz magnetic fields (MF). Animals were maintained in either a short-light (SL, 8 h light:16 h dark) or long-light (LL, 16 h light:8 h dark) photoperiod. Acute (one-time, 15 min) exposure of male SL animals to a linearly polarized, horizontally oriented, 60 Hz MF (0.1 mT) gave rise to a statistically significant (P < .005) reduction in pineal melatonin content as determined 3 and 5 h after onset of darkness. In LL animals, acute exposure to 0.10 mT resulted in a significant decrease in pineal melatonin as measured 4 h after onset of darkness, whereas acute exposure to 50 microT showed no effect compared with sham exposure. In SL animals, an increase in norepinephrine was observed in the medial basal hypothalamus (including the suprachiasmatic nucleus) after acute exposure (P < .01). Daily MF exposure of SL animals to a combination of steady-state and on/off 60 Hz magnetic fields (intermittent exposure) at 0.1 mT for 1 h per day for 16 days was associated with a reduction in melatonin concentrations at 4 h after onset of darkness and an increase in blood prolactin concentrations (P < .05). Exposure of SL animals to a steady state 60 Hz MF for 3 h/day for 42 days resulted in a statistically significant reduction in body weight (ANOVA: P > .05), compared with sham-exposed SL animals. At 42 days, however, no significant changes in overnight melatonin or prolactin levels were detected. In both repeated exposure experiments, gonadal weights were lowest in the MF-exposed groups. This difference was statistically significant (P < .05) after 42 days of exposure. These data indicate that both one-time and repeated exposure to a 0.1 mT, 60 Hz MF can give rise to neuroendocrine responses in Phodopus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号