共查询到20条相似文献,搜索用时 0 毫秒
1.
SUMMARY: The amino acid and peptide content of the micrococci as revealed by paper chromatography depended on the physiological age of the culture and on the composition of the growth medium. The use of different peptones in a Yeastrel glucose peptone medium resulted in minor changes in the chromatograms. A greater effect was noted when glucose was omitted. When the composition of the growth medium was standardized the best comparison of cultures was afforded by the preparation of chromatograms from samples taken in the late logarithmic and early stationary phases of growth. 相似文献
2.
F. H. Johnson H. Eyring R. Steblay H. Chaplin C. Huber G. Gherardi 《The Journal of general physiology》1945,28(5):463-537
On the basis of available data with regard to the chemical and physical properties of the "substrate" luciferin (LH2) and enzyme, luciferase (A), and of kinetic data derived both from the reaction in extracts of Cypridina, and from the luminescence of intact bacteria, the fundamental reactions involved in the phenomenon of bioluminescence have been schematized. These reactions provide a satisfactory basis for interpreting the known characteristics of the system, as well as the theoretical chemistry with regard to the control of its over-all velocity in relation to various factors. These factors, here studied experimentally wholly with bacteria, Photobacterium phosphoreum in particular, include pH, temperature, pressure, and the drugs sulfanilamide, urethane, and alcohol, separately and in relation to each other. Under steady state conditions of bacterial luminescence, with excess of oxidizable substrate and with oxygen not limiting, the data indicate that the chief effects of these agents center around the pace setting reactions, which may be designated by the equation: A + LH2 → ALH2 following which light emission is assumed proportional to the amount of the excited molecule, AL*. The relation between pH and luminescence intensity varies with (a), the buffer mixture and concentration, (b), the temperature, and (c), the hydrostatic pressure. At an optimum temperature for luminescence of about 22° C. in P. phosphoreum, the effects of increasing or decreasing the hydrogen ion concentration are largely reversible over the range between pH 3.6 and pH 8.8. The relation between luminescence intensity and pH, under the experimental conditions employed, is given by the following equation, in which I
1 represents the maximum intensity, occurring about pH 6.5; I
2 the intensity at any other given pH; K
5 the equilibrium constant between hydrogen ions and the AL-; and K
6 the corresponding constant with respect to hydroxyl ions: See PDF for Equation The value of K
5, as indicated by the data, amounts to 4.84 x 104, while that of K
6 amounts to 4.8 x 105. Beyond the range between approximately pH 3.8 and 8.8, destructive effects of the hydrogen and hydroxyl ions, respectively, were increasingly apparent. By raising the temperature above the optimum, the destructive effects were apparent at all pH, and the intensity of the luminescence diminished logarithmically with time. With respect to pH, the rate of destruction of the light-emitting system at temperatures above the optimum was slowest between pH 6.5 and 7.0, and increased rapidly with more acid or more alkaline reactions of the medium. The reversible effects of slightly acid pH vary with the temperature in the manner of an inhibitor (Type I) that acts independently of the normal, reversible denaturation equilibrium (K
1) of the enzyme. The per cent inhibition caused by a given acid pH in relation to the luminescence intensity at optimum pH, is much greater at low temperatures, and decreases as the temperature is raised towards the optimum temperature. The observed maximum intensity of luminescence is thus shifted to slightly higher temperatures by increase in (H+). The apparent activation energy of luminescence is increased by a decrease in pH. The value of ΔH‡ at pH 5.05 was calculated to be 40,900 calories, in comparison with 20,700 at a pH of 6.92. The difference of 20,200 is taken to represent an estimate of the heat of ionization of ALH in the activation process, and compares roughtly with the 14,000 calories estimated for the same process, by analyzing the data from the point of view of hydrogen ions as an inhibitor. The decreasing temperature coefficient for luminescence in proceeding from low temperatures towards the optimum is accounted for in part by the greater degree of ionization of ALH. At the optimum temperature and acid reactions, pressures up to about 500 atmospheres retard the velocity of the luminescent oxidation. At the same temperature, with decrease in hydrogen ion concentration, the pressure effect is much less, indicating a considerable volume increase in the process of ionization and activation. In the extremely alkaline range, beyond pH 9, luminescence is greatly reduced, as compared with the intensity at neutrality, and under these conditions pressure causes a pronounced increase in intensity, presumably by acting upon the reversible denaturation equilibrium of the protein enzyme, A. Sulfanilamide, in neutral solutions, acts on luminescence in a manner very much resembling that of hydrogen ions at acidities between pH 4.0 and pH 6.5. Like the hydrogen ion equilibrium, the sulfanilamide equilibrium involves a ratio of approximately one inhibitor molecule to one enzyme molecule. The heat of reaction amounts to about 11,600 calories or more in a reversible combination that evidently evolves heat. Like the action of H ions, sulfanilamide causes a slight shifting of maximum luminescence intensity in the direction of higher temperatures, and an increase in the energy of activation. The effect of sulfanilamide on the growth of broth cultures of eight species of luminous bacteria indicates that there is no regular relationship among the different organisms between the concentration of the drug that prevents growth, and that which prevents luminescence in the cells which develop in the presence of sulfanilamide. p-Aminobenzoic acid (PAB) antagonizes the sulfanilamide inhibition of growth in luminous bacteria, and the cultures that develop are luminous. When (PAB) is added to cells from fully developed cultures, it has no effect on luminescence, or causes a slight inhibition, depending on the concentration. With luminescence partly inhibited by sulfanilamide, the addition of PAB has no effect, or has an inhibitory effect which adds to that caused by sulfanilamide. Two different, though possibly related, enzyme systems thus appear to limit growth and luminescence, respectively. The possible mechanism through which both the inhibitions and the antagonism take place is discussed. The irreversible destruction of the luminescent system at temperatures above that of the maximum luminescence, in a medium of favorable pH to which no inhibitors have been added, proceeds logarithmically with time at both normal and increased hydrostatic pressures. Pressure retards the rate of the destruction, and the analysis of the data indicates that a volume increase of roughly 71 cc. per gm. molecule at 32° C. takes place in going from the normal to the activated state in this reaction. At normal pressure, the rate of destruction has a temperature coefficient of approximately 90,000 calories, or about 20,000 calories more than the heat of reaction in the reversible denaturation equilibrium. The data indicate that the equilibrium and the rate process are two distinct reactions. The equation for luminescence intensity, taking into account both the reversible and irreversible phases of the reaction is given below. In the equation b is a proportionality constant; k'' the rate constant of the luminescent reaction; A0 the total luciferase; A0i the total initial luciferase at time t equals 0; kn the rate constant for the destruction of the native, active form of the enzyme; kd the rate constant for the destruction of the reversibly denatured, inactive form; t the time; and the other symbols are as indicated above: See PDF for Equation For reasons cited in the text, kn evidently equals kd. Urethane and alcohol, respectively, act in a manner (Type II) that promotes the breaking of the type of bonds broken in both the reversible and irreversible reactions and so promotes the irreversible denaturation. This result is in contrast to the effects of sulfanilamide, which at appropriate concentrations may give rise to the same initial inhibition as that caused by urethane, but remains constant with time. The inhibition caused by urethane and alcohol, respectively, increases as the temperature is raised. As a result, the apparent optimum is shifted to lower temperatures, and the activation energy for the over-all process of luminescence diminishes. An analysis for the approximate heat of reaction in the equilibrium between these drugs and the enzyme, indicates 65,000 calories for urethane, and 37,000 for alcohol. A similar analysis with respect to the effect of hydroxyl ions as the inhibitor gives 60,300 calories. The effects of alcohol and urethane are sensitive to hydrostatic pressure. Moderate inhibitions at optimum temperature and pH, caused by relatively small concentrations of either drug, are completely abolished by pressures of 3,000 to 4,000 pounds per square inch. At optimum temperature and pH, increasing concentrations of alcohol caused the apparent optimum pressure for luminescence to shift markedly in the direction of higher pressures. Analysis of the data with respect to concentration of alcohol at different pressures indicated that the ratio of alcohol to enzyme molecules amounted to approximately 4, at 7,000 pounds, but only about 2.8 at normal pressures. This phenomenon was taken to indicate that more than one equilibrium is established between the alcohol and the protein. A similar interpretation was suggested in connection with the fact that analysis of the relation between concentration of urethane and amount of inhibition at different temperatures also indicated a ratio of urethane to enzyme molecules that increased with temperature in the equilibria involved. Analysis of the data with respect to pressure and the inhibition caused by a given concentration of alcohol at different temperatures indicated that the volume change involved in the combination of alcohol with the enzyme must be very small, while the actual effect of pressure is apparently mediated through the reversible denaturation of the protein enzyme, which is promoted by alcohol, urethane, and drugs of similar type. 相似文献
3.
Changes in nitrogen content and in respiration rate have beeninvestigated in cell suspension cultures of Acer pseudoplatanus.Nitrogen content and rate of oxygen uptake rise sharply earlyin the period of culture, during which there is no significantincrease in dry weight and only a small increase in cell number.During the subsequent period of rapid cell division there isa decline in both respiration rate and nitrogen content permg dry weight or per cell. Pronounced rises in respiration rateand cell nitrogen therefore occur prior to the period of rapidcell division. The strong correlation between nitrogen contentand oxygen consumption suggests that the respiration rate ismuch more closely related to changes in protein content thanto changes in cell number, dry weight, or packed-cell volume. 相似文献
4.
Ximena Ortega Alba Silipo M. Soledad Sald��as Christa C. Bates Antonio Molinaro Miguel A. Valvano 《The Journal of biological chemistry》2009,284(32):21738-21751
Burkholderia cenocepacia is an opportunistic pathogen that displays a remarkably high resistance to antimicrobial peptides. We hypothesize that high resistance to antimicrobial peptides in these bacteria is because of the barrier properties of the outer membrane. Here we report the identification of genes for the biosynthesis of the core oligosaccharide (OS) moiety of the B. cenocepacia lipopolysaccharide. We constructed a panel of isogenic mutants with truncated core OS that facilitated functional gene assignments and the elucidation of the core OS structure in the prototypic strain K56-2. The core OS structure consists of three heptoses in the inner core region, 3-deoxy-d-manno-octulosonic acid, d-glycero-d-talo-octulosonic acid, and 4-amino-4-deoxy-l-arabinose linked to d-glycero-d-talo-octulosonic acid. Also, glucose is linked to heptose I, whereas heptose II carries a second glucose and a terminal heptose, which is the site of attachment of the O antigen. We established that the level of core truncation in the mutants was proportional to their increased in vitro sensitivity to polymyxin B (PmB). Binding assays using fluorescent 5-dimethylaminonaphthalene-1-sulfonyl-labeled PmB demonstrated a correlation between sensitivity and increased binding of PmB to intact cells. Also, the mutant producing a heptoseless core OS did not survive in macrophages as compared with the parental K56-2 strain. Together, our results demonstrate that a complete core OS is required for full PmB resistance in B. cenocepacia and that resistance is due, at least in part, to the ability of B. cenocepacia to prevent binding of the peptide to the bacterial cell envelope.Burkholderia cenocepacia is a Gram-negative opportunistic pathogen ubiquitously found in the environment (1, 2). Although generally harmless to healthy individuals, B. cenocepacia affects immunocompromised patients (1) such as those with cystic fibrosis and chronic granulomatous disease. Infected cystic fibrosis patients commonly develop chronic lung infections that are very difficult to treat because these bacteria are intrinsically resistant to virtually all clinically useful antibiotics as well as antimicrobial peptides (APs)5 (1, 3).Lipopolysaccharide (LPS) is the major surface component of Gram-negative bacteria and consists of lipid A, core oligosaccharide (OS), and in some bacteria O-specific polysaccharide or O antigen (4, 5). The O antigen acts as a protective barrier against desiccation, phagocytosis, and serum complement-mediated killing, whereas the core OS and the lipid A contribute to maintain the integrity of the outer membrane (4, 5). The lipid A also anchors the LPS molecule to the outer leaflet of the outer membrane and accounts for the endotoxic activity of LPS (4, 6). Lipid A is a bisphosphorylated β-1,6-linked glucosamine disaccharide substituted with fatty acids ester-linked at positions 3 and 3′ and amide-linked at positions 2 and 2′ (4). The core OS can be subdivided into the inner core and outer core. The inner core OS typically consists of one or two 3-deoxy-d-manno-octulosonic acid (Kdo) residues linked to the lipid A and three l-glycero-d-manno-heptose residues linked to the first Kdo (4). The outer core OS in enteric bacteria typically consists of 8–12 branched sugars linked to heptose II of the inner core. As a result of phosphate groups on the lipid A and core OS, the bacterial surface has a net negative charge. This plays an important role in the interaction of the bacterial surface with positively charged compounds such as cationic APs, which are cationic amphipathic molecules that kill bacteria by membrane permeabilization. In response to a series of environmental conditions such as low magnesium or high iron, bacteria can express modified LPS molecules that result in a less negative surface. This reduces the binding of APs and promotes resistance to these compounds. Previous studies have shown that Burkholderia LPS molecules possess unique properties. For example, Kdo cannot be detected by classic colorimetric methods in LPS from Burkholderia pseudomallei and Burkholderia cepacia, and the covalent linkage between Kdo and lipid A is more resistant to acid hydrolysis than in conventional LPS molecules (7). In B. cepacia, 4-amino-4-deoxy-l-arabinose (l-Ara4N) is bound to the lipid A by a phosphodiester linkage at position 4 of the nonreducing glucosamine (GlcN II) (8) and is also present as a component of the core OS. Also, instead of two Kdo molecules, the B. cepacia core OS has only one Kdo and the unusual Kdo analog, d-glycero-d-talo-octulosonic acid (Ko), which is nonstoichiometrically substituted with l-Ara4N forming a 1→8 linkage with α-Ko (7, 9). Although this is also the case for the inner core OS of B. cenocepacia J2315 (10), it is not a common feature for the core OS in all Burkholderia. For example, the inner core of Burkholderia caryophylli consists of two Kdo residues and does not possess l-Ara4N (11).Burkholderia species, including B. cenocepacia, are intrinsically resistant to human and non-human APs such as these produced by airway epithelial cells (12, 13), human β-defensin 3 (14), human neutrophil peptides (15), and polymyxin B (PmB) (15, 16). The minimum inhibitory concentration determined for some of these peptides in several Burkholderia species is greater than 500 μg/ml, which could aid these microorganisms during colonization of the respiratory epithelia (13). It has been proposed that the resistance of B. cepacia to cationic APs stems from ineffective binding to the outer membrane, as a consequence of the low number of phosphate and carboxylate groups in the lipopolysaccharide (17), but a systematic analysis of the molecular basis of AP resistance in B. cenocepacia and other Burkholderia is lacking. We have previously reported that a heptoseless B. cenocepacia mutant (SAL1) is significantly more sensitive than the parental clinical strain K56-2 to APs (15). This mutant has a truncated inner core and lacks the outer core, suggesting that a complete core OS is required for resistance of B. cenocepacia to APs.Apart from heptoses, the role of other sugar moieties of the B. cenocepacia core OS in AP resistance is not known. In this study, we report the structure of the core OS for B. cenocepacia strain K56-2 and its isogenic mutants XOA3, XOA7, and XOA8, which carry various core OS truncations. The structural analysis, combined with mutagenesis, allowed us to assign function to the majority of the genes involved in core OS biosynthesis and ligation of the O antigen and to establish that the degree of truncation of the core OS correlates with increased binding and bacterial sensitivity to PmB in vitro and reduced bacterial intracellular survival in macrophages. 相似文献
5.
6.
Lucía B. Chemes María G. Noval Ignacio E. Sánchez Gonzalo de Prat-Gay 《The Journal of biological chemistry》2013,288(26):18923-18938
The retinoblastoma tumor suppressor (Rb) controls the proliferation, differentiation, and survival of cells in most eukaryotes with a role in the fate of stem cells. Its inactivation by mutation or oncogenic viruses is required for cellular transformation and eventually carcinogenesis. The high conservation of the Rb cyclin fold prompted us to investigate the link between conformational stability and ligand binding properties of the RbAB pocket domain. RbAB unfolding presents a three-state transition involving cooperative secondary and tertiary structure changes and a partially folded intermediate that can oligomerize. The first transition corresponds to unfolding of the metastable B subdomain containing the binding site for the LXCXE motif present in cellular and viral targets, and the second transition corresponds to the stable A subdomain. The low thermodynamic stability of RbAB translates into a propensity to rapidly oligomerize and aggregate at 37 °C (T50 = 28 min) that is suppressed by human papillomavirus E7 and E2F peptide ligands, suggesting that Rb is likely stabilized in vivo through binding to target proteins. We propose that marginal stability and associated oligomerization may be conserved for function as a “hub” protein, allowing the formation of multiprotein complexes, which could constitute a robust mechanism to retain its cell cycle regulatory role throughout evolution. Decreased stability and oligomerization are shared with the p53 tumor suppressor, suggesting a link between folding and function in these two essential cell regulators that are inactivated in most cancers and operate within multitarget signaling pathways. 相似文献
7.
Techniques have been established which give reproducible yieldsof total and of free and bound polysoines from cultured sycamorecells liarvested at intervals throughout the cycle of growthfollowed in batch culture. High levels of polysoines build upin the cells during lag phase and persist into early exponentialgrowth. Later in the growth cycle, although the ribosomal materialper unit volume of culture continues to rise, the content percell of ribosomes and polysomes progressively declines untilthe cells enter the stationary phase. There is also a characteristicpattern of change in the relative proportions of free and boundpolysomes throughout the growth cycle of the cultures. Bothfractions contain different but significant levels of ribosomalsubunits and monomers. The RNAs released from the free polysoineshad a greater amount of poly(A) sequences than that from thebound polysomes. These findings are discussed in relation tothe changing metabolic activities of the cells which occur duringtheir progress through batch culture. 相似文献
8.
Kennode, A. R, and Bewley, J. D. 1988. The role of maturationdrying in the transition from seed development to germination.V. Responses of the immature castor bean embryo to isolationfrom the whole seed; a comparison with premature desiccation.J.exp. Bot. 39: 487497. Desiccation is an absolute requirement for germination and post-germinativegrowth of whole seeds of the castor bean, whether desiccationis imposed prematurely during development, at 35 d after pollination(DAP) or occurs naturally during late maturation (5060DAP). Desiccation also plays a direct role in the inductionof post-germinative enzyme synthesis in the cotyledons of embryosin the intact seed; this event is not simply due to the presenceof a growing axis. Isolation of embryos from the developingcastor bean seed at 35 DAP results in both germination and growth,despite the absence of a desiccation event. We have comparedthe metabolic consequences of premature drying of whole seeds(35 DAP) and isolation of the developing 35 DAP embryos. Inboth cases, hydrolytic events involved in the mobilization ofstored protein reserves proceed in a similar manner and mirrorthose events occurring within germinated mature seeds. Thereare differences, however, for post-germinative enzyme (LeuNAaseand isocitrate lyase) production occurs to a lesser extent innon-dried isolated embryos than in those from prematurely dried(35 DAP) whole seeds, or from mature dry (whole) seeds. Desiccationof the 35 DAP whole seed does not alter the subsequent responseof the embryo upon isolation. Thus, while drying does not affectthe metabolism of isolated embryos, it has a profound effecton that of embryos within the intact seed. Tissues surroundingthe embryo in the developing intact seed (viz. the endosperm)maintain its metabolism in a developmental mode and inhibitgermination. This effect of the surrounding tissues can onlybe overcome by drying or by their removal. Key words: Metabolism, isolation, desiccation, embryo, endosperm, castor bean, development, germination 相似文献
9.
10.
11.
12.
13.
- A close parallelism in the drift of the rate of respirationand the protein-N/ non-protein-N ratio is shown to occur bothin apple fruits attached to the tree and when detached fromthe tree at various stages of development and stored for severalmonths at 12 C.
- In detached fruits the fall in respirationwhich occurs immediately(during the first 48 hours) after pickingis only accompaniedby a concomitant fall in net protein invery young fruits inwhich active cell division is taking place.Subsequently, infruit of all ages when a climacteric rise inrespiration occursit is accompanied by a net increase in protein.
- It is argued that the climacteric rise in respiration is aresultof increase in the level of protein which will be expectedtoreduce the ATP/ADP ratio.
- Over the climacteric period,although rate of respiration andnet protein content both rise,R rises more rapidly than proteinand, subsequently, falls ata faster rate than P. It is suggestedthat this may be due tothe new protein containinga higher proportionof enzyme(s) directly involved in respirationand leading, forexample, to a reduction in the ATP/ADP ratio.
14.
15.
Michela Castellani Raul Covian Thomas Kleinschroth Oliver Anderka Bernd Ludwig Bernard L. Trumpower 《The Journal of biological chemistry》2010,285(1):502-510
We previously proposed that the dimeric cytochrome bc1 complex exhibits half-of-the-sites reactivity for ubiquinol oxidation and rapid electron transfer between bc1 monomers (Covian, R., Kleinschroth, T., Ludwig, B., and Trumpower, B. L. (2007) J. Biol. Chem. 282, 22289–22297). Here, we demonstrate the previously proposed half-of-the-sites reactivity and intermonomeric electron transfer by characterizing the kinetics of ubiquinol oxidation in the dimeric bc1 complex from Paracoccus denitrificans that contains an inactivating Y147S mutation in one or both cytochrome b subunits. The enzyme with a Y147S mutation in one cytochrome b subunit was catalytically fully active, whereas the activity of the enzyme with a Y147S mutation in both cytochrome b subunits was only 10–16% of that of the enzyme with fully wild-type or heterodimeric cytochrome b subunits. Enzyme with one inactive cytochrome b subunit was also indistinguishable from the dimer with two wild-type cytochrome b subunits in rate and extent of reduction of cytochromes b and c1 by ubiquinol under pre-steady-state conditions in the presence of antimycin. However, the enzyme with only one mutated cytochrome b subunit did not show the stimulation in the steady-state rate that was observed in the wild-type dimeric enzyme at low concentrations of antimycin, confirming that the half-of-the-sites reactivity for ubiquinol oxidation can be regulated in the wild-type dimer by binding of inhibitor to one ubiquinone reduction site. 相似文献
16.
17.
18.
19.
Lena S?rensen Jacob Andersen Mette Thomsen Stinna M. R. Hansen Xiaobei Zhao Albin Sandelin Kristian Str?mgaard Anders S. Kristensen 《The Journal of biological chemistry》2012,287(52):43694-43707
The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used as treatment of depression and anxiety disorders or as psychostimulant drugs of abuse. Despite their clinical importance, the molecular mechanisms by which various types of antidepressant drugs bind and inhibit SERT and NET are still elusive for the majority of the inhibitors, including the molecular basis for SERT/NET selectivity. Mutational analyses have suggested that a central substrate binding site (denoted the S1 pocket) also harbors an inhibitor binding site. In this study, we determine the effect of mutating six key S1 residues in human SERT (hSERT) and NET (hNET) on the potency of 15 prototypical SERT/NET inhibitors belonging to different drug classes. Analysis of the resulting drug sensitivity profiles provides novel information on drug binding modes in hSERT and hNET and identifies specific S1 residues as important molecular determinants for inhibitor potency and hSERT/hNET selectivity. 相似文献
20.
A technique has been developed for the electron microscope studyof the free cells and small cell aggregates of suspension culturesof Acer pseudoplatanus, L. Changes in fine structure have beenfollowed during the growth of a batch culture over 24 days,covering the lag phase, the phase of exponential growth, andthe stationary phase to a condition where the cells show evidenceof senescence. During the lag phase there is a massive synthesisof new cytoplasm and an increase in the number of mitochondriaand ribosomes. By the point of transition to the phase of exponentialgrowth many of the ribosomes are either attached to the ER membranesor are organized in spherical or spiral clusters. Multivesicularbodies are frequently observed. The development of the cellplate can be followed in some detail at this stage. As the rateof cell division decreases and cell enlargement begins the cytoplasmcomes to constitute a thin lining layer with fewer ribosomes,less prominent ER membranes and apparently fewer mitochondria.At this time starch begins to form and the frequency of lipid(or protein) bodies and of membrane enclosed crystals increases.During the stationary phase, which begins at about the 15thday of culture, the old cell walls show characteristic changesand are frequently ruptured. Intra-cytoplasmic vacuoles appearand then with the continuation of culture disappear as the cytoplasmiclayer approaches its minimum thickness. Nuclei show invaginationsand these often contain characteristic aged mitochondria. 相似文献