首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: The hygropreference of gardening workers of the leaf-cutting ant Atta sexdens rubropilosa was investigated in the laboratory using a gradient of relative humidity. Gardening workers were placed, together with pieces of fungus garden, in small, interconnected nest chambers offering four different relative humidities: 33 %, 75 %, 84 % and 98 % RH. Workers were allowed to move freely between them and to relocate the fungus following their humidity preference. While workers distributed themselves randomly in the nest chambers, they located the fungus gardens in the chamber with the highest humidity. These results indicate that gardening workers are able to sense differences in relative humidity, and that this ability is shown when they are engaged in fungus culturing. Humidity is discussed as one of the relevant variables that probably underlay the evolution of regulatory responses for the control of fungus growth in leaf-cutting ants.  相似文献   

2.
蜜蜂群内生殖分工体系的形成及其维持   总被引:1,自引:1,他引:0  
郑火青  赵慧霞  胡福良 《昆虫知识》2010,47(6):1066-1071
本文对蜜蜂群内生殖分工体系的形成及其维持机制进行综述。蜜蜂群体具有完善的劳动分工(包括生殖分工)体系,蜂王垄断生殖权力,而工蜂生殖器官发育不完全,在蜂王信息素和幼虫信息素的作用下产卵受到抑制。蜂王的多雄交配机制降低了群内个体间的亲缘关系,但也促进了工蜂间相互监督机制的形成。工蜂间的相互监督,结合蜂王和幼虫信息素对工蜂卵巢发育的影响,解决了蜂王与工蜂、工蜂与工蜂间的生殖利益冲突,保障了蜂群内的生殖分工体系,提高了群体效率,维护了蜂群的真社会性。  相似文献   

3.
The hygropreference of adult Cryptopygus antarcticus and Alaskozetes antarcticus was investigated over 2 h at 5, 10 and 20 degrees C, along humidity gradients (9-98% RH) established by means of different salt solutions. Two chamber arrangements were employed, linear and grid, to determine any influence of thigmotactic behaviour on distribution within the RH gradient. The humidity preference of both species varied with temperature. At 5 and 10 degrees C, C. antarcticus distributed homogeneously showing no clear RH preference. At 20 degrees C, this species preferred the highest humidity (98% RH). A. antarcticus demonstrated a preference for the lowest humidity (9% RH) at 5 degrees C, but at 10 degrees C its distribution differed between the two arena types. At 20 degrees C, A. antarcticus showed no clear humidity preference. Assays to control for experimental asymmetries along the gradient; thigmotactic behaviour; and aggregative behaviour exclude these factors as explanations for the observed results. The mean initial water content of samples did not differ significantly between temperature regimes (C. antarcticus: 68.6, 71.1 and 74.3%; A. antarcticus: 68.1, 70.1 and 68.6% at 5, 10 and 20 degrees C respectively), but the level of water loss increased significantly with temperature. The influence of desiccation tolerance and the ecological significance of the observed humidity preferences are discussed.  相似文献   

4.
The aim of the present study was: to compare thermoregulatory behaviour of single honeybee workers and groups of 3–15 bees over their annual activity period and to check out whether the annual fluctuations of ambient temperature selection are correlated with phases of the colony development. Thermal behaviour of both single workers and groups of bees was recorded, using a video camera, in a thermal gradient system. Thermal preferences of the insects were tested seasonally in spring (May/June), summer (July/August) and autumn (September–November). Both single bees and small groups of bees changed their thermal behaviour in daily cycle. The season of the year had distinct effect on temperature preferences of both single honeybee workers or small groups of bees. In single honeybee workers the lowest ambient temperatures were preferred in late spring (the swarming phase) while the highest temperatures were selected during the summer (the colony growing phase). There were significant seasonal changes in ambient temperature selected by groups of honeybee workers. Groups of honeybee workers tended to prefer the lowest temperatures in late spring and the highest temperatures were selected during the summer. The day-night differences exhibited by small groups of bees in our experiments are likely to represent behavioural responses of the honeybee colony. In our experiments we proved an influence of the season of the year on the honeybees’ thermal behaviour, which might be connected with seasonal shifts of temperature regulated by the honeybee colony.  相似文献   

5.
Microsatellite genotyping of workers from 13 species (ten genera) of stingless bees shows that genetic relatedness is very high. Workers are usually daughters of a single, singly mated queen. This observation, coupled with the multiple mating of honeybee queens, permits kin selection theory to account for many differences in the social biology of the two taxa. First, in contrast to honeybees, where workers are predicted to and do police each other''s male production, stingless bee workers are predicted to compete directly with the queen for rights to produce males. This leads to behavioural and reproductive conflict during oviposition. Second, the risk that a daughter queen will attack the mother queen is higher in honeybees, as is the cost of such an attack to workers. This explains why stingless bees commonly have virgin queens in the nest, but honeybees do not. It also explains why in honeybees the mother queen leaves to found a new nest, while in stingless bees it is the daughter queen who leaves.  相似文献   

6.
Animals often exhibit particular ‘personalities’, i.e. their behaviour is correlated across different situations. Recent studies suggest that this limitation of behavioural plasticity may be adaptive, since continuous adjustment of one''s behaviour may be time-consuming and costly. In social insects, particularly aggressive workers might efficiently take over fighting in the contexts of both nest defence and ‘policing’, i.e. the regulation of kin conflict in the society. Here, we examine whether workers who engage in aggressive policing in the ant Platythyrea punctata play a prominent role also in nest defence against intruders. The participation of individuals in policing and nest defence was highly skewed and a minority of workers exhibited most of the aggression. Workers who attacked reproductives after experimental colony fusion were less active during nest defence and vice versa. This suggests that workers show situation-dependent behavioural plasticity rather than consistently aggressive personalities.  相似文献   

7.
During colony growth, leaf-cutting ants enlarge their nests by excavating tunnels and chambers housing their fungus gardens and brood. Workers are expected to excavate new nest chambers at locations across the soil profile that offer suitable environmental conditions for brood and fungus rearing. It is an open question whether new chambers are excavated in advance, or will emerge around brood or fungus initially relocated to a suitable site in a previously-excavated tunnel. In the laboratory, we investigated the mechanisms underlying the excavation of new nest chambers in the leaf-cutting ant Acromyrmex lundi. Specifically, we asked whether workers relocate brood and fungus to suitable nest locations, and to what extent the relocated items trigger the excavation of a nest chamber and influence its shape. When brood and fungus were exposed to unfavorable environmental conditions, either low temperatures or low humidity, both were relocated, but ants clearly preferred to relocate the brood first. Workers relocated fungus to places containing brood, demonstrating that subsequent fungus relocation spatially follows the brood deposition. In addition, more ants aggregated at sites containing brood. When presented with a choice between two otherwise identical digging sites, but one containing brood, ants'' excavation activity was higher at this site, and the shape of the excavated cavity was more rounded and chamber-like. The presence of fungus also led to the excavation of rounder shapes, with higher excavation activity at the site that also contained brood. We argue that during colony growth, workers preferentially relocate brood to suitable locations along a tunnel, and that relocated brood spatially guides fungus relocation and leads to increased digging activity around them. We suggest that nest chambers are not excavated in advance, but emerge through a self-organized process resulting from the aggregation of workers and their density-dependent digging behavior around the relocated brood and fungus.  相似文献   

8.
Honeybee larvae and pupae are extremely stenothermic, i.e. they strongly depend on accurate regulation of brood nest temperature for proper development (33–36°C). Here we study the mechanisms of social thermoregulation of honeybee colonies under changing environmental temperatures concerning the contribution of individuals to colony temperature homeostasis. Beside migration activity within the nest, the main active process is “endothermy on demand” of adults. An increase of cold stress (cooling of the colony) increases the intensity of heat production with thoracic flight muscles and the number of endothermic individuals, especially in the brood nest. As endothermy means hard work for bees, this eases much burden of nestmates which can stay ectothermic. Concerning the active reaction to cold stress by endothermy, age polyethism is reduced to only two physiologically predetermined task divisions, 0 to ∼2 days and older. Endothermic heat production is the job of bees older than about two days. They are all similarly engaged in active heat production both in intensity and frequency. Their active heat production has an important reinforcement effect on passive heat production of the many ectothermic bees and of the brood. Ectothermy is most frequent in young bees (<∼2 days) both outside and inside of brood nest cells. We suggest young bees visit warm brood nest cells not only to clean them but also to speed up flight muscle development for proper endothermy and foraging later in their life. Young bees inside brood nest cells mostly receive heat from the surrounding cell wall during cold stress, whereas older bees predominantly transfer heat from the thorax to the cell wall. Endothermic bees regulate brood comb temperature more accurately than local air temperature. They apply the heat as close to the brood as possible: workers heating cells from within have a higher probability of endothermy than those on the comb surface. The findings show that thermal homeostasis of honeybee colonies is achieved by a combination of active and passive processes. The differential individual endothermic and behavioral reactions sum up to an integrated action of the honeybee colony as a superorganism.  相似文献   

9.
A defining feature of social insects is the reproductive division of labour, in which workers usually forego all reproduction to help their mother queen to reproduce. However, little is known about the molecular basis of this spectacular form of altruism. Here, we compared gene expression patterns between nonreproductive, altruistic workers and reproductive, non-altruistic workers in queenless honeybee colonies using a whole-genome microarray analysis. Our results demonstrate massive differences in gene expression patterns between these two sets of workers, with a total of 1292 genes being differentially expressed. In nonreproductive workers, genes associated with energy metabolism and respiration, flight and foraging behaviour, detection of visible light, flight and heart muscle contraction and synaptic transmission were overexpressed relative to reproductive workers. This implies they probably had a higher whole-body energy metabolism and activity rate and were most likely actively foraging, whereas same-aged reproductive workers were not. This pattern is predicted from evolutionary theory, given that reproductive workers should be less willing to compromise their reproductive futures by carrying out high-risk tasks such as foraging or other energetically expensive tasks. By contrast, reproductive workers mainly overexpressed oogenesis-related genes compared to nonreproductive ones. With respect to key switches for ovary activation, several genes involved in steroid biosynthesis were upregulated in reproductive workers, as well as genes known to respond to queen and brood pheromones, genes involved in TOR and insulin signalling pathways and genes located within quantitative trait loci associated with reproductive capacity in honeybees. Overall, our results provide unique insight into the molecular mechanisms underlying alternative reproductive phenotypes in honeybee workers.  相似文献   

10.
Endothermic heat production is a crucial evolutionary adaptation that is, amongst others, responsible for the great success of honeybees. Endothermy ensures the survival of the colonies in harsh environments and is involved in the maintenance of the brood nest temperature, which is fundamental for the breeding and further development of healthy individuals and thus the foraging and reproduction success of this species. Freshly emerged honeybees are not yet able to produce heat endothermically and thus developed behavioural patterns that result in the location of these young bees within the warm brood nest where they further develop and perform tasks for the colony. Previous studies showed that groups of young ectothermic honeybees exposed to a temperature gradient collectively aggregate at the optimal place with their preferred temperature of 36°C but most single bees do not locate themselves at the optimum. In this work we further investigate the behavioural patterns that lead to this collective thermotaxis. We tested single and groups of young bees concerning their ability to discriminate a local from a global temperature optimum and, for groups of bees, analysed the speed of the decision making process as well as density dependent effects by varying group sizes. We found that the majority of tested single bees do not locate themselves at the optimum whereas sufficiently large groups of bees are able to collectively discriminate a suboptimal temperature spot and aggregate at 36°C. Larger groups decide faster than smaller ones, but in larger groups a higher percentage of bees may switch to the sub-optimum due to crowding effects. We show that the collective thermotaxis is a simple but well evolved, scalable and robust social behaviour that enables the collective of bees to perform complex tasks despite the limited abilities of each individual.  相似文献   

11.
Since the beginning of the last century, the number of biological invasions has continuously increased worldwide. Due to their environmental and economical consequences, invasive species are now a major concern. Social wasps are particularly efficient invaders because of their distinctive biology and behavior. Among them, the yellow-legged hornet, Vespa velutina, is a keen hunter of domestic honeybees. Its recent introduction to Europe may induce important beekeeping, pollination, and biodiversity problems. Hornets use olfactory cues for the long-range detection of food sources, in this case the location of honeybee colonies, but the exact nature of these cues remains unknown. Here, we studied the orientation behavior of V. velutina workers towards a range of hive products and protein sources, as well as towards prominent chemical substances emitted by these food sources. In a multiple choice test performed under controlled laboratory conditions, we found that hornets are strongly attracted to the odor of some hive products, especially pollen and honey. When testing specific compounds, the honeybee aggregation pheromone, geraniol, proved highly attractive. Pheromones produced by honeybee larvae or by the queen were also of interest to hornet workers, albeit to a lesser extent. Our results indicate that V. velutina workers are selectively attracted towards olfactory cues from hives (stored food, brood, and queen), which may signal a high prey density. This study opens new perspectives for understanding hornets’ hunting behavior and paves the way for developing efficient trapping strategies against this invasive species.  相似文献   

12.
African honeybees, Apis mellifera, are characterised by frequent disturbance-induced absconding. However, the effectiveness in preparation before such disturbance-induced absconding has not been rigorously quantified yet. We investigated the effectiveness of preparation for disturbance-induced absconding by evaluating colony phenotypes prior to and after absconding in ten colonies of the Cape honeybee, A. m. capensis. Seven non-absconding colonies at the same apiary were used as controls. While seven absconded colonies left neither stores nor brood behind, three colonies abandoned only a small area of honey, pollen, open or capped brood. At the end of the observations, the control colonies still had pollen and honey stores and brood. The mean reduction rate between a major disturbance and the absconding event was 0.052 ± 0.018 cm2 stores and open brood per worker per day. Our results demonstrate that disturbance-induced absconding can also occur with preparation, if the disturbance is not highly destructive and enough time for preparation is available. We conclude that Cape honeybee colonies can show a considerable high effectiveness in their preparation before disturbance-induced absconding, which limits the loss of colony resources. In light of the general high mobility of African honeybee colonies such an efficient behaviour is probably adaptive. Received 22 December 2004; revised 3 June 2005; accepted 13 June 2005.  相似文献   

13.

Background

Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.

Methodology/Principal Findings

We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.

Conclusions/Significance

We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.  相似文献   

14.
Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the individual and collective disease defences in the ant Cardiocondyla obscurior. We compared the antiseptic behaviours (grooming and hygienic behaviour) of workers from genetically homogeneous and diverse colonies after exposure of their brood to the entomopathogenic fungus Metarhizium anisopliae. While workers from diverse colonies performed intensive allogrooming and quickly removed larvae covered with live fungal spores from the nest, workers from homogeneous colonies only removed sick larvae late after infection. This difference was not caused by a reduced repertoire of antiseptic behaviours or a generally decreased brood care activity in ants from homogeneous colonies. Our data instead suggest that reduced genetic diversity compromises the ability of Cardiocondyla colonies to quickly detect or react to the presence of pathogenic fungal spores before an infection is established, thereby affecting the dynamics of social immunity in the colony.  相似文献   

15.
Self-organization of comb building behaviour is an instinct of honeybees. Here we report a case in which honeybee workers show a disorder in comb building behaviour, which results in some workers becoming embedded in newly constructed combs during comb construction. This observation is a prime example how simple signals and cues can trigger a behaviour, even when it is obviously a mistake to start comb building while the wax is still at another worker’s body.  相似文献   

16.
Lasioglossum malachurum, a bee species common across much of Europe, is obligately eusocial across its range but exhibits clear geographic variation in demography and social behaviour. This variation suggests that social interactions between queens and workers, opportunities for worker oviposition, and patterns of relatedness among nest mates may vary considerably, both within and among regions. In this study, we used three microsatellite loci with 12-18 alleles each to examine the sociogenetic structure of colonies from a population at Agios Nikolaos Monemvasias in southern Greece. These analyses reveal that the majority of colonies exhibit classical eusocial colony structure in which a single queen mated to a single male monopolizes oviposition. Nevertheless, we also detect low rates of multiqueen nest founding, occasional caste switching by worker-destined females, and worker oviposition of both gyne and male-producing eggs in the final brood. Previous evidence that the majority of workers show some ovarian development and a minority (17%) have at least one large oocyte contrasts with the observation that only 2-3% of gynes and males (the so-called reproductive brood) are produced by workers. An evaluation of the parameters of Hamilton's Rule suggests that queens benefit greatly from the help provided by workers but that workers achieve greater fitness by provisioning and laying their own eggs rather than by tending to the queen's eggs. This conflict of interest between the queen and her workers suggests that the discrepancy between potential and achieved worker oviposition is due to queen interference. Comparison of relatedness and maternity patterns in the Agios Nikolaos Monemvasias population with those from a northern population near Tübingen, Germany, points to a north-south cline of increasingly effective queen control of worker behaviour.  相似文献   

17.
Capsule Females varied their provisioning patterns according to brood age and brood size, whereas males did not.

Aims To quantify how parents balance the needs of their offspring for food and protection.

Methods We studied 13 nests from hides and spent on average 101 hours per nest monitoring prey types, provisioning rate and the time spent at the nest by both sexes in relation to brood size and brood age.

Results Males always provided more food than females. Males brought similar amounts of prey items irrespective of brood size and nestling age, whereas females brought more prey and bigger items to larger and older broods. Females spent less time brooding larger broods, particularly early on.

Conclusions Hen Harrier parents share the provisioning burden, with each parent delivering prey as a function of brood care requirements, hunting capability and the behaviour of the other parent.  相似文献   

18.
Nonacs P 《Biology letters》2006,2(4):577-579
In many eusocial Hymenoptera, workers prevent each other from producing male offspring by destroying worker-laid eggs. Kin selection theory predicts that such 'worker policing' behaviour can evolve by increasing the average relatedness between workers and their male brood. Alternatively, if worker-laid eggs are of low relative viability, their replacement would increase the developmental reliability of the brood. Less colony investment in terms of time and resources would be lost on poor males. This gain is independent of the relatedness of the males. Unfortunately, both nepotistic and group efficiency benefits can simultaneously accrue with the replacement of worker-laid eggs. Therefore, worker behaviour towards eggs cannot completely resolve whether both processes have been equally evolutionarily important. Adequate resolution requires the presentation of worker-produced brood of various ages. The stage at which brood are replaced can discriminate whether worker policing occurs owing to a preference for closer genetic kin, a preference for the more reliable brood or both.  相似文献   

19.
Honeybee egg-laying workers mimic a queen signal   总被引:2,自引:0,他引:2  
Summary. In the honeybee, Dufour's gland secretion is caste specific and constitutes a component of the multi-sourced queen signal. As predicted, it is attractive to workers, which form a retinue around the scented source. Bioassays reveal the ester fraction and not the hydrocarbons to be the active constituents. This function of the esters was corroborated by assays with the synthetic queen-esters mixture, which successfully mimicked the queen's secretion. As predicted from the queen-like secretion exhibited by egg-laying workers, their glandular secretion was also attractive to nestmates, albeit to a lesser degree than that of the queen; while that of non-egg-laying workers was totally inactive. The evolution of the multiple queen signals in honeybees can be regarded as a component in an arms race between queen and workers. We hypothesize that in response to a reduced sensitivity to a certain queen signal, queen honeybees were selected to develop an alternative signaling-source. Dufour's gland seems to be one of these sources.  相似文献   

20.
Abstract. Bumble bee workers (Bombus bifarius, Hymenoptera: Apidae) exhibit aggression toward one another after the colony begins producing female reproductive offspring (the competition phase). Workers in competition phase colonies must continue to perform in‐nest tasks, such as nest thermoregulation, and to forage for food, to rear the reproductives to maturity. Therefore, competition phase workers are faced with potentially conflicting pressures to work for their colonies, or to compete for direct reproduction. The effects of reproductive competition on worker task performance were quantified by measuring relationships of worker body size, reproductive physiology, and aggression with their rates of task performance. If worker division of labour was strongly affected by competition, it was predicted that fecund workers would avoid performing nest maintenance and foraging tasks, focusing instead on reproductive behaviour. Furthermore, it was predicted that fecund workers would dominate their nest mates, and that subordinate workers would perform nonreproductive tasks at higher rates. Worker aggression was associated closely with direct reproductive competition. Both aggression and brood interaction rates were related positively with ooctye development. Furthermore, foraging was associated negatively with ovarian development. However, in‐nest and foraging task performance rates were not associated with social aggression. The results support a partial role for reproductive competition in worker polyethism. Although worker aggression did not directly affect polyethism, reproductively competent workers avoided foraging tasks that would remove them from egg‐laying opportunities. Reproductively competent workers did perform in‐nest tasks, suggesting that these tasks entail little cost in terms of reproductive competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号