首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf size and leaf display of thirty-eight tropical tree species   总被引:1,自引:0,他引:1  
Poorter L  Rozendaal DM 《Oecologia》2008,158(1):35-46
Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We examined 11 metamer traits of sun and shade trees of 38 coexisting moist forest tree species and determined the relative strengths of intra- and interspecific variation. Species-specific metamer traits were related to two variables that represent important life history variation; the regeneration light requirements and average leaf size of the species. Metamer traits varied strongly across species and, in contrast to our expectation, showed only modest changes in response to light. Intra- and interspecific responses to light were only congruent for a third of the traits evaluated. Four traits, amongst which leaf size, specific leaf area (SLA), and leaf area ratio at the metamer level (LAR) showed even opposite intra- and interspecific responses to light. Strikingly, these are classic traits that are thought to be of paramount importance for plant performance but that have completely different consequences within and across species. Sun trees of a given species had small leaves to reduce the heat load, but light-demanding species had large leaves compared to shade-tolerants, probably to outcompete their neighbors. Shade trees of a given species had a high SLA and LAR to capture more light in a light-limited environment, whereas shade-tolerant species have well-protected leaves with a low SLA compared to light-demanding species, probably to deter herbivores and enhance leaf lifespan. There was a leaf-size-mediated trade-off between biomechanical and hydraulic safety, and the efficiency with which species can space their leaves and forage for light. Unexpectedly, metamer traits were more closely linked to leaf size than to regeneration light requirements, probably because leaf-size-related biomechanical and vascular constraints limit the trait combinations that are physically possible. This suggests that the leaf size spectrum overrules more subtle variation caused by the leaf economics spectrum, and that leaf size represents a more important strategy axis than previously thought. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Osada  Noriyuki 《Plant Ecology》2020,221(10):939-950
Plant Ecology - Spring leaf phenology has been intensively studied in temperate deciduous broad-leaved tree species, but the phenology of evergreen broad-leaved tree species has seldom been focused...  相似文献   

3.
4.
Seed predation and dispersal can critically influence plant community structure and dynamics. Inter‐specific differences arising at these early stages play a crucial role on tree recruitment patterns, which in turn could influence forest dynamics and species segregation in heterogeneous environments such as Mediterranean forests. We investigated removal rates from acorns set onto the ground in two coexisting Mediterranean oak species –Quercus canariensis and Q. suber– in southern Spain. We developed maximum likelihood estimators to investigate the main factors controlling probabilities of seed removal and to describe species‐specific functional responses. To account for inter‐specific differences in seed‐drop timing, two experiments were established: a simultaneous exposure of acorns of the two species (synchronous experiments) and a seed exposure following their natural seed‐drop phenology (diachronic experiments). A total of 1536 acorns were experimentally distributed along a wide and natural gradient of plant cover, and removal was periodically monitored for three months at two consecutive years (with contrasting differences in seed production and thus seed availability on the ground). The probability of seed removal increased with plant cover (leaf area index, LAI) for the two oak species. Inter‐specific differences in acorn removal were higher in open areas and disappeared in closed microhabitats, especially during a non‐mast year. Despite later seed‐drop, Q. suber acorns were removed faster and at a higher proportion than those of Q. canariensis. The higher probability of seed removal for this species could be attributed to its larger seed size compared to Q. canariensis, as inter‐specific differences were less pronounced when similar sized acorns were exposed. Inter‐specific differences in seed removal, arising from seed size variability and microsite heterogeneity, could be of paramount importance in oak species niche separation, driving stand dynamics and composition along environmental gradients.  相似文献   

5.
The effects of increasing arsenic (0, 10, 50, 100 mg L?1) and zinc (0, 50, 80, 120, 200 mg L?1) doses on germination and oxidative stress markers (H2O2, MDA, SOD, CAT, APX, and GR) were examined in two Brazilian savanna tree species (Anadenanthera peregrina and Myracrodruon urundeuva) commonly used to remediate contaminated soils. The deleterious effects of As and Zn on seed germination were due to As- and Zn-induced H2O2 accumulation and inhibition of APX and GR activities, which lead to oxidative damage by lipid peroxidation. SOD and CAT did not show any As- and Zn-induced inhibition of their activities as was seen with APX and GR. We investigated the close relationships between seed germination success under As and Zn stress in terms of GR and, especially, APX activities. Increased germination of A. peregrina seeds exposed to 50 mg L?1 of Zn was related to increased APX activity, and germination in the presence of As (10 mg L?1) was observed only in M. urundeuva seeds that demonstrated increased APX activity. All the treatments for both species in which germination decreased or was inhibited showed decreases in APX activity. A. peregrina seeds showed higher Zn-tolerance than M. urundeuva, while the reverse was observed with arsenic up to exposures of 10 mg L?1.  相似文献   

6.
7.
The effect of leaf age on photosynthetic capacity, a critical parameter in the theory of optimal leaf longevity, was studied for two tropical pioneer tree species, Cecropia longipes and Urera caracasana, in a seasonally dry forest in Panama. These species continuously produce short-lived leaves (74 and 93 d, respectively) during the rainy season (May-December) on orthotropic branches. However, they differ in leaf production rate, maximum number of leaves per branch, light environment experienced by the leaves, leaf mass per unit area, and nitrogen content. Light-saturated photosynthetic rates for marked leaves of known ages (±1 wk) were measured with two contrasting schemes (repeated measurements vs. chronosequence within branch), which overall produced similar results. In both species, photosynthetic rates and nitrogen use efficiency were negatively correlated with leaf age and positively correlated with light availability. Photosynthetic rates declined faster with leaf age in Cecropia than in Urera as predicted by the theory. The rate of decline was faster for leaves on branches with faster leaf turnover rates. Nitrogen per unit leaf area decreased with leaf age only for Urera. Leaf mass per unit area increased with leaf age, either partly (in Cecropia) or entirely (in Urera) due to ash accumulation.  相似文献   

8.
A general allometric model between metabolic rate and body size has been derived for early plant ontogeny. The scaling exponent is (2 + N/6)/3, where N is the cell’s degree of freedom of motion. For early plant ontogeny N = 2, our prediction agrees well with Sack et al.’s observation [Sack, L., Maranon, T., Grubb, P.J., 2002. Science 295, 1923].  相似文献   

9.
Effects of seed size and phenology on the establishment of five deciduous broad-leaved tree species were examined in deciduous woodland. Treatments included absence and presence of litter in the forest understory, a small gap, and a large gap. Seedling emergence of large-seeded speciesQuercus mongolica var.grosseserrata andAcer mono was not reduced by accumulation of litter in the forest understory, but was promoted in the large gap where litter was less. Seedling emergence of small-seeded species,Alnus hirsuta, Cercidiphyllum japonicum andBetula platyphylla var.japonica, was reduced by the litter in almost all of the sites. Seedlings of large-seeded species avoid shade stress phenologically by unfolding all of their large leaves in a short period before canopy closure in the forest understory. These species had little mortality after seedling emergence. In contrast, small-seeded species have a longer duration of leaf emergence, shorter leaf longevity, and rapid leaf turnover in all the sites. These seedlings attained similar height to those of the large-seeded species at the end of the second year in the large gap, but survival and height growth rate decreased after canopy closure in the forest understory. We suggest that the importance of seed size in determining seedling establishment largely depends on the relationships between seasonal changes of environmental conditions and phenological traits of seedlings, which are related to seed size.Abbreviations Ah Alnus hirsuta - Am Acer mono - Cj Cercidiphyllum japonicum - Bp Betula platyphylla var.japonica - Qm Quercus mongolica var.grosseserrata  相似文献   

10.
Predicting tropical plant physiology from leaf and canopy spectroscopy   总被引:1,自引:0,他引:1  
Doughty CE  Asner GP  Martin RE 《Oecologia》2011,165(2):289-299
A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO2 saturated photosynthesis (A max), respiration (R), leaf transmittance and reflectance spectra (400–2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r 2  = 0.74, root mean square error (RMSE) = 2.9 μmol m−2 s−1)] followed by R (r 2  = 0.48), and A max (r 2  = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m−2 s−1) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.  相似文献   

11.
Young leaves of most species experience remarkably higher herbivore attack rates than mature leaves. Considerable theoretical effort has focused on predicting optimal defense and tradeoffs in defense allocation during leaf expansion. Among others, allocation to secondary chemistry may be dependent on growth constraints. We studied flavanoid production during leaf development in two species of Inga (Fabaceae: Mimosoideae) with different expansion strategies: Inga goldmanii, a species with slowly expanding young leaves, and Inga umbellifera, a species with fast-expanding young leaves. In these two species, the most abundant and toxic class of defensive compounds is flavanoids (which include tannins). We measured their concentration by leaf dry weight, their total content per leaf, their HPLC chemical profile and their toxicity to a generalist herbivore at different expansion levels. Although in both species the flavanoid concentration decreased with increasing leaf expansion, that decrease was twice as pronounced for I. umbellifera as it was for I. goldmanii. I. umbellifera leaves produced flavanoids only during the first half of their development while I. goldmanii leaves continued production throughout. The changes in flavanoid HPLC profiles and toxicity were also more dramatic for I. umbellifera, which had different flavanoids in young than in mature leaves. Relative to I. umbellifera, I. goldmanii showed smaller changes in both flavanoid composition and toxicity in the transition from young to mature leaves. These results indicate that, even though young leaves suffer higher rates of attack and are predicted to have better chemical defenses than mature leaves, growth constraints may modulate defense allocation and thus, evolution of defense strategies.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
 A hypothesized relationship between seed weight and leaf size was investigated for 58 diverse British (semi-)woody species. Interspecific variation in leaf size of adult plants corresponded allometrically with interspecific variation in the weight of an infructescence (seed-bearing inflorescence). The relationship between seed size and leaf size of adult plants was triangular. The corners of the triangle were interpreted in terms of ecological strategy. Medium-sized infructescences, small seeds and large leaves were seen among medium-sized, fast-growing, earlier-successional, mostly deciduous shrubs and trees; small infructescences, small seeds and small leaves mostly among low, slow-growing evergreens from stress-prone, proclimax habitats; and large infructescences, large seeds and large leaves among slow-growing, later-successional trees of potential competitive vigour. The hypothesis that the combination of large seeds and small leaves is allometrically unlikely was supported by the data. The roles of ontogeny and taxonomic relatedness in the seed size-leaf size relationship were examined by correlative and taxonomic analyses of seed, plant and leaf size during the unfolding of the life history from seed through two seedling phases to adulthood. Deciduous versus evergreen leaf habit was a source of deviation from the otherwise linear allometric relationships during ontogenetic development, none of which were, individually, confounded significantly with taxonomy. Received: 2 March 1998 / Accepted: 15 October 1998  相似文献   

13.
14.
15.
16.
Large initial seed size frequently confers distinct advantages on cereal crops in terms of seedling vigor, hardiness, improved stand establishment, and higher productivity. This study was conducted to determine if these advantages inherent in the plants grown from large seeds persist when the crop is subjected to salinity stress. Two hard red spring wheat cultivars, Yecora Rojo and Anza were grown in greenhouse sand cultures from seed of two size classes that differed in weight by a factor of 2. The cultures were irrigated four times daily with complete nutrient solutions to which NaCl and CaCl2 (2:1 molar ratio) were added to achieve osmotic potentials of –0.05. –0.55, and –0.70 MPa with electrical conductivities of 1.8, 12.8, and 15.8 dS m-1, respectively. In response to both salinity and small initial seed size, the following plant characteristics decreased: leaf appearance rate, blade area, tillers per plant, spikelets per spike and seeds per spike. Plants grown from large seeds out-yielded those from small seeds by 8, 37, and 27% for Yecora Rojo and by 15, 30, and 23% for Anza at osmotic potentials of –0.05, –0.55 and –0.70 MPa, respectively. Compared to the corresponding nonsaline controls, the yield of Yecora Rojo grown at –0.55 MPa was 51% for the plants from large seed and 35% from the small seeds. For Anza salinized at –0.55 MPa, these values were 49 and 40%, respectively. Exploitation of the benefits derived from large initial seed size may be a cost-effective management strategy for improving wheat productivity in salt-affected areas.  相似文献   

17.
 A correlation between genome size and agronomically important traits has been observed in many plant species. The goal of the present research was to determine the relationship between genome size, seed size, and leaf width and length in soybean [Glycine max (L.) Merr.] Twelve soybean strains, representing three distinct seed size groups, were analyzed. Flow cytometry was used to estimate their 2C nuclear DNA contents. Data on seed size and leaf size of the 12 strains were obtained from 1994 and 1995 field experiments. Variation of 2C nuclear DNA among the 12 soybean strains was 4.6%, ranging from 2.37 pg for a small-seed strain to 2.48 pg for a large-seed strain. Strain seed size was positively associated with leaf width (r=0.92) and leaf length (r=0.93). Genome size was highly correlated with seed size (r=0.97), leaf width (r=0.90) , and leaf length (r=0.93). The results of our study indicate that there is a significant correlation between genome size and leaf and seed size in soybean. It is possible that selection for greater seed size either leads to, or results from, greater genome size. If so, this relationship might be worth exploring at a more fundamental level. Received: 5 April 1997 / Accepted: 9 January 1998  相似文献   

18.
19.
Changes in morphology [leaf dry mass per unit area (LMA), thickness and density] and chemical composition (macronutrients and fibres content) in different age leaves of eight evergreen Mediterranean woody species were investigated. LMA and leaf thickness increased with leaf age increasing. Young tissues possessed higher concentrations of N, P, K, and Mg and lower Ca concentrations on a dry mass basis. However, mineral content was independent of age on leaf area basis (except for Ca content) suggesting that the changes in mineral concentration with leaf ageing are due to dilution in the larger dry mass accumulated in the oldest leaves. Leaf tissue density (LTD) increased during the first year of the leaf life. Lignin and hemicellulose concentrations did not vary along leaf life and the cellulose concentration increased with leaf age in most species between the current-year and the one-year old leaves. Our results suggested that physical leaf reinforcement with a higher cellulose concentration and density might be a leaf response to the unfavourable climatic conditions during the first winter.  相似文献   

20.
Yang D  Li G  Sun S 《Annals of botany》2008,102(4):623-629

Background and Aims

Trade-offs are fundamental to life-history theory, and the leaf size vs. number trade-off has recently been suggested to be of importance to our understanding leaf size evolution. The purpose of the present study was to test whether the isometric, negative relationship between leaf size and number found by Kleiman and Aarssen is conserved between plant functional types and between habitats.

Methods

Leaf mass, area and number, and stem mass and volume of current-year shoots were measured for 107 temperate broadleaved woody species at two altitudes on Gongga Mountain, south-west China. The scaling relationships of leaf size (leaf area and mass) vs. (mass- and volume-based) leafing intensity were analysed in relation to leaf habit, leaf form and habitat type. Trait relationships were determined with both a standardized major axis method and a phylogenetically independent comparative method.

Key Results

Significant negative, isometric scaling relationships between leaf size and leafing intensity were found to be consistently conserved across species independent of leaf habit, leaf form and habitat type. In particular, about 99 % of the variation in leaf mass across species could be accounted for by proportional variation in mass-based leafing intensity. The negative correlations between leaf size and leafing intensity were also observed across correlated evolutionary divergences. However, evergreen species had a lower y-intercept in the scaling relationships of leaf area vs. leafing intensity than deciduous species. This indicated that leaf area was smaller in the evergreen species at a given leafing intensity than in the deciduous species. The compound-leaved deciduous species were observed usually to have significant upper shifts along the common slopes relative to the simple-leaved species, which suggested that the compound-leaved species were larger in leaf size but smaller in leafing intensity than their simple counterparts. No significant difference was found in the scaling relationships between altitudes.

Conclusions

The negative, isometric scaling relationship between leaf size and number is largely conserved in plants, while the leaf size vs. number trade-off can be mediated by leaf properties. The isometry of the leaf size vs. number relationship may simply result from a biomass allocation trade-off, although a twig size constraint may provide an alternative mechanism.Key words: Allometry, trade-off, leafing intensity, leaf size, leaf habit, leaf form  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号