首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate warming enables plant species to migrate to higher latitudes and altitudes. Within Europe, the Mediterranean harbours many species that might expand their ranges towards Western Europe. Small seed size may facilitate dispersal, however, it may impair establishment of the range-expanding plant species in the novel vegetation. In a greenhouse experiment, we examined effects of average seed size of Mediterranean plant species on their establishment in a mixed community of Western European plant species. Applying two levels of densities of the natives and a herbivory treatment, we tested how seed size is linked to response in plant growth and fitness in novel vegetation. While all non-native plant species showed a negative response to increased planting density, species with small seeds showed a less negative response. This effect persisted under herbivory. Our data suggest that small-seeded non-native plant species may tolerate competitive pressure from novel plant communities better than large-seeded species, so that small seed size may confer a higher probability of establishment of non-native species in novel communities.  相似文献   

2.
Leaf size and leaf display of thirty-eight tropical tree species   总被引:1,自引:0,他引:1  
Poorter L  Rozendaal DM 《Oecologia》2008,158(1):35-46
Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We examined 11 metamer traits of sun and shade trees of 38 coexisting moist forest tree species and determined the relative strengths of intra- and interspecific variation. Species-specific metamer traits were related to two variables that represent important life history variation; the regeneration light requirements and average leaf size of the species. Metamer traits varied strongly across species and, in contrast to our expectation, showed only modest changes in response to light. Intra- and interspecific responses to light were only congruent for a third of the traits evaluated. Four traits, amongst which leaf size, specific leaf area (SLA), and leaf area ratio at the metamer level (LAR) showed even opposite intra- and interspecific responses to light. Strikingly, these are classic traits that are thought to be of paramount importance for plant performance but that have completely different consequences within and across species. Sun trees of a given species had small leaves to reduce the heat load, but light-demanding species had large leaves compared to shade-tolerants, probably to outcompete their neighbors. Shade trees of a given species had a high SLA and LAR to capture more light in a light-limited environment, whereas shade-tolerant species have well-protected leaves with a low SLA compared to light-demanding species, probably to deter herbivores and enhance leaf lifespan. There was a leaf-size-mediated trade-off between biomechanical and hydraulic safety, and the efficiency with which species can space their leaves and forage for light. Unexpectedly, metamer traits were more closely linked to leaf size than to regeneration light requirements, probably because leaf-size-related biomechanical and vascular constraints limit the trait combinations that are physically possible. This suggests that the leaf size spectrum overrules more subtle variation caused by the leaf economics spectrum, and that leaf size represents a more important strategy axis than previously thought. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Abstract: For eleven tree species, differing in seed mass, germination success (emergence success for two small-seeded species) and the causes of failure to germinate were studied in the forest understorey and in logging gaps in the tropical rain forests of Guyana. In the forest understorey, germination success increased with seed mass. However, as gap size increased the difference between smaller and larger seeded species diminished because germination success of smaller-seeded species increased slightly, while that of larger-seeded species decreased dramatically. The negative effect of gap size on germination success of larger-seeded species was caused by an increased risk of desiccation with gap size, which was a far more important seed mortality agent for larger than for smaller-seeded species. Generally, seeds of smaller-seeded species suffered more from insect predation and were removed at higher rates than larger-seeded species. On the other hand, larger-seeded species were eaten more by mammals than smaller-seeded species. It is concluded that logging can result in shifts in the species composition in the tropical rain forests of Guyana which are dominated by species with large seeds, since germination success of larger-seeded species is dramatically reduced in large logging gaps.  相似文献   

4.
Osada  Noriyuki 《Plant Ecology》2020,221(10):939-950
Plant Ecology - Spring leaf phenology has been intensively studied in temperate deciduous broad-leaved tree species, but the phenology of evergreen broad-leaved tree species has seldom been focused...  相似文献   

5.
6.
Question: Do thick‐twigged/large‐leaf species have an advantage in leaf display over their counterparts, and what are the effects of leaf habit and leaf form on the leaf‐stem relationship in plant twigs of temperature broadleaf woody species? Location: Gongga Mountain, southwest China. Methods: (1) We investigated stem cross‐sectional area and stem mass, leaf area and leaf/lamina mass of plant twigs (terminal branches of current‐year shoots) of 89 species belonging to 55 genera in 31 families. (2) Data were analyzed to determine leaf‐stem scaling relationships using both the Model type II regression method and the phylogenetically independent comparative (PIC) method. Results: (1) Significant, positive allometric relationships were found between twig cross‐sectional area and total leaf area supported by the twig, and between the cross‐sectional area and individual leaf area, suggesting that species with large leaves and thick twigs could support a disproportionately greater leaf area for a given twig cross‐sectional area. (2) However, the scaling relationships between twig stem mass and total leaf area and between stem mass and total lamina mass were approximately isometric, which indicates that the efficiency of deploying leaf area and lamina mass was independent of leaf size and twig size. The results of PIC were consistent with these correlations. (3) The evergreen species were usually smaller in total leaf area for a given twig stem investment in terms of both cross‐sectional area and stem mass, compared to deciduous species. Leaf mass per area (LMA) was negatively associated with the stem efficiency in deploying leaf area. (4) Compound leaf species could usually support a larger leaf area for a given twig stem mass and were usually larger in both leaf size and twig size than simple leaf species. Conclusions: Generally, thick‐twigged/large‐leaf species do not have an advantage over their counterparts in deploying photosynthetic compartments for a given twig stem investment. Leaf habit and leaf form types can modify leaf‐stem scaling relationships, possibly because of contrasting leaf properties. The leaf size‐twig size spectrum is related to the LMA‐leaf life span dimension of plant life history strategies.  相似文献   

7.
种子品质的优劣对于农牧业生产、经济与遗传资源有效利用、生物多样性保护以及植物群落恢复与重建具有重要的作用.种子老化是其在贮藏过程中普遍存在的一种生理现象,是随着种子贮藏时间延长而发生和发展的自然不可逆过程,不仅关系到后续种、苗生长与产量、品质等问题,还对植物种质资源的保存、利用和开发等均具有重要影响.种子老化的生理机制...  相似文献   

8.
Seed predation and dispersal can critically influence plant community structure and dynamics. Inter‐specific differences arising at these early stages play a crucial role on tree recruitment patterns, which in turn could influence forest dynamics and species segregation in heterogeneous environments such as Mediterranean forests. We investigated removal rates from acorns set onto the ground in two coexisting Mediterranean oak species –Quercus canariensis and Q. suber– in southern Spain. We developed maximum likelihood estimators to investigate the main factors controlling probabilities of seed removal and to describe species‐specific functional responses. To account for inter‐specific differences in seed‐drop timing, two experiments were established: a simultaneous exposure of acorns of the two species (synchronous experiments) and a seed exposure following their natural seed‐drop phenology (diachronic experiments). A total of 1536 acorns were experimentally distributed along a wide and natural gradient of plant cover, and removal was periodically monitored for three months at two consecutive years (with contrasting differences in seed production and thus seed availability on the ground). The probability of seed removal increased with plant cover (leaf area index, LAI) for the two oak species. Inter‐specific differences in acorn removal were higher in open areas and disappeared in closed microhabitats, especially during a non‐mast year. Despite later seed‐drop, Q. suber acorns were removed faster and at a higher proportion than those of Q. canariensis. The higher probability of seed removal for this species could be attributed to its larger seed size compared to Q. canariensis, as inter‐specific differences were less pronounced when similar sized acorns were exposed. Inter‐specific differences in seed removal, arising from seed size variability and microsite heterogeneity, could be of paramount importance in oak species niche separation, driving stand dynamics and composition along environmental gradients.  相似文献   

9.
Substantial intra‐specific trait variation exists within plant communities, and in theory this variation could influence community dynamics. Although recent research has focused on intra‐specific variation in traits themselves, it is the influence of this variation on plant performance that makes intra‐specific trait variation relevant to ecological dynamics within or among species. Understanding the links between trait and performance variation, and the role of traits in mediating relationships among multiple components of performance, is critical for assessing the importance of intra‐specific trait variation for community dynamics. Seed size is thought to affect aspects of plant performance including fecundity, seedling growth, dispersal and tolerance of natural enemies. For two tropical tree species, we assessed how seed size was related to performance variation within each species and determined whether intra‐specific trait variation mediates intra‐specific performance tradeoffs. We used field seed rain collection to characterize size‐dependent outcomes of dispersal, sowed seeds of known size in soil collected near or far from conspecifics to characterize susceptibility to soil pathogens, and monitored growth of seedlings from seeds of known size. We found that intra‐specific seed size variation caused intra‐specific performance variation. The degree of trait‐based performance variation was consistently smaller than the degree of trait variation, and seed size influenced different components of performance for each species. One species exhibited a tradeoff in which small seeds had a fecundity advantage (more seedlings per unit reproductive mass) but produced smaller seedlings, whereas the other species exhibited a tradeoff in which small seeds dispersed to areas of low conspecific density but were less tolerant of density‐responsive natural enemies. Our results indicate that a single trait can influence multiple components of performance and can mediate different tradeoffs in co‐occurring species. Complex and heterogeneous effects of a single trait in multidimensional niche space may favour inter‐specific niche differentiation and coexistence.  相似文献   

10.
The effects of increasing arsenic (0, 10, 50, 100 mg L?1) and zinc (0, 50, 80, 120, 200 mg L?1) doses on germination and oxidative stress markers (H2O2, MDA, SOD, CAT, APX, and GR) were examined in two Brazilian savanna tree species (Anadenanthera peregrina and Myracrodruon urundeuva) commonly used to remediate contaminated soils. The deleterious effects of As and Zn on seed germination were due to As- and Zn-induced H2O2 accumulation and inhibition of APX and GR activities, which lead to oxidative damage by lipid peroxidation. SOD and CAT did not show any As- and Zn-induced inhibition of their activities as was seen with APX and GR. We investigated the close relationships between seed germination success under As and Zn stress in terms of GR and, especially, APX activities. Increased germination of A. peregrina seeds exposed to 50 mg L?1 of Zn was related to increased APX activity, and germination in the presence of As (10 mg L?1) was observed only in M. urundeuva seeds that demonstrated increased APX activity. All the treatments for both species in which germination decreased or was inhibited showed decreases in APX activity. A. peregrina seeds showed higher Zn-tolerance than M. urundeuva, while the reverse was observed with arsenic up to exposures of 10 mg L?1.  相似文献   

11.
Tree leaves are important food sources for arboreal herbivores, such as primates, rodents, and marsupials. These animals do not eat leaves randomly in habitats with many tree species but rather choose based on the chemical components of leaves, such as sugars, fibers, proteins, and toxins. However, the effects of the microscale distribution of these chemicals within each leaf have not been examined for these animals. The giant flying squirrels Petaurista leucogenys are entirely arboreal, nocturnal herbivores, usually feeding on leaves and dropping leaf debris on the ground after partially consuming them. Therefore, we could easily assess which species of trees and which parts of the individual leaves they preferred to eat. We also examined microscale distributions of phenolics, sugar, and water within individual leaves. Of the two dominant food tree species, the deciduous Quercus acutissima was preferred over the evergreen Q. sessilifolia. The latter tree is only used during winter to early spring when the former had no leaves. Our chemical analyses revealed that Q. acutissima contained much more glucose than Q. sessilifolia in all seasons. Three types of leaf debris, eaten apically, basally, or centrally with a hole, were found. In Q. sessilifolia, which had low phenolic concentrations, apical eating was most common, whereas central eating was rare. In Q. acutissima, which had high phenolics, basal or central eating was common. Central feeding may be caused by avoiding the periphery because of a higher phenolic concentration in the leaf margin. Thus, microscale distributions of phenolics within individual leaves affect which parts P. leucogenys eats, whereas leaf sugar concentration is an important factor affecting which species of leaves they eat.  相似文献   

12.
13.
We report architectural divergence between two congeneric tropical tree species coexisting in the same stratum which suggests different strategies: reducing self-shading and support costs, or maximizing light foraging. We found species-specific differential performance across light environments, suggesting that architectural differentiation could facilitate the coexistence of species with similar vertical habitat.  相似文献   

14.
The effect of leaf age on photosynthetic capacity, a critical parameter in the theory of optimal leaf longevity, was studied for two tropical pioneer tree species, Cecropia longipes and Urera caracasana, in a seasonally dry forest in Panama. These species continuously produce short-lived leaves (74 and 93 d, respectively) during the rainy season (May-December) on orthotropic branches. However, they differ in leaf production rate, maximum number of leaves per branch, light environment experienced by the leaves, leaf mass per unit area, and nitrogen content. Light-saturated photosynthetic rates for marked leaves of known ages (±1 wk) were measured with two contrasting schemes (repeated measurements vs. chronosequence within branch), which overall produced similar results. In both species, photosynthetic rates and nitrogen use efficiency were negatively correlated with leaf age and positively correlated with light availability. Photosynthetic rates declined faster with leaf age in Cecropia than in Urera as predicted by the theory. The rate of decline was faster for leaves on branches with faster leaf turnover rates. Nitrogen per unit leaf area decreased with leaf age only for Urera. Leaf mass per unit area increased with leaf age, either partly (in Cecropia) or entirely (in Urera) due to ash accumulation.  相似文献   

15.
科学灌溉对植物种子生产具有重要意义。本研究以荒漠草原优良乡土植物沙芦草和牛枝子为对象,以充分灌溉为对照,探究不同生育时期亏缺灌溉对两种牧草种子生产和水分利用效率的影响。结果表明: 与对照相比,亏缺灌溉下两种植物土壤含水率下降,其中沙芦草土壤含水率下降主要发生在0~60 cm土层,牛枝子土壤水分下降未出现明显的分层现象。亏缺灌溉下沙芦草种子产量各构成因子差异均显著,开花期亏缺灌溉种子产量最高;牛枝子仅生殖枝数、小花数和荚果数差异显著,种子产量各处理差异不显著。相关分析显示,沙芦草种子产量与生殖枝数(r=0.776)、小穗数(r=0.717)呈显著正相关;牛枝子花序数与生殖枝数呈极显著负相关(r=-0.685),与小花数呈显著正相关(r=0.412)。与充分灌溉相比,亏缺灌溉下两种乡土植物种子生产耗水量减少,水分利用效率提高,其中,沙芦草开花期亏缺灌溉水分利用效率提高最多(32.9%);牛枝子分枝期亏缺灌溉提高最多(27.4%)。因此,适当亏缺灌溉可以提高两种植物水分利用效率。从水分利用效率和种子产量来看,干旱区沙芦草和牛枝子种子人工繁育时可采取亏缺灌溉,适宜亏缺的生育期分别为开花期和分枝期。  相似文献   

16.
A general allometric model between metabolic rate and body size has been derived for early plant ontogeny. The scaling exponent is (2 + N/6)/3, where N is the cell’s degree of freedom of motion. For early plant ontogeny N = 2, our prediction agrees well with Sack et al.’s observation [Sack, L., Maranon, T., Grubb, P.J., 2002. Science 295, 1923].  相似文献   

17.
青藏高原东缘地区常见植物种子大小变异研究   总被引:5,自引:0,他引:5  
杨霞  梁艳  陈学林 《生态科学》2007,26(6):483-489
以青藏高原东部地区常见10科植物作为研究材料,从种子鲜、干重与海拔、生活型、植物丰富度等方面的相关性研究了其种子大小变异。结果表明:①禾本科和菊科植物是高寒草甸上的优势科,分别占到17.49%和22.76%。常见植物种子重量集中于0.1~10.0mg之间。②从种子大小与植物丰富度来讲,小种子的种类和数量多,大种子种类和数量则少。③不同的科之间、不同的生活型,其种子鲜重与干重之间均存在极显著的相关性。④在典型的高寒草甸上,是以多年生草本为主,占总数的61.61%。从草本、灌木到乔木,其种子重量逐渐增大。⑤从整体上说,种子大小与海拔存在极显著的线性负相关性,植物种子重量与生活型的相关性比种子大小与系统分类学的相关性高。  相似文献   

18.
The composition of the seed bank was compared with that of the above-ground vegetation in two British salt marshes. Vegetation and seed banks were sampled in autumn and spring. There was a relatively low correlation between seed bank and vegetation in most perennial-dominated zones. Percentage annual plant cover was significantly positively correlated to percentage similarity value between vegetation and seed bank. Cluster analysis indicated that the zones dominated by annuals and by Suaeda vera on the ungrazed Nod Marsh in Norfolk formed groups between seed bank and vegetation, whereas on the Llanrhidian Marsh in Wales the seed bank of four of the six zones formed a group.  相似文献   

19.
Effects of seed size and phenology on the establishment of five deciduous broad-leaved tree species were examined in deciduous woodland. Treatments included absence and presence of litter in the forest understory, a small gap, and a large gap. Seedling emergence of large-seeded speciesQuercus mongolica var.grosseserrata andAcer mono was not reduced by accumulation of litter in the forest understory, but was promoted in the large gap where litter was less. Seedling emergence of small-seeded species,Alnus hirsuta, Cercidiphyllum japonicum andBetula platyphylla var.japonica, was reduced by the litter in almost all of the sites. Seedlings of large-seeded species avoid shade stress phenologically by unfolding all of their large leaves in a short period before canopy closure in the forest understory. These species had little mortality after seedling emergence. In contrast, small-seeded species have a longer duration of leaf emergence, shorter leaf longevity, and rapid leaf turnover in all the sites. These seedlings attained similar height to those of the large-seeded species at the end of the second year in the large gap, but survival and height growth rate decreased after canopy closure in the forest understory. We suggest that the importance of seed size in determining seedling establishment largely depends on the relationships between seasonal changes of environmental conditions and phenological traits of seedlings, which are related to seed size.Abbreviations Ah Alnus hirsuta - Am Acer mono - Cj Cercidiphyllum japonicum - Bp Betula platyphylla var.japonica - Qm Quercus mongolica var.grosseserrata  相似文献   

20.
Predicting tropical plant physiology from leaf and canopy spectroscopy   总被引:1,自引:0,他引:1  
Doughty CE  Asner GP  Martin RE 《Oecologia》2011,165(2):289-299
A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO2 saturated photosynthesis (A max), respiration (R), leaf transmittance and reflectance spectra (400–2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r 2  = 0.74, root mean square error (RMSE) = 2.9 μmol m−2 s−1)] followed by R (r 2  = 0.48), and A max (r 2  = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m−2 s−1) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号