首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed to determine how postprandial motilin, gastrin, and pancreatic polypeptide plasma concentrations measured during vagal blockade relate to coincident small intestinal motility patterns. Feeding produced a postprandial pattern of intestinal motility coincident with a sustained increase in gastrin and pancreatic polypeptide and a decline in motilin plasma concentrations. Vagal blockade replaced the fed pattern with one similar to migrating motor complex (MMC) activity. Highest motilin plasma concentrations were observed during phase III of this MMC-like activity, as occurs in the fasted state. Vagal blockade reduced but did not abolish the postprandial increase in plasma gastrin and pancreatic polypeptide concentrations. Termination of vagal cooling produced a decline in motilin and an elevation in gastrin and pancreatic polypeptide concentrations, coincident with the return of the fed pattern. In conclusion, during vagal blockade in the fed state (i) motilin, but not gastrin or pancreatic polypeptide plasma concentrations, fluctuate with the MMC-like activity, and any measurement of motilin concentration under these circumstances must be interpreted on the basis of gut motility patterns, and (ii) gastrin and pancreatic polypeptide concentrations are marginally elevated, but these changes are not enough to disrupt the MMC or have any motor effect. Lastly, the fed pattern and the postprandial changes in motilin, gastrin, and pancreatic polypeptide concentrations are in part dependent upon intact vagal pathways.  相似文献   

2.
We have looked at the plasma concentrations of motilin, pancreatic polypeptide (PP), and somatostatin (STS) during the various phases of the interdigestive motor complex (IDMC) in dogs. As expected, motilin cyclical increase was always associated with the phase III of the IDMC. Statistical analysis of PP variations revealed a significant rise 10 min before duodenal phase III; however, in individual animals, this relationship was inconsistent. Although a dose-related increase in PP blood levels was induced by administration of synthetic canine motilin (0-200 ng kg-1 iv), fasting plasma levels of PP were not correlated with the concentrations of circulating endogenous motilin. After truncal vagotomy, while motilin release and the intestinal motility pattern remained unaltered, the phase III associated cyclical increases of PP disappeared. Infusion of physiological amounts of PP (1 microgram kg-1 h-1 for 3 h) mimicking the postprandial release failed to reproduce a fed pattern type of intestinal motility and of motilin secretion. No statistical correlation could be established between STS plasma levels and the motor activity of the intestine. STS plasma levels were not correlated with circulating concentrations of motilin and the exogenous administration of physiological doses of synthetic canine motilin failed to modify STS plasma levels. Morphine (200 micrograms kg-1 iv) stimulated only the release of motilin. These data suggest that the role played by circulating concentrations of PP and STS in the control of the IDMC in dog is at most minimal.  相似文献   

3.
The role of pancreatic polypeptide (PP) and motilin in the regulation of the migrating motor complex (MMC) was studied in normal subjects. Both plasma motilin and PP levels changed cyclically in the fasted state and were highest in the late phase II period preceding the activity front in the duodenum. A continental breakfast invariably disrupted the MMC and induced a fed pattern of motility. After the meal plasma motilin levels decreased whereas PP levels rose significantly. Infusion of pure porcine motilin during the fasted state induced an activity front and a rise in plasma PP levels. Infusion of bovine PP in doses producing plasma PP levels above the postprandial values neither induced an activity front nor prevented its occurrence. During PP infusion, however, plasma motilin levels were low, although the activity front was not inhibited. PP seems to have no clear role in the regulation of the motor component of the MMC of man. The role of motilin in the production of the activity front of the MMC is discussed.  相似文献   

4.
Motilin is an intestinal peptide that stimulates contraction of gut smooth muscle. The motilin receptor has not been cloned yet, but motilin-receptor agonists appear to be potent prokinetic agents for the treatment of dysmotility disorders. The aim of this study was to determine neural or muscular localization of motilin receptors in human upper gastrointestinal tract and to investigate their pharmacological characteristics. The binding of (125)I-labeled motilin to tissue membranes prepared from human stomach and duodenum was studied; rabbit tissues were used for comparison. Solutions enriched in neural synaptosomes or in smooth muscle plasma membranes were obtained. Various motilin analogs were used to displace the motilin radioligand from the various tissue membranes. The highest concentration of human motilin receptors was found in the antrum, predominantly in the neural preparation. Human motilin receptors were sensitive to the NH(2)-terminal portion of the motilin molecule, but comparison with rabbit showed that both species had specific affinities for various motilin analogs [i.e., Mot-(1-9), Mot-(1-12), Mot-(1-12) (CH(2)NH)(10-11), and erythromycin]. Motilin receptors obtained from synaptosomes or muscular plasma membranes of human antrum expressed different affinity for two motilin-receptor agonists, Mot-(1-12) and Mot-(1-12) (CH(2)NH)(10-11), suggesting that they correspond to specific receptor subtypes. We conclude that human motilin receptors are located predominantly in nerves of the antral wall, are functionally (and probably structurally) different from those found in other species such as the rabbit, and express specific functional (and probably structural) characteristics dependent on their localization on antral nerves or muscles, suggesting the existence of specific receptor subtypes, potentially of significant physiological or pharmacological relevance.  相似文献   

5.
During fasting, gastrointestinal (GI) motility is characterized by cyclical motor contractions. These contractions have been referred to as interdigestive migrating contractions (IMCs). In dogs and humans, IMCs are known to be regulated by motilin. However, in rats and mice, IMCs are regulated by ghrelin. It is not clear how these peptides influence each other in vivo. The aim of the present study was to investigate the relationship between ghrelin and motilin in conscious dogs. Twenty healthy beagles were used in this study. Force transducers were implanted in the stomach, duodenum, and jejunum to monitor GI motility. Subsequent GI motility was recorded and quantified by calculating the motility index. In examination 1, blood samples were collected in the interdigestive state, and levels of plasma ghrelin and motilin were measured. Plasma motilin peaks were observed during every gastric phase III, and plasma ghrelin peaks occurred in nearly every early phase I. Plasma motilin and ghrelin levels increased and decreased cyclically with the interdigestive states. In examination 2, saline or canine ghrelin was administered intravenously during phase II and phase III. After injection of ghrelin, plasma motilin levels were measured. Ghrelin injection during phases II and III inhibited phase III contractions and decreased plasma motilin levels. In examination 3, ghrelin was infused in the presence of the growth hormone secretagogue receptors antagonist [D-Lys3]-GHRP-6. Continuous ghrelin infusion suppressed motilin release, an effect abrogated by the infusion of [D-Lys3]-GHRP-6. Examination 4 was performed to evaluate the plasma ghrelin response to motilin administration. Motilin infusion immediately decreased ghrelin levels. In this study, we demonstrated that motilin and ghrelin cooperatively control the function of gastric IMCs in conscious dogs. Our findings suggest that ghrelin regulates the function and release of motilin and that motilin may also regulate ghrelin.  相似文献   

6.
In this study, we assessed whether endogenous CCK is involved in the regulation of interdigestive gastrointestinal and gallbladder motility in conscious dogs with force transducers chronically implanted in the gastric antrum, duodenum, jejunum and gallbladder. L364718 at a dose of 1.0 mg/kg was used as a specific and potent CCK receptor blocker, and its effect on spontaneous interdigestive motility and plasma motilin release were examined. Additionally, the contractile activity of exogenous synthetic canine motilin (20-100 ng/kg) with or without pretreatment with L364718 at a dose of 1.0 mg/kg was assessed. Whether the blocking effect of L364718 on CCK receptors was sufficient or not was verified by giving CCK-OP at a bolus dose of 10 ng/kg. As a result, cyclic changes in interdigestive motor activity and the plasma motilin concentration were not affected by pretreatment with L364718. L364718 also did not affect motilin-induced interdigestive contractile activity in the gastrointestinal tract and gallbladder. On the other hand, the effect of CCK-OP was completely abolished by pretreatment with L364718. It is concluded that endogenous CCK is not involved in the regulation of spontaneous and motilin-induced interdigestive contractions in the canine gastrointestinal tract and gallbladder.  相似文献   

7.
Motilin, a 22-amino acid peptide hormone secreted by endocrine cells of the intestinal mucosa, plays an important role in the regulation of gastrointestinal motility. The actions of motilin agonists have been extensively investigated in dogs due to physiological similarities between the dog and human alimentary tracts. The amino acid sequence of the dog motilin receptor, however, was previously unknown. We have cloned a cDNA from dog stomach corresponding to the motilin receptor. The deduced protein shared 71% and 72% sequence identity with the human and rabbit motilin receptors, respectively. Expression of the dog motilin receptor in CHO cells promoted the typical cellular responses to the agonists, motilin and erythromycin. The rank order of potency determined for these agonists was similar to that found for the human motilin receptor, with motilin being more potent than erythromycin. Immunohistochemistry of the dog stomach revealed that the motilin receptor was localized in neuronal cell bodies and fibers. This is the first study detailing the cloning, expression, and functional characterization of the dog motilin receptor. Determination of the full sequence and functional properties of the dog motilin receptor will provide useful information enabling us to interpret previous and future studies of motilin agonists in dogs.  相似文献   

8.
Ten dogs anesthetized with α-chloralose were prepared with platinum monopolar electrodes in the antrum, duodenum and jejunum to record myoelectrical activity and bipolar stimulating electrodes placed on distal cut end of both cervical vagi to apply electric stimulation. Blood samples were obtained from both portal and femoral veins before and after bilateral vagal stimulation was initiated while the myoelectric activity was recorded continuously. The stimulation parameters used were low frequency (9V, 5 cps, 0.5 ms) and high frequency stimulus (9V, 30 cps, 10 ms) for 10 min. During the stimulation, plasma motilin concentrations increased significantly in both portal and femoral veins with simultaneous increases in the spike activity. The increment in the motilin level of portal venous blood was more marked. In 7 dogs, high frequency stimulation was repeated while the animals received i.v. atropine, 100 μg/kg-hr. Atropinization completely blocked the increase in the motilin concentration in response to high frequency stimulus with a simultaneous inhibition of the spike activity. The study suggests strongly that the vagus nerve plays an important role on endogenous release of motilin through its cholinergic pathway.  相似文献   

9.
Erythromycin, one of the macrolide antibiotics, and its derivatives had been found to mimic actions of exogenous motilin, a gastrointestinal peptide hormone. We found that some of the macrolide compounds inhibited the specific binding of 125I-motilin to rabbit duodenum muscle at 15 C in a dose-dependent fashion. The inhibitory activity of several macrolides examined did not relate to their antibacterial activity but to their motilin-like activity. A 50% inhibition by EM536, a non-antibacterial erythromycin derivative with the highest motilin-like activity, was obtained at 3-40 nM and little higher than that of non-radioactive motilin (5-6 nM) under the present conditions. The results suggest that erythromycin and its derivatives mimic physiological actions of motilin by acting as agonists for a motilin receptor.  相似文献   

10.
The peripheral plasma concentrations of immunoreactive motilin, pancreatic polypeptide (PP), somatostatin and gastrin were measured in 7 pigs fasted to 24 h and subsequently fed a standard meal. Plasma motilin peaked during the last part of phase II activity of the migrating myoelectric complex (MMC) sequence (25.2 +/- 2.3 pM), the lowest value being recorded during phase I (10.6 +/- 1.5 pM) after a 24 h fast. Plasma motilin remained at a low level during the digestive pattern of duodenal activity, no fluctuation occurring when the first postprandial MMC recurred. At variance analysis, gastrin and PP were not released phasically with MMC in the fasting state, while at autocovariance both peptides tended to fluctuate during the MMC sequence with positive and negative peaks at regular intervals along MMC cycles. No variation of plasma somatostatin was observed in the fasting animals. These findings argue against a major role of circulating PP, gastrin and somatostatin-like components in the control of fasted and post absorptive duodenal motility in pigs while the role of motilin remains equivocal.  相似文献   

11.
It is generally believed that gastric emptying of solids is regulated by a coordinated motor pattern between the antrum and pylorus. We studied the role of the vagus nerve in mediating postprandial coordination between the antrum and pylorus. Force transducers were implanted on the serosal surface of the body, antrum, pylorus, and duodenum in seven dogs. Dogs were given either a solid or a liquid meal, and gastroduodenal motility was recorded over 10 h. Gastric emptying was evaluated with radiopaque markers mixed with a solid meal. Dogs were treated with hexamethonium, N(G)-nitro-l-arginine methyl ester (l-NAME), or transient vagal nerve blockade by cooling. A postprandial motility pattern showed three distinct phases: early, intermediate, and late. In the late phase, profound pyloric relaxations predominantly synchronized with giant antral contractions that were defined as postprandial antropyloric coordination. A gastric emptying study revealed that the time at which gastric contents entered into the duodenum occurred concomitantly with antropyloric coordination. Treatment by vagal blockade or hexamethonium significantly reduced postprandial antral contractions and pyloric relaxations of the late phase. l-NAME changed pyloric motor patterns from relaxation dominant to contraction dominant. Solid gastric emptying was significantly attenuated by treatment with hexamethonium, l-NAME, and vagal blockade. Postprandial antropyloric coordination was not seen after feeding a liquid meal. It is concluded that postprandial antropyloric coordination plays an important role to regulate gastric emptying of a solid food. Postprandial antropyloric coordination is regulated by the vagus nerve and nitrergic neurons in conscious dogs.  相似文献   

12.
Zhang AJ  Tang M  Jiang ZY 《生理学报》2002,54(5):417-421
采用清醒大鼠胃运动记录和玻璃微电极记录神经元活动的实验方法 ,研究下丘脑外侧区 (lateralhy pothalamicarea,LHA)微量注射胃动素 (motilin) ,对清醒大鼠胃窦运动和对麻醉大鼠迷走背核复合体 (dorsalvagalcomplex ,DVC)中胃扩张敏感神经元电活动的调节作用。LHA内微量注射胃动素 (0 37nmol/ 0 5 μl)可使胃窦运动增强 76 2 9± 4 0 9% (P <0 0 1)。DVC中 6 0个胃扩张 (gastricdistention ,GD)敏感神经元中 ,39(6 5 % )个GD刺激引起电活动增强 ,2 1(35 % )个电活动减弱 ,分别称之为GD兴奋型神经元和GD抑制型神经元。双侧LHA微量注射胃动素 0 37nmol/ 0 5 μl,14个GD抑制型神经元中有 12个单位放电频率增加 4 4 35± 7 89% (P <0 0 1) ;2 4个GD兴奋型神经元中有 15个单位放电频率减少 7 17± 7 89% (P <0 0 5 )。结果提示 ,中枢胃动素可能通过LHA-DVC-迷走神经实现对胃窦运动的调控  相似文献   

13.
Lipid perfusion into the distal ileal lumen at supraphysiological loads inhibits pancreatic exocrine secretion and gastrointestinal motility in humans. In the present study, we sought to determine the effects of physiological postprandial intraileal lipid concentrations on endogenously stimulated pancreaticobiliary secretion, intestinal motility, and release of regulatory mediators. Eight healthy volunteers were intubated with an oroileal multilumen tube for continuous duodenal perfusion of essential amino acids (450 mumol/min), ileal perfusion of graded doses of lipids (0, 50 and 100 mg/min, each dose for 90-120 min), aspiration of duodenal and ileal chyme, and intestinal manometry. Venous blood samples were obtained for measurement of GLP-1 and PYY. Ileal lipid perfusion dose dependently decreased endogenously stimulated trypsin [262 +/- 59 vs. 154 +/- 42 vs. 92 +/- 20 U/min (P < 0.05)] and bile acid output [18.6 +/- 1.9 vs. 8.4 +/- 2.8 vs. 3.0 +/- 1.0 micromol/min (P < 0.05)]. Duodenal motor activity was not inhibited by either lipid dose. Trypsin and bile acid output correlated inversely with the release of GLP-1 and PYY (absolute value of R > 0.84; P < 0.05), whereas the motility index did not. Physiological postprandial ileal lipid concentrations dose dependently inhibited human digestive pancreatic protease and bile acid output, but not intestinal motor activity. Thus physiological postprandial ileal nutrient exposure may be of importance for the termination of digestive secretory responses. Ileocolonic release of GLP-1 and PYY appears to participate in mediating these effects.  相似文献   

14.
The role of motilin in the generation of the gastric component of phase 3 of the migrating myoelectric complex (MMC) was studied in human volunteers. Interdigestive motor activity was recorded manometrically in five normal subjects after a fast of at least 15 h. Intraluminal pressures were measured in the gastric antrum at 4 levels 3 cm apart and in the upper small bowel at 3 levels 25 cm apart. Blood samples were drawn every 10 min for radioimmunoassay of motilin and PP. After 2 spontaneously occurring activity fronts (AF) had been recorded, bovine PP was infused intravenously at a rate of 50 μg/h. Following the third AF a combination of PP (50 μg/h) and 13-norleucine-motilin (30 μg/h) was infused until after the next AF. It was found that 90% of the spontaneous AFs originated in the stomach. They were preceded by a motilin peak. During the PP infusion, plasma PP levels increased from 29 to 256 pmol/l, motilin decreased from 42 to 15 pmol/l, and all AFs originated in the small bowel. During the combined PP and motilin infusion, plasma motilin increased to 330 pmol/l, and all AFs again originated in the stomach. It is concluded that motilin has an important role in the regulation of the MMC activity front in the stomach, but not in the small intestine. Postprandial rises in plasma PP might be involved in lowering motilin levels after a meal, and indirectly, in the disruption of gastric MMCs during digestion.  相似文献   

15.
This study investigates the gastroprokinetic effects of motilin and erythromycin A (EM-A) and its potential mechanism in guinea pigs Cavia porcellus in vitro. Guinea pig stomach strips were mounted under organ baths containing Krebs solution. Motilin,EM-A,Nω-Nitro-L-arginine (L-NNA),L-arginine (L-AA) were added to the bathing solution in a non-cumulative way. Then the effects of motilin and EM-A was studied during electrical field stimulation (EFS) in the absence and presence of L-NNA and L-AA in the gastri...  相似文献   

16.
通过应用核素法测定糖尿病胃瘫大鼠的胃排空 ,建立了糖尿病胃瘫大鼠的模型 ;据此模型观察了小剂量红霉素 (3mg kg)对糖尿病胃瘫大鼠液相胃排空的影响。结果显示该药能够显著减小其胃排空的一小时残留率 (R1H) [(6 3%± 6 .8% )vs.(36 %± 3.8% ) ];但此作用具有显著个体差异 ,根据所设标准分成红霉素有效组 (E组 )和无效组 (F组 )后 ,发现两组疗效具有显著差异。应用受体相关基因芯片初步筛选了这两组大鼠胃窦组织的差异表达基因。结果筛选出 10条差异表达基因 ,其中对多巴胺受体D3和神经肽Y受体Y5基因进行了RT PCR半定量验证 ,结果与芯片一致 ,即D3和Y5基因在E组中的表达水平显著高于F组 [D3受体 :(0 .2 6± 0 .0 4 )vs.(0 .16± 0 .0 4 ) ;Y5受体 :(0 .94± 0 .10 )vs .(0 .6 8± 0 .0 9) ],而与正常对照组和阴性对照组间未见明显差异。结果表明 :小剂量红霉素可以改善糖尿病胃瘫大鼠的胃排空 ,其疗效有明显的个体差异 ;红霉素有效组多巴胺受体D3(DRD3)和神经肽受体Y5 (NPYY5 )表达水平显著高于红霉素无效组。提示这两种受体可能与红霉素促动力作用的易感性相关。  相似文献   

17.
目的:研究尾悬吊模拟失重环境对大鼠血清胃泌素(GAS)、胃动素(MTL)和胃窦Cajal间质细胞(ICC)的影响。方法:健康雄性Wistar大鼠64只随机分为8组(rt=8),按模拟失重时相分别设为6h、12h、1d、2d、3d、5d、7d和0h(地面对照组)组,采用尾悬吊法建立模拟失重动物模型。应用放免法测定血清GAS、MTL浓度,免疫组化和RT—PCR技术检测各组大鼠胃窦组织中c—kit蛋白和mRNA表达情况。结果:尾悬吊6、12h阶段,血清GAS浓度明显升高,与对照组比较差异有统计学意义(P〈0.05);随尾悬吊时相延长,血清GAS含量呈逐渐下降趋势,与正常对照组水平相近。尾悬吊各组大鼠血清MTL浓度均升高,12h以后各组MTL浓度值与对照组比较,差异有统计学意义(P〈0.05)。免疫组化结果显示,c—kit蛋白阳性表达为棕褐色,主要分布在ICC胞体和突起,正常对照组大鼠胃窦肌层ICC(ICC—MY)呈连续性浓染,肌层内ICC(ICC—IM)亦明晰可见;6h-5d的尾悬吊过程中,大鼠胃窦ICC—MY连续性出现中断现象且逐渐明显,染色逐渐减弱,ICC—IM染色减弱的同时c—kit阳性ICC也明显减少;7d组胃窦组织中c—kit蛋白表达有所恢复。模拟失重各组及对照组大鼠胃窦组织中均有c—kitmRNA表达,尾悬吊6、12h组的c—kitmRNA表达明显下降,与对照组比较,差异有统计学意义(P〈0.05),1~3d组逐渐恢复,5d组又出现明显下降(P〈0.05),7d组c—kitmRNA表达值明显复升。结论:尾悬吊模拟失重对大鼠血清GAS、MTL和胃窦Cajal间质细胞c—kit蛋白及mRNA表达造成明显影响,可能导致胃动力障碍。  相似文献   

18.
In the isolated perfused canine ileal segment, exogenous motilin infused for 9 min, at concentrations from 10(-10) M and 10(-8) M, increased circular muscle motility concomitant with inhibiting tonic VIP release, maximum at 10(-8) M. Both effects increased with increasing motilin concentrations. Atropine 10(-7) M pretreatment did not alter these responses. Naloxone 10(-7) M pretreatment eliminated both the increase in motor activity and the inhibition of VIP levels. Thus the nonmuscarinic neural pathway responsible for motor activation by motilin probably involves the stimulation of release of opiates, which in turn inhibit the release of VIP. Reduction of tonic inhibition of the muscle by continuous VIP release may in part account for increases in motor activity induced by motilin.  相似文献   

19.
Neural and muscular receptors for motilin in the rabbit colon   总被引:5,自引:0,他引:5  
Motilin receptors were classically recognized in the gastroduodenal area, where they help to regulate interdigestive motility. More recently, motilin receptors were identified in the colon where their biologic significance remains unclear. We aimed here to characterize the motilin receptors of the rabbit colon. Distal colon and duodenum were obtained from sacrificed rabbits. Tissues homogenized by Polytron were submitted to differential centrifugation to obtain neural synaptosomes or smooth muscle plasma membranes enriched solutions. Motilin binding to these membranes was determined by the displacement of (125)I MOT by the native peptide MOT 1-22, or by peptide analogues MOT 1-12 [CH(2)NH](10-11) or GM-109 and by erythromycin derivative GM-611. Motilin binding capacity was maximum in colon nerves (49.5 +/- 6.5 fmol/mg protein vs. 19.9 +/- 2.5 in colon muscles or 9.4 +/- 2.8 and 6.6 +/- 1.2 in duodenal muscles and antral nerves respectively); all tissues expressed similar affinity for MOT 1-22, and the motilin agonist GM-611 bound equally to neural or muscle tissues from the rabbit colon; the synthetic antagonist MOT 1-12 [CH(2)NH](10-11) showed greater affinity for colon nerves than for colon muscles (plC50: 7.23 +/- 0.07 vs. 6.75 +/- 0.03). Similar results were obtained with the peptide antagonist GM-109; receptor affinity toward MOT 1-12 [CH(2)NH(10-11)] was always five times superior in neural tissues, whether they came from the colon or the antrum, than in muscle tissues, whether they were obtained from colon or from duodenum. Motilin receptors are found in very high concentration in nerves and in muscles from rabbit colon; specific motilin receptor subtypes are identified in nerves (N) and muscles (M) of the rabbit colon; N and M receptor subtypes seem independent of the organ location.  相似文献   

20.
BACKGROUND AND AIMS: The influence of glucose metabolism and postprandial release of glucagon on gastric emptying in diabetes mellitus is still unclear. The aim of this study was to assess the relationship between glucose, insulin and glucagon and alterations of gastric motility in symptomatic diabetic subjects with delayed gastric emptying. METHODS: Scintigraphy for solids and liquids, 13C-acetate breath test, electrogastrography and antral manometry were assessed in 20 symptomatic subjects with diabetes mellitus type II and in 20 healthy controls. Simultaneously, serum glucose, glucagon and insulin levels were determined during the functional studies. RESULTS: Postprandial increase in antral motility and myoelectrical activity were seen in controls, but were missing in the group with diabetes mellitus. Moreover, in the fasting state the dominant frequency instability coefficient observed in healthy individuals and in subjects with diabetes of short (<5 years) duration was significantly reduced in subjects with longer duration of diabetes while the postprandial increase in dominant frequency instability coefficient was missing in all diabetics. Following the standard test meal, serum glucose and plasma glucagon in the diabetics increased to a significantly higher degree when compared to controls. CONCLUSIONS: Symptomatic subjects with delayed gastric emptying present abnormal patterns of gastric motor and electrical activity. Higher than normal postprandial plasma levels of glucagon may, at least in part, be responsible for disturbed gastric motility in non-insulin-dependent diabetic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号