首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Young RC  Zhang P 《Cell calcium》2004,36(1):11-17
For smooth muscle, two important functions of free intracellular calcium (Ca(2+)(i)) are modulation of plasma membrane excitability properties and modulation of the contractile apparatus. As proposed by van Breemen, Ca(2+)(i) can be divided into the subplasmalemmal space (Ca(2+)(sps)) and the deep cytosol (Ca(2+)(d)) by the superficial calcium buffer barrier. Using these distinctions, Ca(2+)(sps) activates the large conductance calcium-activated potassium channel (BK), and Ca(2+)(d) binds calcium-dependent fluorescent probes in the cytoplasm. We present here combined fluorescence-patch clamp experiments designed to simultaneously assess Ca(2+)(d) and Ca(2+)(sps) in cultured human uterine smooth muscle cells. Open probabilities (P(o)) of the BK channel were measured using the cell-attached patch clamp technique. P(o) was used to approximate changes of [Ca(2+)(sps)]. Relative concentrations of Ca(2+)(d) were approximated by observing fluorescence of Calcium green-1 (F). Under control conditions, we found similar time courses for rises of P(o) and F following 10nM oxytocin (OT) addition. In parallel experiments, but with lanthanum (La(3+)) added to the bath to block transmembrane calcium flux, P(o) was only slightly affected, but F increases were delayed and blunted. These data paradoxically indicate that following OT stimulation, the primary source of calcium for Ca(2+)(sps) is internal stores, and calcium entry from the extracellular space is required to raise Ca(2+)(d). When cells were exposed to cyclopiazonic acid (CPA) to release SR calcium stores, P(o) increased slowly, then persisted at large values. The persistence of P(o) rises suggests that removal of calcium from the subplasmalemmal space is primarily via reuptake into the SR. In the presence of La(3+), OT-induced rises of F were slightly prolonged, suggesting that transmembrane calcium flux contributes to decreasing Ca(2+)(d), but is not the primary mechanism. In summary, these data demonstrate that Ca(2+)(d) and Ca(2+)(sps) are not always intimately linked, but indicate a functional separation of the deep cytosol and the subplasmalemmal space that is consistent with the existence of a barrier to calcium diffusion between these two regions.  相似文献   

2.
The effects of quercetin-loaded liposomes (PCL-Q) and their constituents, that is, free quercetin (Q) and ‘empty’ phosphatidylcholine vesicles (PCL), on maxi-K channel activity were studied in single mouse ileal myocytes before and after H2O2-induced oxidative stress. Macroscopic Maxi-K channel currents were recorded using whole-cell patch clamp techniques, while single BKCa channel currents were recorded in the cell-attached configuration. Bath application of PCL-Q (100?μg/ml of lipid and 3?μg/ml of quercetin) increased single Maxi-K channel activity more than threefold, from 0.010?±?0.003 to 0.034?±?0.004 (n?=?5; p?<?0.05), whereas single-channel conductance increased non-significantly from 138 to 146?pS. In the presence of PCL-Q multiple simultaneous channel openings were observed, with up to eight active channels in the membrane patch. Surprisingly, ‘empty’ PCL (100?μg/ml) also produced some channel activation, although it was less potent compared to PCL-Q, that is, these increased NPo from 0.010?±?0.003 to 0.019?±?0.003 (n?=?5; p?<?0.05) and did not affect single-channel conductance (139?pS). Application of PCL-Q restored macroscopic Maxi-K currents suppressed by H2O2-induced oxidative stress in ileal smooth muscle cells. We conclude that PCL-Q can activate Maxi-K channels in ileal myocytes mainly by increasing channel open probability, as well as maintain Maxi-K-mediated whole-cell current under the conditions of oxidative stress. While fusion of the ‘pure’ liposomes with the plasma membrane may indirectly activate Maxi-K channels by altering channel’s phospholipids environment, the additional potentiating action of quercetin may be due to its better bioavailability.  相似文献   

3.
The regulation of store-operated, calcium-selective channels in the plasma membrane of rat basophilic leukemia cells (RBL-2H3 m1), an immortalized mucosal mast cell line, was studied at the single-channel level with the patch clamp technique by removing divalent cations from both sides of the membrane. The activity of the single channels in excised patches could be modulated by Ca(2+), Mg(2+), and pH. The maximal activation of these channels by divalent cation-free conditions occurred independently of depletion of intracellular Ca(2+) stores, whether in excised patches or in whole cell mode. Yet, a number of points of evidence establish these single-channel openings as amplified store-operated channel events. Specifically, (i) the single channels are exquisitely sensitive to inhibition by intracellular Ca(2+), and (ii) both the store-operated current and the single-channel openings are completely blocked by the capacitative calcium entry blocker, 2-aminoethoxydiphenyl borane. In addition, in Jurkat T cells single-channel openings with lower open probability have been observed in the whole cell mode with intracellular Mg(2+) present (Kerschbaum, H. H., and Cahalan, M. D. (1999) Science 283, 836-839), and in RBL-2H3 m1 cells a current with similar properties is activated by store depletion.  相似文献   

4.
5.
Depletion of intracellular Ca(2+) stores activates capacitative Ca(2+) influx in smooth muscle cells, but the native store-operated channels that mediate such influx remain unidentified. Recently we demonstrated that calcium influx factor produced by yeast and human platelets with depleted Ca(2+) stores activates small conductance cation channels in excised membrane patches from vascular smooth muscle cells (SMC). Here we characterize these channels in intact cells and present evidence that they belong to the class of store-operated channels, which are activated upon passive depletion of Ca(2+) stores. Application of thapsigargin (TG), an inhibitor of sarco-endoplasmic reticulum Ca(2+) ATPase, to individual SMC activated single 3-pS cation channels in cell-attached membrane patches. Channels remained active when inside-out membrane patches were excised from the cells. Excision of membrane patches from resting SMC did not by itself activate the channels. Loading SMC with BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), which slowly depletes Ca(2+) stores without a rise in intracellular Ca(2+), activated the same 3-pS channels in cell-attached membrane patches as well as whole cell nonselective cation currents in SMC. TG- and BAPTA-activated 3-pS channels were cation-selective but poorly discriminated among Ca(2+), Sr(2+), Ba(2+), Na(+), K(+), and Cs(+). Open channel probability did not change at negative membrane potentials but increased significantly at high positive potentials. Activation of 3-pS channels did not depend on intracellular Ca(2+) concentration. Neither TG nor a variety of second messengers (including Ca(2+), InsP3, InsP4, GTPgammaS, cyclic AMP, cyclic GMP, ATP, and ADP) activated 3-pS channels in inside-out membrane patches. Thus, 3-pS nonselective cation channels are present and activated by TG or BAPTA-induced depletion of intracellular Ca(2+) stores in intact SMC. These native store-operated cation channels can account for capacitative Ca(2+) influx in SMC and can play an important role in regulation of vascular tone.  相似文献   

6.
CaCo-2 is a human colonic carcinoma cell line which becomes differentiated in culture to form a polarized epithelium exhibiting several of the functional characteristics of native colonic tissue. In the present study, CaCo-2 cells have been used for a patch-clamp study of colonic ion conductance pathways. A large, 120 pS K(+)-selective channel was found in cells forming subconfluent monolayers in culture. Unlike Maxi-K+ channels found in other epithelial cells, this channel was not activated with elevations in cytosolic Ca2+. Channel activity was stimulated with membrane depolarization and most markedly with membrane stretch. The application of negative pressure (20 mm-Hg) to both cell-attached and excised, inside-out membrane patches caused a burst of channel activity which disappeared within seconds of suction removal. Single-channel conductance of the pressure-activated channel was decreased when quinine (100 microM) was present in the patch pipette.  相似文献   

7.
The melastatin transient receptor potential (TRP) channel, TRPM4, is a critical regulator of smooth muscle membrane potential and arterial tone. Activation of the channel is Ca(2+)-dependent, but prolonged exposures to high global Ca(2+) causes rapid inactivation under conventional whole-cell patch clamp conditions. Using amphotericin B perforated whole cell patch clamp electrophysiology, which minimally disrupts cytosolic Ca(2+) dynamics, we recently showed that Ca(2+) released from 1,2,5-triphosphate receptors (IP(3)R) on the sarcoplasmic reticulum (SR) activates TRPM4 channels, producing sustained transient inward cation currents (TICCs). Thus, Ca(2+)-dependent inactivation of TRPM4 may not be inherent to the channel itself but rather is a result of the recording conditions. We hypothesized that under conventional whole-cell configurations, loss of intrinsic cytosolic Ca(2+) buffering following cell dialysis contributes to inactivation of TRPM4 channels. With the inclusion of the Ca(2+) buffers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, 10mM) or bis-ethane-N,N,N',N'-tetraacetic acid (BAPTA, 0.1mM) in the pipette solution, we mimic endogenous Ca(2+) buffering and record novel, sustained whole-cell TICC activity from freshly-isolated cerebral artery myocytes. Biophysical properties of TICCs recorded under perforated and whole-cell patch clamp were nearly identical. Furthermore, whole-cell TICC activity was reduced by the selective TRPM4 inhibitor, 9-phenanthrol, and by siRNA-mediated knockdown of TRPM4. When a higher concentration (10mM) of BAPTA was included in the pipette solution, TICC activity was disrupted, suggesting that TRPM4 channels on the plasma membrane and IP(3)R on the SR are closely opposed but not physically coupled, and that endogenous Ca(2+) buffer proteins play a critical role in maintaining TRPM4 channel activity in native cerebral artery smooth muscle cells.  相似文献   

8.
The melastatin (M) transient receptor potential channel (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membrane potential and contractility. We recently reported that PKCδ activity influences smooth muscle cell excitability by promoting translocation of TRPM4 channel protein to the plasma membrane. Here we further investigate the relationship between membrane localization of TRPM4 protein and channel activity in native cerebral arterial myocytes. We find that TRPM4 immunolabeling is primarily located at or near the plasma membrane of freshly isolated cerebral artery smooth muscle cells. However, siRNA mediated downregulation of PKCδ or brief (15 min) inhibition of PKCδ activity with rottlerin causes TRPM4 protein to move away from the plasma membrane and into the cytosol. In addition, we find that PKCδ inhibition diminishes TRPM4-dependent currents in smooth muscle cells patch clamped in the amphotericin B perforated patch configuration. We conclude that TRPM4 channels are mobile in native cerebral myocytes and that basal PKCδ activity supports excitability of these cells by maintaining localization TRPM4 protein at the plasma membrane.  相似文献   

9.
In vitro, alpha-adrenoreceptor stimulation of rat mesenteric small arteries often leads to a rhythmic change in wall tension, i.e., vasomotion. Within the individual smooth muscle cells of the vascular wall, vasomotion is often preceded by a period of asynchronous calcium waves. Abruptly, these low-frequency waves may transform into high-frequency whole cell calcium oscillations. Simultaneously, multiple cells synchronize, leading to rhythmic generation of tension. We present a mathematical model of vascular smooth muscle cells that aims at characterizing this sudden transition. Simulations show calcium waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium channels on the cell surface, stimulating a synchronized release of SR calcium and inducing the shift from waves to whole cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion.  相似文献   

10.
S S Lin  D Dagan  I B Levitan 《Neuron》1989,3(1):95-102
A novel 100 pS K(+)-selective ion channel is frequently observed in cell-attached membrane patches from cultured Aplysia neurons. The activity of this channel is moderately voltage-dependent, but channel openings are rare and brief even when the patch is strongly depolarized. However, the activity of the channel is increased dramatically by the addition of the lectin concanavalin A (Con A), to the patch pipette. The channel is also activated by Con A in the bathing medium, suggesting that the lectin's action is via an as yet unidentified intracellular second messenger. In the one single-channel patch studied, Con A had no effect on the channel mean open time; rather it decreased the average duration of the long closed times between bursts of openings. Thus Con A increases either the open probability of single channels, the number of functional channels in the patch, or both. The functional significance of the Con A-induced modulation of K+ channel activity remains to be determined.  相似文献   

11.
It is difficult to associate the ATP-sensitive potassium (K-ATP) channel of cardiac muscle with hypoxia/ischemia induced action potential shortening because this occurs before intracellular ATP falls to levels associated in vitro with channel opening. This leaves the cardiac K-ATP channel without any obvious physiological function. We have quantitatively examined the relationship between action potential duration and K-ATP channel activity in enzymatically isolated ventricular myocytes of the guinea-pig. In whole-cell voltage-clamp recording experiments when the K-ATP channel opener SR 44866 (2-10 microM) stimulated an outward membrane current greater than 50 pA at 0 mV membrane potential (the equivalent of 30 open K-ATP channels or 1% of the cell K-ATP channel population) action potential duration was reduced by more than 50%. In the majority of cell-attached membrane patch recordings metabolic inhibition stimulated K-ATP channel open probability of 1-2% which continued for long periods (7-25 min) before cell contracture and coincident major K-ATP channel activation (open probability 65%). Our quantitative analysis thus shows that physiologically relevant activity of K-ATP channels in cardiac muscle is confined to a very small percentage of the possible cell K-ATP current and thus intracellular ATP would not have to fall very far before the opening of K-ATP channels would influence cardiac excitability.  相似文献   

12.
1. Properties of the voltage-dependent anion-selective channel in cultured smooth muscle cells of the rat aorta were studied using the patch-clamp technique. 2. The channel had a single channel conductance of 346 +/- 4 pS (n = 43, mean +/- SEM) with symmetrical 142 mM-Cl- solution in inside-out patch configurations. 3. The channel was activated spontaneously at a potential range -20 approximately +20 mV and inactivated more rapidly with increases to more positive or negative potentials. 4. The channel was selective for anions and the permeability ratio for monovalent anion was Br-:Cl-:HCOO-:CH3COO-:propionate-:aspartate- = 1.1:1:0.7:0.4: less than 0.02: less than 0.02. 5. The openings of the channels were observed more frequently in inside-out membrane patches than in cell-attached ones, and were independent of intracellular free Ca concentrations. 6. The density of this channel was estimated to be 1.3/micron2. 7. Physiological roles of the channel were discussed.  相似文献   

13.
The store-operated calcium channel (SOC) located in the plasma membrane (PM) mediates capacitative entry of extracellular calcium after depletion of intracellular calcium stores in the endoplasmic or sarcoplasmic reticulum (ER/SR). An intimate interaction between the PM and the ER/SR is essential for the operation of this calcium signalling pathway. Mitsugumin 29 (MG29) is a synaptophysin-family-related protein located in the junction between the PM and SR of skeletal muscle. Here, we identify SOC in skeletal muscle and characterise its regulation by MG29 and the ryanodine receptor (RyR) located in the SR. Targeted deletion of mg29 alters the junctional membrane structure, causes severe dysfunction of SOC and SR calcium homeostasis and increases the susceptibility of muscle to fatigue stimulation. Severe dysfunction of SOC is also identified in muscle cells lacking both type 1 and type 3 RyRs, indicating that SOC activation requires an intact interaction between the PM and the SR, and is linked to conformational changes of RyRs. Whereas defective SOC seems to be inconsequential to short-term excitation-contraction coupling, the slow cumulative calcium entry through SOC is crucial for long-term calcium homeostasis, such that reduced SOC activity exaggerates muscle fatigue under conditions of intensive exercise.  相似文献   

14.
Nonselective cation channels were found in single channel recordings from cell-attached patches on human T lymphocytes. These channels were active under conditions that should lead to cell swelling (hypotonic bath solutions with NaCl or KCl); however, a definite dependence of activity on cell swelling has not been proven. Under these conditions similar channels were found in 20 of 23 patches from 11 different blood donors. The current-voltage relation was approximately linear for outward current (11-14 pS) and inwardly rectifying (to 23 pS) when the intact cells were depolarized with high KCl in the bath. The voltage dependence of channel activity is consistent with closing at hyperpolarized membrane potentials (Vm less than or equal to -50 mV) and block of open channels at strongly depolarized membrane potentials (Vm greater than 0 mV). Reversal potentials under all ionic gradients tested are consistent with a channel that is poorly selective between Na+ and K+ ions. Active channels in cell-attached patches were rapidly blocked by bath addition of the membrane-permeant inhibitor quinine. Channels that were active in cell-attached became quiescent after patch excision; however, two patches remained active long enough to obtain current-voltage relations. These were linear with a slope conductance for outward current of 8-11 pS. Because of the clustering of single-channel openings, detailed voltage dependence of kinetics and probability of opening were not studied.  相似文献   

15.
The acrosome reaction in mouse is triggered by a long-lasting calcium signaling produced by a chain of openings of several calcium channels, a low-voltage-activated (LVA) calcium channel, an inositol trisphosphate receptor (IP(3)R), and the store-operated calcium channel TRP2. Since mature sperm cells are refractory to patch clamp experiments, we study the functional interactions among those sperm calcium channels in spermatogenic cells. We have studied the role of cytosolic calcium in voltage-dependent facilitation of low voltage-activated calcium channels. Calcium concentration was modified through the inclusion of the calcium buffers, EGTA and BAPTA, in the recording pipette solution, and by addition of calcium modulators like thapsigargin and the calcium ionophore A23187. We demonstrate that lowering calcium concentration below resting level allows to evidence a voltage-dependent facilitation. We also show that LVA calcium channels present strong voltage-dependent inhibition by thapsigargin. This effect is independent of cytosolic calcium elevation secondary to calcium store depletion and to the activation of TRP channels. Our data evidence an interesting functional relationship, in this cell type, between LVA channels and proteins whose activity is related to calcium filling state of the endoplasmic reticulum (presumably TRP channels and inositol triphosphate receptor). These relationships may contribute to the regulation of calcium signaling during acrosome reaction of mature sperm cell.  相似文献   

16.
The actions of the n-alkanols butanol, pentanol, and octanol on unitary currents passing through N-methyl-D-aspartate (NMDA) ion channels have been studied in cultured CA1 hippocampal neurons. The cell-attached patch clamp method, with L-homocysteic acid included in the patch pipette, was used to record single channel NMDA currents at the cell resting potential or for hyperpolarizing patch potentials. With the n-alkanols added to the bath solution, the mean open times for the NMDA channel were diminished and the channel conductance was unchanged. A decrease in mean open time to about 70% of control value was found with butanol (3 mM), pentanol (1 mM), and octanol (0.02 mM). In addition the n-alkanols had small effects to decrease the frequency of channel openings and to increase the amplitude of the unitary currents. The effects of the alcohols on intracellular calcium levels, during NMDA applications, were also measured using the fluorescent dye FURA II.  相似文献   

17.
Ion channels in the plasma membrane of root cell protoplasts of Plantago media L. were studied with the patch clamp technique in the cell-attached patch and outside-out patch configuration. An outward rectifying potassium channel was dominantly present in the plasma membrane. It appears responsible for the diffusional part, dominated by the K+ diffusion potential, of the cell membrane potential, in vivo. This channel is activated at potentials near to and more positive than the K+ diffusion potential. The dependence of this ion channel on K+ activity and voltage has been characterized. The current-voltage relationships of the open channel at various K+ concentrations are described by a four-state model. The membrane potential of intact protoplasts appears either dominated by the K+ diffusion potential, the protoplast is then said to be in the K state, or by the pump potential generated by the plasma membrane-bound proton pump/H+ ATPase, the P state. An experimental procedure is described to determine in cell-attached patch mode the state of the protoplast, either K or P state.Institution paper no.: ECOTRANS publication no. 45.  相似文献   

18.
Mitochondria are dynamic organelles that modulate cellular Ca2+ signals by interacting with Ca2+ transporters on the plasma membrane or the endoplasmic reticulum (ER). To study how mitochondria dynamics affects cell Ca2+ homeostasis, we overexpressed two mitochondrial fission proteins, hFis1 and Drp1, and measured Ca2+ changes within the cytosol and the ER in HeLa cells. Both proteins fragmented mitochondria, decreased their total volume by 25-40%, and reduced the fraction of subplasmalemmal mitochondria by 4-fold. The cytosolic Ca2+ signals elicited by histamine were unaltered in cells lacking subplasmalemmal mitochondria as long as Ca2+ was present in the medium, but the signals were significantly blunted when Ca2+ was removed. Upon Ca2+ withdrawal, the free ER Ca2+ concentration decreased rapidly, and hFis1 cells were unable to respond to repetitive histamine stimulations. The loss of stored Ca2+ was due to an increased activity of plasma membrane Ca2+-ATPase (PMCA) pumps and was associated with an increased influx of Ca2+ and Mn2+ across store-operated Ca2+ channels. The increased Ca2+ influx compensated for the loss of stored Ca2+, and brief Ca2+ additions between successive agonist stimulations fully corrected subsequent histamine responses. We propose that the lack of subplasmalemmal mitochondria disrupts the transfer of Ca2+ from plasma membrane channels to the ER and that the resulting increase in subplasmalemmal [Ca2+] up-regulates the activity of PMCA. The increased Ca2+ extrusion promotes ER depletion and the subsequent activation of store-operated Ca2+ channels. Cells thus adapt to the lack of subplasmalemmal mitochondria by relying on external rather than on internal Ca2+ for signaling.  相似文献   

19.
The activation of the nonselective cation channels in mouse pancreatic acinar cells has been assessed at low agonist concentrations using patch-clamp whole cell, cell-attached patch, and isolated inside-out patch recordings. Application of acetylcholine (ACh) (25-1,000 nM) and cholecystokinin (CCK) (2-10 pM) evoked oscillatory responses in both cation and chloride currents measured in whole cell experiments. In cell-attached patch experiments we demonstrate CCK and ACh evoked opening of single 25-pS cation channels in the basolateral membrane. Therefore, at least a component of the whole cell cation current is due to activation of cation channels in the basolateral acinar cell membrane. To further investigate the reported sensitivity of the cation channel to intracellular ATP and calcium we used excised inside-out patches. Micromolar Ca2+ concentrations were required for significant channel activation. Application of ATP and ADP to the intracellular surface of the patch blocked channel opening at concentrations between 0.2 and 4 mM. The nonmetabolizable ATP analogue, 5'-adenylylimidodiphosphate (AMP-PNP, 0.2-2 mM), also effectively blocked channel opening. The subsequent removal of ATP caused a transient increase in channel activity not seen with the removal of ADP or AMP-PNP. Patches isolated into solutions containing 2 mM ATP showed channel activation at micromolar Ca2+ concentrations. Our results show that ATP has two separate effects. The continuous presence of the nucleotide is required for operation of the cation channels and this action seems to depend on ATP hydrolysis. ATP can also close the channel and this effect can be demonstrated in excised inside-out patches when ATP is added to the bath after a period of exposure to an ATP-free solution. This action does not require ATP hydrolysis. Under physiological conditions hormonal stimulation can open the nonselective cation channels and this can be explained by the rise in the intracellular free Ca2+ concentration.  相似文献   

20.
We hypothesized that myosin light chain kinase (MLCK) links calcium release to activation of store-operated calcium entry, which is important for control of the endothelial cell barrier. Acute inhibition of MLCK caused calcium release from inositol trisphosphate-sensitive calcium stores and prevented subsequent activation of store-operated calcium entry by thapsigargin, suggesting that MLCK serves as an important mechanism linking store depletion to activation of membrane calcium channels. Moreover, in voltage-clamped single rat pulmonary artery endothelial cells, thapsigargin activated an inward calcium current that was abolished by MLCK inhibition. F-actin disruption activated a calcium current, and F-actin stabilization eliminated the thapsigargin-induced current. Thapsigargin increased endothelial cell permeability in the presence, but not in the absence, of extracellular calcium, indicating the importance of calcium entry in decreasing barrier function. Although MLCK inhibition prevented thapsigargin from stimulating calcium entry, it did not prevent thapsigargin from increasing permeability. Rather, inhibition of MLCK activity increased permeability that was especially prominent in low extracellular calcium. In conclusion, MLCK links store depletion to activation of a store-operated calcium entry channel. However, inhibition of calcium entry by MLCK is not sufficient to prevent thapsigargin from increasing endothelial cell permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号