首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The effects of dual species interactions on biofilm formation by Aeromonas hydrophila in the presence of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pectobacterium carotovorum, Salmonella Typhimurium, and Listeria monocytogenes were examined. High-performance liquid chromatography and liquid-chromatography-mass spectrometry were performed to identify N-acyl homoserine lactone (AHL) molecules secreted by monocultures and dual cultures grown in crab broth. Field emission scanning electron microscopy was performed to observe attachment and biofilm formation. P. aeruginosa and P. fluorescens inhibited biofilm formation by A. hydrophila on the crab surface, without affecting their own biofilm-forming abilities. Dual biofilms of S. Typhimurium, L. monocytogenes, or P. carotovorum did not affect A. hydrophila biofilm formation. Exoprotease, AHL, and AI-2 levels were significantly reduced in dual cultures of P. aeruginosa and P. fluorescens with A. hydrophila, supporting the relationship between quorum sensing and biofilm formation. Dual-species biofilms were studied in their natural environment and in the laboratory.  相似文献   

2.
The synthesis and biofilm inhibitory activity of a 30-member aryl amide 2-aminoimidazole library against the three biofilm forming Gram-negative bacteria Escherichia coli, Psuedomonas aeruginosa, and Acinetobacter baumannii is presented. The most active compound identified inhibits the formation of E. coli biofilms with an IC50 of 5.2 μM and was observed to be non-toxic to planktonic growth, demonstrating that analogues based on an aryl framework are viable options as biofilm inhibitors within the 2-aminoimidazole family.  相似文献   

3.
4.
Bacteria form multicellular communities known as biofilms that cause two thirds of all infections and demonstrate a 10 to 1000 fold increase in adaptive resistance to conventional antibiotics. Currently, there are no approved drugs that specifically target bacterial biofilms. Here we identified a potent anti-biofilm peptide 1018 that worked by blocking (p)ppGpp, an important signal in biofilm development. At concentrations that did not affect planktonic growth, peptide treatment completely prevented biofilm formation and led to the eradication of mature biofilms in representative strains of both Gram-negative and Gram-positive bacterial pathogens including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus, Salmonella Typhimurium and Burkholderia cenocepacia. Low levels of the peptide led to biofilm dispersal, while higher doses triggered biofilm cell death. We hypothesized that the peptide acted to inhibit a common stress response in target species, and that the stringent response, mediating (p)ppGpp synthesis through the enzymes RelA and SpoT, was targeted. Consistent with this, increasing (p)ppGpp synthesis by addition of serine hydroxamate or over-expression of relA led to reduced susceptibility to the peptide. Furthermore, relA and spoT mutations blocking production of (p)ppGpp replicated the effects of the peptide, leading to a reduction of biofilm formation in the four tested target species. Also, eliminating (p)ppGpp expression after two days of biofilm growth by removal of arabinose from a strain expressing relA behind an arabinose-inducible promoter, reciprocated the effect of peptide added at the same time, leading to loss of biofilm. NMR and chromatography studies showed that the peptide acted on cells to cause degradation of (p)ppGpp within 30 minutes, and in vitro directly interacted with ppGpp. We thus propose that 1018 targets (p)ppGpp and marks it for degradation in cells. Targeting (p)ppGpp represents a new approach against biofilm-related drug resistance.  相似文献   

5.
Salmonella enterica serovar Typhimurium is a main cause of bacterial food-borne diseases. As Salmonella can form biofilms in which it is better protected against antimicrobial agents on a wide diversity of surfaces, it is of interest to explore ways to inhibit biofilm formation. Brominated furanones, originally extracted from the marine alga Delisea pulchra, are known to interfere with biofilm formation in several pathogens. In this study, we have synthesized a small focused library of brominated furanones and tested their activity against S. enterica serovar Typhimurium biofilm formation. We show that several furanones inhibit Salmonella biofilm formation at non-growth-inhibiting concentrations. The most interesting compounds are (Z)-4-bromo-5-(bromomethylene)-3-alkyl-2(5H)-furanones with chain lengths of two to six carbon atoms. A microarray study was performed to analyze the gene expression profiles of Salmonella in the presence of (Z)-4-bromo-5-(bromomethylene)-3-ethyl-2(5H)-furanone. The induced genes include genes that are involved in metabolism, stress response, and drug sensitivity. Most of the repressed genes are involved in metabolism, the type III secretion system, and flagellar biosynthesis. Follow-up experiments confirmed that this furanone interferes with the synthesis of flagella by Salmonella. No evidence was found that furanones act on the currently known quorum-sensing systems in Salmonella. Interestingly, pretreatment with furanones rendered Salmonella biofilms more susceptible to antibiotic treatment. Conclusively, this work demonstrates that particular brominated furanones have potential in the prevention of biofilm formation by Salmonella serovar Typhimurium.  相似文献   

6.
Biofilms are bacterial communities consisting of numerous extracellular polymeric substances. Infections caused by biofilm-forming bacteria are considered to be a major threat to health security and so novel approaches to control biofilm are of importance. Aptamers are single-strand nucleic acid molecules that have high selectivity to their targets. Single-walled carbon nanotubes (SWNTs) are common nanomaterials and have been shown to be toxic to bacterial biofilms. The aim of this study was to test whether an aptamer could play a role as targeting agents to enhance the efficiency of anti-biofilm agents. Hence, two complexes (aptamer–SWNTs and aptamer–ciprofloxacin–SWNTs) based on an aptamer which targets Pseudomonas aeruginosa and SWNTs were constructed. Both complexes were assessed against P. aeruginosa biofilms. In vitro tests demonstrated that the aptamer–SWNTs could inhibit ~36% more biofilm formation than SWNTs alone. Similarly, the aptamer–ciprofloxacin–SWNTs had a higher anti-biofilm efficiency than either component or simple mixtures of two components. Our study underscores the potential of aptamers as targeting agents for anti-biofilm compounds, as well as providing a new strategy to control biofilms.  相似文献   

7.
The effectiveness of treating bacterial infections is seriously threatened by the emergence of bacterial resistance to chemical treatment. Growth of microbes in biofilm is one of the main causes of resistance to antimicrobial drugs. Quorum sensing (QS) inhibition, which targets the QS signalling system by obstructing cell-cell communication, was developed as an alternative treatment by creating innovative anti-biofilm drugs. Therefore, the goal of this study is to develop novel antimicrobial drugs that are effective against Pseudomonas aeruginosa by inhibiting QS and acting as anti-biofilm agents. In this study, N-(2- and 3-pyridinyl)benzamide derivatives were selected to design and syntheses. Antibiofilm activity was revealed by all the synthesized compounds and the biofilm was visibly impaired, and the OD595nm readings of solubilized biofilm cells presented a momentous difference between the treated and untreated biofilms. The best anti-QS zone was observed for compound 5d and found to be 4.96 mm. Through in silico research, the physicochemical characteristics and binding manner of these produced compounds were examined. For the purpose of understanding the stability of the protein and ligand complex, molecular dynamic simulation was also carried out. The overall findings showed that N-(2- and 3-pyridinyl)benzamide derivatives could be the key to creating effective newer anti-quorum sensing drugs that are effective against different bacteria.  相似文献   

8.
The aim of the present study was to investigate the anti-biofilm activity of biologically synthesized selenium nanoparticles (Se NPs) against the biofilm produced by clinically isolated bacterial strains compared to that of selenium dioxide. Thirty strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis were isolated from various specimens of the patients hospitalized in different hospitals (Kerman, Iran). Quantification of the biofilm using microtiter plate assay method introduced 30% of S. aureus, 13% of P. aeruginosa and 17% of P. mirabilis isolates as severely adherent strains. Transmission electron micrograph (TEM) of the purified Se NPs (produced by Bacillus sp. MSh-1) showed individual and spherical nano-structure in the size range of 80–220 nm. Obtained results of the biofilm formation revealed that selenium nanoparticles inhibited the biofilm of S. aureus, P. aeruginosa, and P. mirabilis by 42%, 34.3%, and 53.4%, respectively, compared to that of the non-treated samples. Effect of temperature and pH on the biofilm formation in the presence of Se NPs and SeO2 was also evaluated.  相似文献   

9.
Quorum sensing (QS) is a cell-to-cell signaling communication system that controls the virulence behavior of a broad spectrum of bacterial pathogens, participating also in the development of biofilms, responsible of the antibiotic ineffectiveness in many infections. Therefore, QS system is an attractive target for antimicrobial therapy. In this study, we compare the effect of seven structurally related coumarins against bacterial growth, biofilm formation and elastase activity of Pseudomonas aeruginosa. In addition, the anti-pathogenic capacity of the seven coumarins was evaluated on the wild type and the biosensor strain of Chromobacterium violaceum.The comparative study of coumarins showed that molecules with hydroxyl groups on the aromatic ring displayed higher activity on the inhibition of biofilm formation of P. aeruginosa over coumarins with substituents in positions 3 and 4 or without the double 3,4-bond. These 3 or 4-hydroxylated positions caused a decrease in the anti-biofilm activity obtained for coumarin. However, the hydroxyl group in position 3 of the pyrone ring was important for the inhibition of C. violaceum QS and elastolytic activity of P. aeruginosa. The effects observed were active independently of any effect on growth. According to our results, coumarin and its hydroxylated derivatives represent an interesting group of compounds to use as anti-virulence agents against the human pathogen P. aeruginosa.  相似文献   

10.
The successful marriage of structural features from our 2-aminoimidazole and menthyl carbamate classes of anti-biofilm agents has resulted in the development of a novel hybrid scaffold of biofilm modulators. The compounds were evaluated against a panel of four bacterial strains for anti-biofilm and anti-microbial activity.  相似文献   

11.
Pseudomonas aeruginosa biofilm is commonly associated with chronic wound infection. A FDA approved wireless electroceutical dressing (WED), which in the presence of conductive wound exudate gets activated to generate electric field (0.3–0.9V), was investigated for its anti-biofilm properties. Growth of pathogenic P. aeruginosa strain PAO1 in LB media was markedly arrested in the presence of the WED. Scanning electron microscopy demonstrated that WED markedly disrupted biofilm integrity in a setting where silver dressing was ineffective. Biofilm thickness and number of live bacterial cells were decreased in the presence of WED. Quorum sensing genes lasR and rhlR and activity of electric field sensitive enzyme, glycerol-3-phosphate dehydrogenase was also repressed by WED. This work provides first electron paramagnetic resonance spectroscopy evidence demonstrating that WED serves as a spontaneous source of reactive oxygen species. Redox-sensitive multidrug efflux systems mexAB and mexEF were repressed by WED. Taken together, these observations provide first evidence supporting the anti-biofilm properties of WED.  相似文献   

12.
Multidrug resistance of bacteria and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, make it urgent to develop new antibiotics. Here, we evaluate the antibacterial and anti-biofilm properties of ticlopidine (TP), an anti-platelet aggregation drug, TP showed antibacterial activity against both gram-positive (MRSA) and gram-negative (E. coli, and P. aeruginosa) bacteria over a long treatment period. TP significantly reduced the survival of gram-negative bacteria in human blood though impact on gram-positives was more limited. TP may cause death in MRSA by inhibiting staphyloxanthin pigment synthesis, leading to oxidative stress, while scanning electron microscopy imaging indicate a loss of membrane integrity, damage, and consequent death due to lysis in gram-negative bacteria. TP showed good anti-biofilm activity against P. aeruginosa and MRSA, and a stronger biofilm degradation activity on P. aeruginosa compared to MRSA. Measuring fluorescence of the amyloid-reporter Thioflavin T (ThT) in biofilm implicated inhibition of amyloid formation as part of TP activity. This was confirmed by assays on the purified protein in P. aeruginosa, FapC, whose fibrillation kinetics was inhibited by TP. TP prolonged the lag phase of aggregation and reduced the subsequent growth rate and prolonging the lag phase to very long times provides ample opportunity to exert TP's antibacterial effect. We conclude that TP shows activity as an antibiotic against both gram-positive and gram-negative bacteria thanks to a broad range of activities, targeting bacterial metabolic processes, cellular structures and the biofilm matrix.  相似文献   

13.
The ability of opportunistic bacterial pathogens to grow in biofilms is decisive in the pathogenesis of chronic infectious diseases. Growth within biofilms does not only protect the bacteria against the host immune system but also from the killing by antimicrobial agents. Here, we introduce a mouse model in which intravenously administered planktonic Pseudomonas aeruginosa bacteria are enriched in transplantable subcutaneous mouse tumors. Electron microscopy images provide evidence that such bacteria reside in the tumor tissue within biofilm structures. Immunohistology furthermore demonstrated that infection of the tumor tissue elicits a host response characterized by strong neutrophilic influx. Interestingly, the biofilm defective PA14 pqsA transposon mutant formed less biofilm in vivo and was more susceptible to clearance by intravenous ciprofloxacin treatment as compared to the wild-type control. In conclusion, we have established an experimentally tractable model that may serve to identify novel bacterial and host factors important for in vivo biofilm formation and to re-evaluate bactericidal and anti-biofilm effects of currently used and novel antibacterial compounds.  相似文献   

14.

Pseudomonas aeruginosa depends on its quorum sensing (QS) system for its virulence factors’ production and biofilm formation. Biofilms of P. aeruginosa on the surface of indwelling catheters are often resistant to antibiotic therapy. Alternative approaches that employ QS inhibitors alone or in combination with antibiotics are being developed to tackle P. aeruginosa infections. Here, we have studied the mechanism of action of 3-Phenyllactic acid (PLA), a QS inhibitory compound produced by Lactobacillus species, against P. aeruginosa PAO1. Our study revealed that PLA inhibited the expression of virulence factors such as pyocyanin, protease, and rhamnolipids that are involved in the biofilm formation of P. aeruginosa PAO1. Swarming motility, another important criterion for biofilm formation of P. aeruginosa PAO1, was also inhibited by PLA. Gene expression, mass spectrometric, functional complementation assays, and in silico data indicated that the quorum quenching and biofilm inhibitory activities of PLA are attributed to its ability to interact with P. aeruginosa QS receptors. PLA antagonistically binds to QS receptors RhlR and PqsR with a higher affinity than its cognate ligands N-butyryl-l-homoserine lactone (C4–HSL) and 2-heptyl-3,4-dihydroxyquinoline (PQS; Pseudomonas quinolone signal). Using an in vivo intraperitoneal catheter-associated medaka fish infection model, we proved that PLA inhibited the initial attachment of P. aeruginosa PAO1 on implanted catheter tubes. Our in vitro and in vivo results revealed the potential of PLA as anti-biofilm compound against P. aeruginosa.

  相似文献   

15.
Pseudomonas aeruginosa, an opportunistic pathogen frequently associated with nosocomial infections, is emerging as a serious threat due to its resistance to broad spectrum antimicrobials. The biofilm mode of growth confers resistance to antibiotics and novel anti-biofilm agents are urgently needed. Nanoparticle based treatments and therapies have been of recent interest because of their versatile applications. This study investigates the anti-biofilm activity of copper nanoparticles (CuNPs) synthesized by the one pot method against P. aeruginosa. Standard physical techniques including UV–visible and Fourier transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy were used to characterize the synthesized CuNPs. CuNP treatments at 100 ng ml?1 resulted in a 94, 89 and 92% reduction in biofilm, cell surface hydrophobicity and exopolysaccharides respectively, without bactericidal activity. Evidence of biofilm inhibition was also seen with light and confocal microscope analysis. This study highlights the anti-biofilm potential of CuNPs, which could be utilized as coating agents on surgical devices and medical implants to manage biofilm associated infections.  相似文献   

16.
Pseudomonas aeruginosa biofilms are problematic and play a critical role in the persistence of chronic infections because of their ability to tolerate antimicrobial agents. In this study, various cell-wall degrading enzymes were investigated for their ability to inhibit biofilm formation of two P. aeruginosa strains, PAO1 and PA14. Xylanase markedly inhibited and detached P. aeruginosa biofilms without affecting planktonic growth. Xylanase treatment broke down extracellular polymeric substances and decreased the viscosity of P. aeruginosa strains. However, xylanase treatment did not change the production of pyochelin, pyocyanin, pyoverdine, the Pseudomonas quinolone signal, or rhamnolipid. In addition, the anti-biofilm activity of xylanase was thermally stable for > 100 days at 45°C. Also, xylanase showed anti-biofilm activity against one methicillin-resistance Staphylococcus aureus and two Escherichia coli strains.  相似文献   

17.
18.
19.
Cell-to-cell communication or quorum sensing (QS) leads to biofilm formation and causing other virulence factors which are extreme problems for food safety, biofilm related infectious diseases etc. This study evaluated the anti-QS activity of the Amomum tsaoko extract (0.5–4 mg/ml) by using Chromobacterium violaceum a biosensor strain and biofilm formation by crystal violate assay. Experimental results demonstrated that the overall yield of Amomum tsao-ko extract was 11.33 ± 0.3% (w/w). MIC for Staphylococcus aureus (Gram positive), Salmonella Typhimurium and Pseudomonas aeruginosa (Gram negative) was 1, 2 and 2 mg/ml, respectively. A concentration of 4 mg/ml extract showed highest biofilm inhibition 51.96% on S. Typhimurium when 47.06%, 45.28% were shown by S. aureus, P. aeruginosa respectively. The damage of biofilm architecture was observed by Confocal Laser Scanning Microscopy (CLSM). A level of 44.59% inhibition of violacein production was demonstrated when the dose was 4 mg/ml. Swarming motility inhibition was observed in a dose dependent manner. Taken together, the treatment of A. tsaoko extract can deliver value to food product and medicine by controlling pathogenesis.  相似文献   

20.
Pseudomonas aeruginosa is a well-known clinical pathogen for its recalcitrant infection caused by biofilm formation which are initiated by flagella-mediated attachment. Sodium houttuyfonate (SH) is a natural phytoanticipin derivative of houttuynin and has anti-pathogenic effect on P. aeruginosa biofilm formation. In this paper, when using 1/2 × MIC SH, the diameter of P. aeruginosa swimming motility was sharply shortened to 36 % in 24 h incubation, and the fold changes of fliC required for swimming motility was 0.36 in 24 h cultivation, the adherence inhibition accounted for about 46 %, and the pyocyanin production decreased to 47 % after 1-day treatment and 56 % after 3-day treatment with obvious visual changes from dark green to light green, compared with the negative control. With the help of mass spectra and scanning electronic microscope, 1/2 × MIC SH was further testified to be enough to eradicate flagella and inhibit pyocyanin secretion of P. aeruginosa. The results do not only re-affirm the close interplay of attachment and virulence (i.e. swimming motility and pyocyanin), but also unravel the potential mechanism of SH on anti-biofilm of P. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号