首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to synthesize 6-[1-(2-[18F]fluoro-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinoline ([18F]FPTQ, [18F]7a) and to evaluate its potential as a positron emission tomography ligand for imaging metabotropic glutamate receptor type 1 (mGluR1) in the rat brain. Compound [18F]7a was synthesized by [18F]fluorination of 6-[1-(2-bromo-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinoline (7b) with potassium [18F]fluoride. At the end of synthesis, 1280-1830 MBq (n = 8) of [18F]7a was obtained with >98% radiochemical purity and 118-237 GBq/??mol specific activity using 3300-4000 MBq of [18F]F. In vitro autoradiography showed that [18F]7a had high specific binding with mGluR1 in the rat brain. Biodistribution study using a dissection method and small-animal PET showed that [18F]7a had high uptake in the rat brain. The uptake of radioactivity in the cerebellum was reduced by unlabeled 7a and mGluR1-selective ligand JNJ-16259685 (2), indicating that [18F]7a had in vivo specific binding with mGluR1. Because of a low amount of radiolabeled metabolite present in the brain, [18F]7a may have a limiting potential for the in vivo imaging of mGluR1 by PET.  相似文献   

2.
In order to identify a high-affinity, selective antagonist for the A2B subtype adenosine receptor, more than 40 1,8-disubstituted-3-(3-methoxypropyl) xanthines were prepared and evaluated for their binding affinity at recombinant human adenosine receptors, mainly of the A2A and A2B subtypes. Some of the 1-ethyl-3-(3-methoxypropyl)-8-aryl substituted derivatives 15(am) showed moderate-to-high affinity at human A2B receptors, with compound 15d showing A2B selectivity over the other A receptors assayed (A1, A2A, A3) of 34-fold or over.  相似文献   

3.
The expression levels and the subcellular localization of adenosine receptors (ARs) are affected in several pathological conditions as a consequence of changes in adenosine release and metabolism. In this respect, labelled probes able to monitor the AR expression could be a useful tool to investigate different pathological conditions. Herein, novel ligands for ARs, bearing the fluorescent 7-nitrobenzofurazan (NBD) group linked to the N1 (1,2) or N10 (3,4) nitrogen of a triazinobenzimidazole scaffold, were synthesized. The compounds were biologically evaluated as fluorescent probes for labelling A1 and A2B AR subtypes in bone marrow-derived mesenchymal stem cells (BM-MSCs) that express both receptor subtypes. The binding affinity of the synthetized compounds towards the different AR subtypes was determined. The probe 3 revealed a higher affinity to A1 and A2B ARs, showing interesting spectroscopic properties, and it was selected as the most suitable candidate to label both AR subtypes in undifferentiated MSCs.Fluorescence confocal microscopy showed that compound 3 significantly labelled ARs on cell membranes and the fluorescence signal was decreased by the cell pre-incubation with the A1 AR and A2B AR selective agonists, R-PIA and BAY 60-6583, respectively, thus confirming the specificity of the obtained signal. In conclusion, compound 3 could represent a useful tool to investigate the expression pattern of both A1 and A2B ARs in different pathological and physiological processes. Furthermore, these results provide an important basis for the design of new and more selective derivatives able to monitor the expression and localization of each different ARs in several tissues and living cells.  相似文献   

4.
We have prepared and studied six new analogs of 16α-fluoroestradiol (FES): 17α- and 17β-ethynyl-FES (7 [FEES]and 7a), and the 11β-ethyl (8 and 8a) and 11β-methoxy (9 and 9a) derivatives, novel estrogen receptor-based PET imaging agents. The relative binding affinity (RBA) for the estrogen receptor (ER) versus FES is increased for 7, 9 and 9a but decreased for 7a, 8 and 8a. All six analogs have been labeled in the 16α position with 18F by the nucleophilic displacement of the corresponding 16β-trifluoromethanesulfonate with nBu4N18F. Subsequent ethynylation with lithium trimethylsilylacetylide yielded the FEES analogs (total synthesis time: 120 min; effective specific activity: 200–2400 Ci/mmol). Selective uptake in the uterus was high for [18F)7, [18F]8, [18F]9 and [18F]9a (% ID/g values at 1 h: 11.2, 12.9, 9.9 and 8.3, respectively), while uptake was effectively blocked by coinjection of an excess of unlabeled estradiol. The FEES analogs, [18F]7, [18F]8 and [18F]9, exhibited the highest selectivity, in terms of target (uterus)-to-blood ratios, ever seen amongst estrogen radiopharmaceuticals, 154, 145 and 169, respectively. The analogs [18F]7a and [18F]8a displayed no uptake in the uterus, consistent with their low RBAs. Metabolism studies revealed that most of the uterine activity is unmetabolized while the blood exhibits a rapid and subsequently sustained mixture of metabolites. The muscle shows a metabolic profile intermediate to the uterus and blood. These analogs provide an array of desirable characteristics for the optimal PET imaging of ER-rich target tissues.  相似文献   

5.

Background

Among adenosine receptors (ARs) the A2B subtype exhibits low affinity for the endogenous agonist compared with the A1, A2A, and A3 subtypes and is therefore activated when concentrations of adenosine increase to a large extent following tissue damages (e.g. ischemia, inflammation). For this reason, A2B AR represents an important pharmacological target.

Methods

We evaluated seven 1-benzyl-3-ketoindole derivatives (79) for their ability to act as positive or negative allosteric modulators of human A2B AR through binding and functional assays using CHO cells expressing human A1, A2A, A2B, and A3 ARs.

Results

The investigated compounds behaved as specific positive or negative allosteric modulators of human A2B AR depending on small differences in their structures. The positive allosteric modulators 7a,b and 8a increased agonist efficacy without any effect on agonist potency. The negative allosteric modulators 8b,c and 9a,b reduced agonist potency and efficacy.

Conclusions

A number of 1-benzyl-3-ketoindole derivatives were pharmacologically characterized as selective positive (7a,b) or negative (8c, 9a,b) allosteric modulators of human A2B AR.

General significance

The 1-benzyl-3-ketoindole derivatives 79 acting as positive or negative allosteric modulators of human A2B AR represent new pharmacological tools useful for the development of therapeutic agents to treat pathological conditions related to an altered functionality of A2B AR.  相似文献   

6.
No-carrier-added (NCA)3-(2′-[18F]fluoroethyl)spiperone (5), a new dopamine receptor-binding radiopharmaceutical for positron emission tomography, was synthesized by two different methods. Alkylation of the amide nitrogen in spiperone by NCA [18F]fluorobromoethane in the presence of a strong base gave 5 (Method A). Experimental methods were also developed for the syntheses of functional 3-N-alkylderivatives of spiperone such as 3-(2′-bromoethyl)- or 3-(2′-methylsulfonyloxyethyl)spiperone (4a and 4b, respectively). These derivatives (4) reacted with NCA Ag18F, Cs18F or K18F/Kryptofix 222 in acetonitrile or DMSO to give 5 (Method B). Method B, using K18F/Kryptofix 222 in acetonitrile provided 5 in multimillicure amounts (30–40% isolated radiochemical yield) with a specific activity of 2–10/μmol (EOS) in less than 60 min. This one-step, one-pot synthesis is simple, and the high radiochemical yield of 5, as well as the 110 min half-life of 18F, permit multiple tomographic studies a day with one preparation. Tomographic results in monkey brain with 5 are consistent with the labeling of dopamine-D2 receptor systems.  相似文献   

7.
[18F]FEAC ([18F]4a) and [18F]FEDAC ([18F]4b) were developed as two novel positron emission tomography (PET) ligands for peripheral-type benzodiazepine receptor (PBR). [18F]4a and [18F]4b were synthesized by fluoroethylation of precursors 8a and 8b with [18F]FCH2CH2Br ([18F]9), respectively. Small-animal PET scan for a neuroinflammatory rat model showed that the two radioligands had high uptakes of radioactivity in the kainic acid-infused striatum, a brain region where PBR density was increased.  相似文献   

8.
Here we describe the design, synthesis, and pharmacological evaluation of a set of compounds structurally related to the high affinity serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (6, LP-211). Specific structural modifications were performed in order to maintain affinity for the target receptor and to improve the selectivity over 5-HT1A and adrenergic α1 receptors. The synthesized compounds have chemical features that could enable labeling with a positron emitter radioisotope (carbon-11 or fluorine-18) and lipophilicity within the range considered optimal for brain penetration and low non-specific binding. 4-[2-(4-Methoxyphenyl)phenyl]-N-(pyridin-4-ylmethyl)piperazinehexanamide (23a) and N-pyridin-4-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (26a) were radiolabeled on the methoxy group with carbon-11. Positron emission tomography (PET) analysis revealed that [11C]-23a and [11C]-26a were P-glycoprotein (P-gp) substrates and rapidly metabolized, resulting in poor brain uptake. These features were not predicted by in vitro tests.  相似文献   

9.
Three tertiary benzenesulfonamide inhibitors 4ac were radiolabeled with 18F and evaluated for imaging carbonic anhydrase IX (CA IX) expression with positron emission tomography. All three inhibitors exhibit <10 nM affinity for CA IX with no measurable affinity for CA II. Despite good affinity/selectivity to CA IX and excellent stability in plasma, uptake of [18F]4ac in CA IX-expressing HT-29 tumours was low without significant contrast. [18F]4a,b were excreted rapidly, while [18F]4c exhibited significant in vivo defluorination leading to high bone uptake. Due to minimal uptake in HT-29 tumours compared to normal organs/tissues, 18F-labeled benzenesulfonamides [18F]4ac are not suitable as CA IX imaging agents.  相似文献   

10.
Several new potent and selective A2B adenosine receptor antagonists have been prepared in which the aryl–amide moiety of the lead series, exemplified by 1a, has been replaced by bioisosteric bicyclic moieties. Although the majority of compounds had generally improved microsomal stability as compared to 1a, this was not translated into overall improvements in the pharmacokinetic profiles of a representative set of compounds.  相似文献   

11.
ATP consumption during intense neuronal activity leads to peaks of both extracellular adenosine levels and increased glucose uptake in the brain. Here, we investigated the hypothesis that the activation of the low-affinity adenosine receptor, the A2B receptor (A2BR), promotes glucose uptake in neurons and astrocytes, thereby linking brain activity with energy metabolism. To this end, we mapped the spatiotemporal accumulation of the fluorescent-labelled deoxyglucose, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), in superfused acute hippocampal slices of C57Bl/6j mice. Bath application of the A2BR agonist BAY606583 (300 nM) triggered an immediate and stable (>10 min) increase of the velocity of 2-NBDG accumulation throughout hippocampal slices. This was abolished with the pretreatment with the selective A2BR antagonist, MRS1754 (200 nM), and was also absent in A2BR null-mutant mice. In mouse primary astrocytic or neuronal cultures, BAY606583 similarly increased 3H-deoxyglucose uptake in the following 20 min incubation period, which was again abolished by a pretreatment with MRS1754. Finally, incubation of hippocampal, frontocortical, or striatal slices of C57Bl/6j mice at 37 °C, with either MRS1754 (200 nM) or adenosine deaminase (3 U/mL) significantly reduced glucose uptake. Furthermore, A2BR blockade diminished newly synthesized glycogen content and at least in the striatum, increased lactate release. In conclusion, we report here that A2BR activation is associated with an instant and tonic increase of glucose transport into neurons and astrocytes in the mouse brain. These prompt further investigations to evaluate the clinical potential of this novel glucoregulator mechanism.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-015-9474-3) contains supplementary material, which is available to authorized users.  相似文献   

12.
A radioiodinated probe, [125I]-CGP 71872, containing an azido group that can be photoactivated, was synthesized and used to characterize GABAB receptors. Photoaffinity labeling experiments using crude membranes prepared from rat brain revealed two predominant ligand binding species at 130 and 100 kDa believed to represent the long (GABABR1a) and short (GABABR1b) forms of the receptor. Indeed, these ligand binding proteins were immunoprecipitated using a GABAB receptor-specific antibody confirming the receptor specificity of the photoaffinity probe. Most convincingly, [125I]-CGP 71872 binding was competitively inhibited in a dose-dependent manner by cold CGP 71872, GABA, saclofen, (−)-baclofen, (+)-baclofen and ( )-glutamic acid with a rank order and stereospecificity characteristic of the GABAB receptor. Photoaffinity labeling experiments revealed that the recombinant GABABR2 receptor does not bind [125I]-CGP 71872, providing surprising and direct evidence that CGP 71872 is a GABABR1 selective antagonist. Photoaffinity labeling experiments using rat tissues showed that both GABABR1a and GABABR1b are co-expressed in the brain, spinal cord, stomach and testis, but only the short GABABR1b receptor form was detected in kidney and liver whereas the long GABABR1a form was selectively expressed in the adrenal gland, pituitary, spleen and prostate. We report herein the synthesis and biochemical characterization of the nanomolar affinity [125I]-CGP 71872 and CGP 71872 GABABR1 ligands, and differential tissue expression of the long GABABR1a and short GABABR1b receptor forms in rat and dog.  相似文献   

13.
Translocator protein (TSPO) expression is closely related with neuroinflammation and neuronal damage which might cause several central nervous system diseases. Herein, a series of TSPO ligands (11ac and 13ad) with a 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide structure were prepared and evaluated via an in vitro binding assay. Most of the novel ligands exhibited a nano-molar affinity for TSPO, which was better than that of DPA-714. Particularly, 11a exhibited a subnano-molar TSPO binding affinity with suitable lipophilicity for in vivo brain studies. After radiolabeling with fluorine-18, [18F]11a was used for a dynamic positron emission tomography (PET) study in a rat LPS-induced neuroinflammation model; the inflammatory lesion was clearly visualized with a superior target-to-background ratio compared to [18F]DPA-714. An immunohistochemical examination of the dissected brains confirmed that the uptake location of [18F]11a in the PET study was consistent with a positively activated microglia region. This study proved that [18F]11a could be employed as a potential PET tracer for detecting neuroinflammation and could give possibility for diagnosis of other diseases, such as cancers related with TSPO expression.  相似文献   

14.
This paper describes the synthesis of novel 7-amino-thiazolo[5,4-d]pyrimidines bearing different substituents at positions 2, 5 and 7 of the thiazolopyrimidine scaffold. The synthesized compounds 227 were evaluated in radioligand binding (A1, A2A and A3) and adenylyl cyclase activity (A2B and A2A) assays, in order to evaluate their affinity and potency at human adenosine receptor subtypes. The current study allowed us to support that affinity and selectivity of 7-amino-thiazolo[5,4-d]pyrimidine derivatives towards the adenosine receptor subtypes can be modulated by the nature of the groups attached at positions 2, 5 and 7 of the bicyclic scaffold. To rationalize the hypothetical binding mode of the newly synthesized compounds, we also performed docking calculations in human A2A, A1 and A3 structures.  相似文献   

15.
Several spirocyclic piperidine derivatives were designed and synthesized as σ1 receptor ligands. In vitro competition binding assays showed that the fluoroalkoxy analogues with small substituents possessed high affinity towards σ1 receptors and subtype selectivity. Particularly for ligand 1′-((6-(2-fluoroethoxy)pyridin-3-yl)methyl)-3H-spiro[2-benzofuran-1,4′-piperidine] (2), high σ1 receptor affinity (Ki = 2.30 nM) and high σ12 subtype selectivity (142-fold) as well as high σ1/VAChT selectivity (234-fold) were observed. [18F]2 was synthesized using an efficient one-pot, two-step reaction method in a home-made automated synthesis module, with an overall isolated radiochemical yield of 8–10%, a radiochemical purity of higher than 99%, and specific activity of 56–78 GBq/μmol. Biodistribution studies of [18F]2 in ICR mice indicated high initial brain uptake and a relatively fast washout. Administration of haloperidol, compound 1 and different concentrations of SA4503 (3, 5, or 10 μmol/kg) 5 min prior to injection of [18F]2 significantly decreased the accumulation of radiotracer in organs known to contain σ1 receptors. Ex vivo autoradiography in Sprague–Dawley rats demonstrated high accumulation of radiotracer in brain areas with high expression of σ1 receptors. These encouraging results prove that [18F]2 is a suitable candidate for σ1 receptor imaging with PET in humans.  相似文献   

16.
The adenosine A2B receptor is the least well characterized of the four adenosine subtypes due to the lack of potent and selective agonists and antagonists. Despite the widespread distribution of A2B receptor mRNA, little information is available with regard to their function. The characterization of A2B receptors, through radioligand binding studies, has been performed, until now, by using low-affinity and non-selective antagonists like 1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX),(4-(2-[7-amino-2-(2-furyl)-[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)-phenol ([3H]ZM 241385) and 3-(3,4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-propyl-xanthine ([125I]ABOPX). Recently, high-affinity radioligands for A2B receptors, [N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy]acetamide ([3H]MRS 1754), N-(2-(2-Phenyl-6-[4-(2,2,3,3-tetratritrio-3-phenylpropyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl)-acetamide ([3H]OSIP339391) and N-benzo[1,3]dioxol-5-yl-2-[5-(1,3-dipropyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] ([3H]MRE 2029F20), have been introduced. This minireview offers an overview of these recently developed radioligands and the most important applications of drugs towards A2B receptors.  相似文献   

17.
The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki = 0.06 μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs.  相似文献   

18.
1-[2-(4-Methoxyphenyl)phenyl]piperazine (4) is a potent serotonin 5-HT7 receptor antagonist (Ki = 2.6 nM) with a low binding affinity for the 5-HT1A receptor (Ki = 476 nM). As a potential positron emission tomography (PET) radiotracer for the 5-HT7 receptor, [11C]4 was synthesized at high radiochemical yield and specific activity, by O-[11C]methylation of 2′-(piperazin-1-yl)-[1,1′-biphenyl]-4-ol (6) with [11C]methyl iodide. Autoradiography revealed that [11C]4 showed in vitro specific binding with 5-HT7 in the rat brain regions, such as the thalamus which is a region with high 5-HT7 expression. Metabolite analysis indicated that intact [11C]4 in the brain exceeded 90% of the radioactive components at 15 min after the radiotracer injection, although two radiolabeled metabolites were found in the rat plasma. The PET study of rats showed moderated uptake of [11C]4 in the brain (1.2 SUV), but no significant regional difference in radioactivity in the brain. Pretreatment with 5-HT7-selective antagonist SB269970 (3) did not decrease the uptake of [11C]4 in the rat brain. Further studies are warranted that focus on the development of PET ligand candidates with higher binding affinity for 5-HT7 and higher in vivo stability in brain than 4.  相似文献   

19.
Adenosine A1 and A2A receptors are attracting great interest as drug targets for their role in cognitive and motor deficits, respectively. Antagonism of both these adenosine receptors may offer therapeutic benefits in complex neurological diseases, such as Alzheimer’s and Parkinson’s disease. The aim of this study was to explore the affinity and selectivity of 2-benzylidene-1-tetralone derivatives as adenosine A1 and A2A receptor antagonists. Several 5-hydroxy substituted 2-benzylidene-1-tetralone analogues with substituents on ring B were synthesized and assessed as antagonists of the adenosine A1 and A2A receptors via radioligand binding assays. The results indicated that hydroxy substitution in the meta and para position of phenyl ring B, displayed the highest selectivity and affinity for the adenosine A1 receptor with Ki values in the low micromolar range. Replacement of ring B with a 2-amino-pyrimidine moiety led to compound 12 with an increase of affinity and selectivity for the adenosine A2A receptor. These substitution patterns led to enhanced adenosine A1 and A2A receptor binding affinity. The para-substituted 5-hydroxy analogue 3 behaved as an adenosine A1 receptor antagonists in a GTP shift assay performed with rat whole brain membranes expressing adenosine A1 receptors. In conclusion, compounds 3 and 12, showed the best adenosine A1 and A2A receptor affinity respectively, and therefore represent novel adenosine receptor antagonists that may have potential with further structural modifications as drug candidates for neurological disorders.  相似文献   

20.
A number of novel xanthines bearing a variety of substituents at positions 1, 3, 7 and 8 were prepared and evaluated for their binding affinity to the human adenosine receptor A1, A2A, A2B and A3 subtypes. Several of the 1,3,8- and 1,3,7,8-substituted xanthines showed moderate-to-high affinity at human A2B and A1 receptors, with the most active compound (14q) having a pKi of 7.57 nM for hA2B receptors and a selectivity over hA2A receptors of 8.1-fold and hA1 receptors of 3.7-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号