共查询到20条相似文献,搜索用时 0 毫秒
1.
The involvement of glycogen synthase kinase-3 and protein phosphatase-2A in lactacystin-induced tau accumulation 总被引:1,自引:0,他引:1
Here, we demonstrated that lactacystin inhibited proteasome dose-dependently in HEK293 cells stably expressing tau. Simultaneously, it induces accumulation of both non-phosphorylated and hyperphosphorylated tau and decreases the binding of tau to the taxol-stabilized microtubules. Lactacystin activates glycogen synthase kinsase-3 (GSK-3) and decreases the phosphorylation of GSK-3 at serine-9. LiCl inhibits GSK-3 and thus reverses the lactacystin-induced accumulation of the phosphorylated tau. Lactacystin also inhibits protein phosphase-2A (PP-2A) and it significantly increases the level of inhibitor 1 of PP-2A. These results suggest that inhibition of proteasome by lactacystin induces tau accumulation and activation of GSK-3 and inhibition of PP-2A are involved. 相似文献
2.
Morrow PW Tung HY Hemmings HC 《Biochemical and biophysical research communications》2004,323(2):645-651
Rapamycin is a powerful immunosuppressant that causes cell cycle arrest in T cells and several other cell types. Despite its important clinical role, the mechanism of action of rapamycin is not fully understood. Here, we show that rapamycin causes the activation of protein phosphatase-2A1 which forms a complex with proliferation cell nuclear antigen (PCNA) in a CD4+ T cell line. Rapamycin also induces PCNA translocation from the cytoplasm to the nucleus, an effect which is antagonized by okadaic acid, an inhibitor of type 2A protein phosphatases. These findings provide evidence for the existence of a signal transduction pathway that links a rapamycin-activated type 2A protein phosphatase to the control of DNA synthesis, DNA repair, cell cycle, and cell death via PCNA. 相似文献
3.
DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cyclic AMP-dependent protein kinase, resulting in its conversion to a potent inhibitor of protein phosphatase-1 (PP-1). Conversely, Thr34-phosphorylated DARPP-32 is dephosphorylated and inactivated in vitro by calcineurin and protein phosphatase-2A (PP-2A). We have investigated the relative contributions of these protein phosphatases to the regulation of DARPP-32 dephosphorylation in mouse neostriatal slices. Cyclosporin A (5 microM), a calcineurin inhibitor, maximally increased the level of phosphorylated DARPP-32 by 17+/-2-fold. Okadaic acid (1 microM), an inhibitor of PP-1 and PP-2A, had a smaller effect, increasing phospho-DARPP-32 by 5.1+/-1.3-fold. The effect of okadaic acid on DARPP-32 phosphorylation was shown to be due to inhibition of PP-2A activity. Incubation of slices in the presence of cyclosporin A plus either okadaic acid or calyculin A, another PP-1/PP-2A inhibitor, caused a synergistic increase in the level of phosphorylated DARPP-32. The use of Ca2(+)-free/EGTA medium mimicked the effects of cyclosporin A on DARPP-32 phosphorylation, supporting the conclusion that the action of cyclosporin on DARPP-32 phosphorylation was attributable to blockade of the Ca2(+)-dependent activation of calcineurin. The results indicate that calcineurin and PP-2A, but not PP-1, act synergistically to maintain a low level of phosphorylated DARPP-32 in neostriatal slices. 相似文献
4.
Dries Castermans Ils Somers Johan Kriel Wendy Louwet Stefaan Wera Matthias Versele Veerle Janssens Johan M Thevelein 《Cell research》2012,22(6):1058-1077
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation. 相似文献
5.
The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3alpha and Ser9 of GSK3beta. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3beta, but not GSK3alpha. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels. 相似文献
6.
According to the chemical genetic approach, small molecules that bind directly to proteins are used to analyze protein function, thereby enabling the elucidation of complex mechanisms in mammal cells. Thus, it is very important to identify the molecular targets of compounds that induce a unique phenotype in a target cell. Phoslactomycin A (PLMA) is known to be a potent inhibitor of protein Ser/Thr phosphatase 2A (PP2A); however, the inhibitory mechanism of PP2A by PLMA has not yet been elucidated. Here, we demonstrated that PLMA directly binds to the PP2A catalytic subunit (PP2Ac) in cells by using biotinylated PLMA, and the PLMA-binding site was identified as the Cys-269 residue of PP2Ac. Moreover, we revealed that the Cys-269 contributes to the potent inhibition of PP2Ac activity by PLMA. These results suggest that PLMA is a PP2A-selective inhibitor and is therefore expected to be useful for future investigation of PP2A function in cells. 相似文献
7.
Size and weight control is a tightly regulated process, involving the highly conserved Insulin receptor/target of rapamycin (InR/TOR) signaling cascade. We recently identified Cyclin G (CycG) as an important modulator of InR/TOR signaling activity in Drosophila. cycG mutant flies are underweight and show a disturbed fat metabolism resembling TOR mutants. In fact, InR/TOR signaling activity is disturbed in cycG mutants at the level of Akt1, the central kinase linking InR and TORC1. Akt1 is negatively regulated by protein phosphatase PP2A. Notably the binding of the PP2A B′-regulatory subunit Widerborst (Wdb) to Akt1 is differentially regulated in cycG mutants, presumably by a direct interaction of CycG and Wdb. Since the metabolic defects of cycG mutant animals are abrogated by a concomitant loss of Wdb, CycG presumably influences Akt1 activity at the PP2A nexus. Here we show that Well rounded (Wrd), another B' subunit of PP2A in Drosophila, binds CycG similar to Wdb, and that its loss ameliorates some, but not all, of the metabolic defects of cycG mutants. We propose a model, whereby the binding of CycG to a particular B′-regulatory subunit influences the tissue specific activity of PP2A, required for the fine tuning of the InR/TOR signaling cascade in Drosophila. 相似文献
8.
Areshkov PO Avdieiev SS Balynska OV Leroith D Kavsan VM 《International journal of biological sciences》2012,8(1):39-48
The activation of extracellular signal-regulated kinases (ERK1/2) has been associated with specific outcomes. Sustained activation of ERK1/2 by nerve growth factor (NGF) is associated with translocation of ERKs to the nucleus of PC12 cells and precedes their differentiation into sympathetic-like neurons whereas transient activation by epidermal growth factor (EGF) leads to cell proliferation. It was demonstrated that different growth factors initiating the same cellular signaling pathways may lead to the different cell destiny, either to proliferation or to the inhibition of mitogenesis and apoptosis. Thus, further investigation on kinetic differences in activation of certain signal cascades in different cell types by biologically different agents are necessary for understanding the mechanisms as to how cells make a choice between proliferation and differentiation.It was reported that chitinase 3-like 1 (CHI3L1) protein promotes the growth of human synovial cells as well as skin and fetal lung fibroblasts similarly to insulin-like growth factor 1 (IGF1). Both are involved in mediating the mitogenic response through the signal-regulated kinases ERK1/2. In addition, CHI3L1 which is highly expressed in different tumors including glioblastomas possesses oncogenic properties. As we found earlier, chitinase 3-like 2 (CHI3L2) most closely related to human CHI3L1 also showed increased expression in glial tumors at both the RNA and protein levels and stimulated the activation of the MAPK pathway through phosphorylation of ERK1/2 in 293 and U87 MG cells. The work described here demonstrates the influence of CHI3L2 and CHI3L1 on the duration of MAPK cellular signaling and phosphorylated ERK1/2 translocation to the nucleus. In contrast to the activation of ERK1/2 phosphorylation by CHI3L1 that leads to a proliferative signal (similar to the EGF effect in PC12 cells), activation of ERK1/2 phosphorylation by CHI3L2 (similar to NGF) inhibits cell mitogenesis and proliferation. 相似文献
9.
Establishment and maintenance of apical basal cell polarity are essential for epithelial morphogenesis and have been studied extensively using the Drosophila eye as a model system. Bazooka (Baz), a component of the Par-6 complex, plays important roles in cell polarity in diverse cell types including the photoreceptor cells. In ovarian follicle cells, localization of Baz at the apical region is regulated by Par-1 protein kinase. In contrast, Baz in photoreceptor cells is targeted to adherens junctions (AJs). To examine the regulatory pathways responsible for Baz localization in photoreceptor cells, we studied the effects of Par-1 on Baz localization in the pupal retina. Loss of Par-1 impairs the maintenance of AJ markers including Baz and apical polarity proteins of photoreceptor cells but not the establishment of cell polarity. In contrast, overexpression of Par-1 or Baz causes severe mislocalization of junctional and apical markers, resulting in abnormal cell polarity. However, flies with similar overexpression of kinase-inactive mutant Par-1 or unphosphorylatable mutant Baz protein show relatively normal photoreceptor development. These results suggest that dephosphorylation of Baz at the Par-1 phosphorylation sites is essential for proper Baz localization. We also show that the inhibition of protein phosphatase 2A (PP2A) mimics the polarity defects caused by Par-1 overexpression. Furthermore, Par-1 gain-of-function phenotypes are strongly enhanced by reduced PP2A function. Thus, we propose that antagonism between PP2A and Par-1 plays a key role in Baz localization at AJ in photoreceptor morphogenesis. 相似文献
10.
Qi Z Yang W Liu Y Cui T Gao H Duan C Lu L Zhao C Zhao H Yang H 《Neurochemistry international》2011,59(5):572-581
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. Mutations in PTEN-induced kinase 1 (PINK1) are a frequent cause of recessive PD. Autophagy, a pathway for clearance of protein aggregates or impaired organelles, is a newly identified mechanism for PD development. However, it is still unclear what molecules regulate autophagy in PINK1-silenced cells. Here we report that autophagosome formation is promoted in the early phase in response to PINK1 gene silencing by lentivirus transfer vectors expressed in mouse striatum. Reduced PP2A activity and increased phosphorylation of PP2A at Y307 (inactive form of PP2A) were observed in PINK1-knockdown dopaminergic cells and striatum tissues. Treatment with C2-ceramide (an agonist of PP2A) reduced autophagy levels in PINK1-silenced MN9D cells, which suggests that PP2A plays an important role in the PINK1-knockdown-induced autophagic pathway. Furthermore, phosphorylation of Bcl-2 at S87 increased in PINK1-silenced cells and was negatively regulated by additional treatment with C2-ceramide, which indicates that Bcl-2 may be downstream of PP2A inactivation in response to PINK1 dysfunction. Immunoprecipitation also revealed dissociation of the Bcl-2/Beclin1 complex in PINK1-silenced cells, which was reversed by additional treatment with C2-ceramide, and correlated with changes in level of autophagy and S87 phosphorylation of Bcl-2. Finally, Western blots for cleaved caspase-9 and flow cytometry results for active caspase-3 revealed that PP2A inactivation is involved in the protective effect of autophagy on PINK1-silenced cells. Our findings show that downregulation of PP2A activity in PINK1-silenced cells promotes the protective effect of autophagy through phosphorylation of Bcl-2 at S87 and blockage of the caspase pathway. These results may have implications for identifying the mechanism of PD. 相似文献
11.
Akio Nakashima Keiko Tanimura-Ito Noriko Oshiro Satoshi Eguchi Takafumi Miyamoto Ayaka Momonami Shinji KamadaKazuyoshi Yonezawa Ushio Kikkawa 《FEBS letters》2013
Target of rapamycin complex 1 (TORC1) has a key role in cellular regulations in response to environmental conditions. In yeast, Tip41 downregulates TORC1 signaling via activation of PP2A phosphatase. We show here that overexpression of TIPRL, a mammalian Tip41, suppressed dephosphorylation of mechanistic TORC1 (mTORC1) substrates under amino acid withdrawal, and knockdown of TIPRL conversely attenuated phosphorylation of those substrates after amino acid refeeding. TIPRL associated with the catalytic subunit of PP2A (PP2Ac), which was required for the TIPRL action on mTORC1 signaling. Collectively, unlike yeast TIP41, TIPRL has a positive effect on mTORC1 signaling through the association with PP2Ac. 相似文献
12.
Archna Ravi Shelly Kaushik Aarthi Ravichandran Catherine Qiurong Pan Boon Chuan Low 《The Journal of biological chemistry》2015,290(7):4149-4162
Deleted in Liver Cancer 1 (DLC1) is a RHO GTPase-activating protein (GAP) that negatively regulates RHO. Through its GAP activity, it modulates the actin cytoskeleton network and focal adhesion dynamics, ultimately leading to suppression of cell invasion and metastasis. Despite its presence in various structural and signaling components, little is known about how the activity of DLC1 is regulated at focal adhesions. Here we show that EGF stimulation activates the GAP activity of DLC1 through a concerted mechanism involving DLC1 phosphorylation by MEK/ERK and its subsequent dephosphorylation by protein phosphatase 2A (PP2A) and inhibition of focal adhesion kinase by MEK/ERK to allow the binding between DLC1 and PP2A. Phosphoproteomics and mutation studies revealed that threonine 301 and serine 308 on DLC1, known previously to be mutated in certain cancers, are required for DLC1-PP2A interaction and the subsequent activation of DLC1 upon their dephosphorylation. The intricate interplay of this “MEK/ERK-focal adhesion kinase-DLC1-PP2A” quartet provides a novel checkpoint in the spatiotemporal control of cell spreading and cell motility. 相似文献
13.
Ester M. Pereira Semiramis J.H. do MonteFernando F. do Nascimento Jose A.F. de CastroJackeline L.M. Sousa Henrique C.S.A.L.C. FilhoRaimundo N. da Silva Anatália LabilloyJosé T. Monte Neto Adalberto S. da Silva 《Gene》2014
This study investigated the potential relationship between the expression levels of lysosome-associated membrane proteins (LAMP) 1 and 2 and responses to enzyme replacement therapy (ERT) in the members of a single family with Fabry disease (FD). LAMP levels were assessed by flow cytometry in leukocytes from 17 FD patients who received an eight-month course of ERT course and 101 healthy individuals. We found that phagocytic cells from the FD patients had higher expression levels of both LAMP-1 and LAMP-2, relative to the levels in phagocytes from the healthy controls (p = 0.001). Furthermore, the LAMP-1 and LAMP-2 levels in phagocytes from the FD carriers continuously decreased with ERT administration to reach levels similar to those in healthy controls. We suggest that LAMP-1 and LAMP-2 could be used as additional markers with which to assess ERT effectiveness in FD. 相似文献
14.
We determine that OmpA of Shigella flexneri 2a is recognized by TLR2 and consequently mediates the release of proinflammatory cytokines and activates NF-κB in HEK 293 cells transfected with TLR2. We also observe that in RAW macrophages TLR2 is essential to instigate the early immune response to OmpA via NF-κB activation and secretion of cytokines and NO. Consistent with these results, TLR2 knockdown using siRNA abolishes the initiation of immune responses. Processing and presentation of OmpA depend on TLR2; MHCII presentation of the processed antigen and expression of CD80 significantly attenuated in TLR2 knockdown macrophages. The optimum production of IFN-γ by the macrophages:CD4(+) T cells co-culture depends on both TLR2 activation and antigen presentation. So, TLR2 is clearly recognized as a decisive factor in initiating host innate immune response to OmpA for the development of CD4(+) T cell adaptive response. Furthermore, we demonstrate in vivo that intranasal immunization of mice with OmpA selectively enhances the release of IFN-γ and IL-2 by CD4(+) T cells. Importantly, OmpA increases the level of IFN-γ production in Ag-primed splenocytes. The addition of neutralizing anti-IL-12p70 mAb to cell cultures results in the decreased release of OmpA-enhanced IFN-γ by Ag-primed splenocytes. Moreover, coincubation with OmpA-pretreated macrophages enhances the production of IFN-γ by OmpA-primed CD4(+) T cells, representing that OmpA may enhance IFN-γ expression in CD4(+) T cells through the induction of IL-12 production in macrophages. These results demonstrate that S. flexneri 2a OmpA may play a critical role in the development of Th1 skewed adaptive immune response. 相似文献
15.
Synaptic plasticity is a phenomenon contributing to changes in the efficacy of neuronal transmission. These changes are widely believed to be a major cellular basis for learning and memory. Protein phosphorylation is a key biochemical process involved in synaptic plasticity that operates through a tight balance between the action of protein kinases and protein phosphatases (PPs). Although the majority of research in this field has concentrated primarily on protein kinases, the significant role of PPs is becoming increasingly apparent. This review examines one such phosphatase, PP1, and highlights recent advances in the understanding of its intervention in synaptic and structural plasticity and the mechanisms of learning and memory. 相似文献
16.
17.
Rider MH Hussain N Dilworth SM Storey JM Storey KB 《Journal of insect physiology》2011,57(11):1453-1462
Winter survival for many insects depends on cold hardiness adaptations as well as entry into a hypometabolic diapause state that minimizes energy expenditure. We investigated whether AMP-activated protein kinase (AMPK) could be involved in this adaptation in larvae of two cold-hardy insects, Eurosta solidaginis that is freeze tolerant and Epiblema scudderiana that uses a freeze avoidance strategy. AMPK activity was almost 2-fold higher in winter larvae (February) compared with animals collected in September. Immunoblotting revealed that phosphorylation of AMPK in the activation loop and phosphorylation of acetyl-CoA carboxylase (ACC), a key target of AMPK, were higher in Epiblema during midwinter whereas no seasonal change was seen in Eurosta. Immunoblotting also revealed a significant increase in ribosomal protein S6 phosphorylation in overwintering Epiblema larvae, and in both Eurosta and Epiblema, phosphorylation of eukaryotic initiation factor 4E-binding protein-1 dramatically increased in the winter. Pyruvate dehydrogenase (PDH) E1α subunit site 1 phosphorylation was 2-fold higher in extracts of Eurosta larvae collected in February versus September while PDH activity decreased by about 50% in Eurosta and 80% in February Eurosta larvae compared with animals collected in September. Glycogen phosphorylase phosphorylation was 3-fold higher in Epiblema larvae collected in February compared with September and also in these animals, triglyceride lipase activity increased by 70% during winter. Overall, our study suggests a re-sculpting of metabolism during insect diapause, which shifted to a more catabolic poise in freeze-avoiding overwintering Epiblema larvae, possibly involving AMPK. 相似文献
18.
Ichikawa D Mizuno M Yamamura T Miyake S 《The Journal of biological chemistry》2011,286(50):43465-43474
Anergy is an important mechanism for the maintenance of peripheral tolerance and avoidance of autoimmunity. The up-regulation of E3 ubiqitin ligases, including GRAIL (gene related to anergy in lymphocytes), is a key event in the induction and preservation of anergy in T cells. However, the mechanisms of GRAIL-mediated anergy induction are still not completely understood. We examined which proteins serve as substrates for GRAIL in anergic T cells. Arp2/3-5 (actin-related protein 2/3 subunit 5) and coronin 1A were polyubiquitinated by GRAIL via Lys-48 and Lys-63 linkages. In anergic T cells and GRAIL-overexpressed T cells, the expression of Arp2/3-5 and coronin 1A was reduced. Furthermore, we demonstrated that GRAIL impaired lamellipodium formation and reduced the accumulation of F-actin at the immunological synapse. GRAIL functions via the ubiquitination and degradation of actin cytoskeleton-associated proteins, in particular Arp2/3-5 and coronin 1A. These data reveal that GRAIL regulates proteins involved in the actin cytoskeletal organization, thereby maintaining the unresponsive state of anergic T cells. 相似文献
19.
Ying-Ge Wang Hao-Qiang Yu Yuan-Yuan Zhang Cong-Xian Lai Yue-Hui She Wan-Chen Li Feng-Ling Fu 《Gene》2014
Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. In recent researches, pyrabactin resistance 1-like protein (PYL) and protein phosphatase type 2C (PP2C) were identified as the direct receptor and the second component of ABA signaling pathway, respectively. However, a lot of PYL and PP2C members were found in Arabidopsis and several other plants. Some of them were found not to be involved in ABA signaling. Because of the complex diversity of the genome, few documents have been available on the molecular details of the ABA signal perception system in maize. In the present study, we conducted bioinformatics analysis to find out the candidates (ZmPYL3 and ZmPP2C16) of the PYL and PP2C members most probably involved in ABA signaling in maize, cloned their encoding genes (ZmPYL3 and ZmPP2C16), verified the interaction between these two proteins in response to exogenous ABA induction by yeast two-hybrid assay and bimolecular fluorescence complementation, and investigated the expression patterns of these two genes under the induction of exogenous ABA by real-time fluorescence quantitative PCR. The results indicated that the ZmPYL3 and ZmPP2C16 proteins interacted in vitro and in vivo in response to the induction of exogenous ABA. The downregulated expression of the ZmPYL3 gene and the upregulated expression of the ZmPP2C16 gene are responsive to the induction of exogenous ABA. The ZmPYL3 and ZmPP2C16 proteins are the most probable members of the receptors and the second components of ABA signaling pathway, respectively. 相似文献
20.
Toshio Kitazawa 《Biochemical and biophysical research communications》2010,401(1):75-78
CPI-17 is a unique phosphoprotein that specifically inhibits myosin light chain phosphatase in smooth muscle and plays an essential role in agonist-induced contraction. To elucidate the in situ mechanism for G protein-mediated Ca2+-sensitization of CPI-17 phosphorylation, α-toxin-permeabilized arterial smooth muscle strips were used to monitor both force development and CPI-17 phosphorylation in response to GTPγS with varying Ca2+ concentrations. CPI-17 phosphorylation increased at unphysiologically high Ca2+ levels of pCa ? 6. GTPγS markedly enhanced the Ca2+ sensitivity of CPI-17 steady-state phosphorylation but had no enhancing effect under Ca2+-free conditions, while the potent PKC activator PDBu increased CPI-17 phosphorylation regardless of Ca2+ concentration. CPI-17 phosphorylation induced by pCa 4.5 alone was markedly inhibited by the presence of PKC inhibitor but not ROCK inhibitor. In the presence of calyculin A, a potent PP1/PP2A phosphatase inhibitor, CPI-17 phosphorylation increased with time even under Ca2+-free conditions. Furthermore, as Ca2+ concentration increased, so did CPI-17 phosphorylation rate. GTPγS markedly enhanced the rate of phosphorylation of CPI-17 at a given Ca2+. In the absence of calyculin A, either steady-state phosphorylation of CPI-17 under Ca2+-free conditions in the presence of GTPγS or at pCa 6.7 in the absence of GTPγS was negligible, suggesting a high intrinsic CPI-17 phosphatase activity. In conclusion, cooperative increases in Ca2+ and G protein activation are required for a significant activation of total kinases that phosphorylate CPI-17, which together overcome CPI-17 phosphatase activity and effectively increase the Ca2+ sensitivity of CPI-17 phosphorylation and smooth muscle contraction. 相似文献