首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  1. Download : Download high-res image (241KB)
  2. Download : Download full-size image
  相似文献   

2.
Guanine nucleotide exchange factors (GEFs) stimulate the activation of small GTP-binding proteins (GTPases). Establishing their specificity is a challenging issue, in which chemical genetics are rapidly gaining interest. We report a mutation in the Arf1 GTPase, K38A, which differentially alters its sensitivity to GEF inhibitors. The mutation renders Arf1 insensitive to LM11, a GEF inhibitor that we previously discovered by structure-based screening. In contrast, full inhibition by the natural compound Brefeldin A (BFA) is retained. We show that the mutation is otherwise silent towards the biochemical and cellular properties of Arf1, notably its binding to effectors as measured by a novel GEF-protection assay. This is thus the first GTPase mutant with different responses to two classes of inhibitors, and a novel tool to analyze Arf and ArfGEF specificity and functions in vitro and in cells.  相似文献   

3.
The small GTPases Arf1 and Arf6 have nonoverlapping functions in cellular traffic despite their very high sequence and structural resemblance. Notably, the exquisite isoform specificity of their guanine nucleotide exchange factors and their distinctive sensitivity to the drug brefeldin A cannot be explained by any straightforward structural model. Here we integrated structural and spectroscopic methods to address this issue using Δ13Arf6-GDP, a truncated mutant that mimics membrane-bound Arf6-GDP. The crystal structure of Δ13Arf6-GDP reveals an unprecedented unfolding of the GTPase core β-strands, which is fully accounted for by small-angle X-ray scattering data in solution and by ab initio three-dimensional envelope calculation. NMR chemical shifts identify this structural disorder in Δ13Arf6-GDP, but not in the closely related Δ17Arf1-GDP, which is consistent with their comparative thermodynamic and hydrodynamic analyses. Taken together, these experiments suggest an unfolding model for the nucleotide switch of Arf6 and shed new light on its biochemical differences with Arf1.  相似文献   

4.
The GTPase Rab1 is a master regulator of the early secretory pathway and is critical for autophagy. Rab1 activation is controlled by its guanine nucleotide exchange factor, the multisubunit TRAPPIII complex. Here, we report the 3.7 Å cryo‐EM structure of the Saccharomyces cerevisiae TRAPPIII complex bound to its substrate Rab1/Ypt1. The structure reveals the binding site for the Rab1/Ypt1 hypervariable domain, leading to a model for how the complex interacts with membranes during the activation reaction. We determined that stable membrane binding by the TRAPPIII complex is required for robust activation of Rab1/Ypt1 in vitro and in vivo, and is mediated by a conserved amphipathic α‐helix within the regulatory Trs85 subunit. Our results show that the Trs85 subunit serves as a membrane anchor, via its amphipathic helix, for the entire TRAPPIII complex. These findings provide a structural understanding of Rab activation on organelle and vesicle membranes.  相似文献   

5.
ADP-ribosylation factors (ARFs) are members of a multigene family of 20-kDa guanine nucleotide-binding proteins that ate regulatory components in several pathways of intracellular vesicular trafficking. The relatively small (~180-amino acids) ARF proteins interact with a variety of molecules (in addition to GTP/GDP, of course). Cholera toxin was the first to be recognized, hence the name. Later it was shown that ARF also activates phospholipase D. Different parts of the molecule are responsible for activation of the two enzymes. In vesicular trafficking, ARF must interact with coatomer to recruit it to a membrane and thereby initiate vesicle budding. ARF function requires that it alternate between GTP- and GDP-bound forms, which involves interaction with regulatory proteins. Inactivation of ARF-GTP depends on a GTPase-activating protein or GAP. A guanine nucleotide-exchange protein or GEP accelerates release of bound GDP from inactive ARF-GDP to permit GTP binding. Inhibition of GEP by brefeldin A (BFA) blocks ARF activation and thereby vesicular transport. In cells, it causes apparent disintegration of Golgi structure. Both BFA-sensitive and insensitive GEPs are known. Sequences of peptides from a BFA-sensitive GEP purified in our laboratory revealed the presence of a Sec7 domain, a sequence of ~200 amino acids that resembles a region in the yeast Sec7 gene product, which is involved in Golgi vesicular transport. Other proteins of unknown function also contain Sec7 domains, among them a lymphocyte protein called cytohesin-1. To determine whether it had GEP activity, recombinant cytohesin-1 was synthesized in E. coli. It preferentially activated class I ARFs 1 and 3 and was not inhibited by BFA but failed to activate ARF5 (class II). There are now five Sec7 domain proteins known to have GEP activity toward class I ARFs. It remains to be determined whether there are other Sec7 domain proteins that are GEPs for ARFs 4, 5, or 6.  相似文献   

6.
Background information. Insulin‐stimulated glucose uptake into skeletal muscle is crucial for glucose homoeostasis, and depends on the recruitment of GLUT4 (glucose transporter 4) to the plasma membrane. Mechanisms underlying insulin‐dependent GLUT4 translocation, particularly the role of Rho family GTPases, remain controversial. Results. In the present study, we show that constitutively active Rac1, but not other Rho family GTPases tested, induced GLUT4 translocation in the absence of insulin, suggesting that Rac1 activation is sufficient for GLUT4 translocation in muscle cells. Rac1 activation occurred in dorsal membrane ruffles of insulin‐stimulated cells as revealed by a novel method to visualize activated Rac1 in situ. We further identified FLJ00068 as a GEF (guanine‐nucleotide‐exchange factor) responsible for this Rac1 activation. Indeed, constitutively active FLJ00068 caused Rac1 activation in dorsal membrane ruffles and GLUT4 translocation without insulin stimulation. Down‐regulation of Rac1 or FLJ00068 by RNA interference, on the other hand, abrogated insulin‐induced GLUT4 translocation. Basal, but not insulin‐stimulated, activity of the serine/threonine kinase Akt was required for the induction of GLUT4 translocation by constitutively active Rac1 or FLJ00068. Conclusion. Collectively, Rac1 activation specifically in membrane ruffles by the GEF FLJ00068 is sufficient for insulin induction of glucose uptake into skeletal‐muscle cells.  相似文献   

7.
Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1.  相似文献   

8.
Richard A. Kahn 《FEBS letters》2009,583(23):3872-3305
In this review, I summarize the likely roles played by ADP-ribosylation factor (Arf) proteins in the regulation of membrane traffic at the Golgi, from the perspective of the GTPase. The most glaring limitations to the development of a coherent molecular model are highlighted; including incomplete information on the initiation of Arf activation, identification of the “accessory proteins” required for carrier maturation and scission, and those required for directed traffic and fusion at the destination membrane. Though incomplete, the molecular model of carrier biogenesis has developed rapidly in recent years and promises richness in understanding this essential process.  相似文献   

9.
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 Å resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein interaction network.  相似文献   

10.
The small GTPase Ran coordinates retrograde axonal transport in neurons, spindle assembly during mitosis, and the nucleo-cytoplasmic transport of mRNA. Its localization is tightly regulated by the GTPase-activating protein RanGAP1 and the nuclear guanosine exchange factor (GEF) RCC1. We show that loss of the neuronal E3 ubiquitin ligase MYCBP2 caused the up-regulation of Ran and RanGAP1 in dorsal root ganglia (DRG) under basal conditions and during inflammatory hyperalgesia. SUMOylated RanGAP1 physically interacted with MYCBP2 and inhibited its E3 ubiquitin ligase activity. Stimulation of neurons induced a RanGAP1-dependent translocation of MYCBP2 to the nucleus. In the nucleus of DRG neurons MYCBP2 co-localized with Ran and facilitated through its RCC1-like domain the GDP/GTP exchange of Ran. In accordance with the necessity of a GEF to promote GTP-binding and nuclear export of Ran, the nuclear localization of Ran was strongly increased in MYCBP2-deficient DRGs. The finding that other GEFs for Ran besides RCC1 exist gives new insights in the complexity of the regulation of the Ran signaling pathway.  相似文献   

11.
Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction.  相似文献   

12.
Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio12841959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.  相似文献   

13.
Heptahelical G-protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors couple to heterotrimeric G proteins to relay extracellular signals to intracellular signaling networks, but the molecular mechanism underlying guanosine 5′-diphosphate (GDP) release by the G protein α-subunit is not well understood. Amino acid substitutions in the conserved α5 helix of Gi, which extends from the C-terminal region to the nucleotide-binding pocket, cause dramatic increases in basal (receptor-independent) GDP release rates. For example, mutant Gαi1-T329A shows an 18-fold increase in basal GDP release rate and, when expressed in culture, it causes a significant decrease in forskolin-stimulated cAMP accumulation. The crystal structure of Gαi1-T329A·GDP shows substantial conformational rearrangement of the switch I region and additional striking alterations of side chains lining the catalytic pocket that disrupt the Mg+2 coordination sphere and dislodge bound Mg+2. We propose a “sequential release” mechanism whereby a transient conformational change in the α5 helix alters switch I to induce GDP release. Interestingly, this mechanistic model for heterotrimeric G protein activation is similar to that suggested for the activation of the plant small G protein Rop4 by RopGEF8.  相似文献   

14.
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase, facilitating the exchange of GDP for GTP on Rac1. GTP-bound Rac1 then activates its downstream effectors, including p21-activated kinases (PAKs). PREX2 and Rac1 are frequently mutated in cancer and have key roles within the insulin-signaling pathway. Rac1 can be inactivated by multiple mechanisms; however, negative regulation by insulin is not well understood. Here, we show that in response to being activated after insulin stimulation, Rac1 initiates its own inactivation by decreasing PREX2 GEF activity. Following PREX2-mediated activation of Rac1 by the second messengers PIP3 or Gβγ, we found that PREX2 was phosphorylated through a PAK-dependent mechanism. PAK-mediated phosphorylation of PREX2 reduced GEF activity toward Rac1 by inhibiting PREX2 binding to PIP3 and Gβγ. Cell fractionation experiments also revealed that phosphorylation prevented PREX2 from localizing to the cellular membrane. Furthermore, the onset of insulin-induced phosphorylation of PREX2 was delayed compared with AKT. Altogether, we propose that second messengers activate the Rac1 signal, which sets in motion a cascade whereby PAKs phosphorylate and negatively regulate PREX2 to decrease Rac1 activation. This type of regulation would allow for transient activation of the PREX2-Rac1 signal and may be relevant in multiple physiological processes, including diseases such as diabetes and cancer when insulin signaling is chronically activated.  相似文献   

15.
The association between novel Src homology 2-containing protein (NSP) and Crk-associated substrate (Cas) family members contributes to integrin and receptor tyrosine kinase signalling and is involved in conferring anti-oestrogen resistance to human breast carcinomas. The precise role of this association in tumorigenesis remains controversial, and the molecular basis for the complex NSP and Cas protein form is unknown. Here we present a pluridisciplinary approach, including small-angle X-ray scattering, that provides first insights into the structure of the complex formed between breast cancer anti-oestrogen resistance 3 (BCAR3, an NSP family member) and human enhancer of filamentation 1 (HEF1, also named NEDD9 or Cas-L, a Cas family protein). Our analysis corroborates a four-helix bundle structure for the NSP-binding domain of HEF1 and a Cdc25-like guanine nucleotide exchange factor (GEF) fold for the Cas-binding domain of BCAR3. Using residues located on helix 2 of the four-helix bundle, HEF1 binds very tightly to a site on BCAR3 that is remote from the putative guanosine triphosphatase binding site of the GEF domain, but similar to a site implicated in allosteric regulation of the homologous SOS (Son of Sevenless) GEF domain. Thus, the association between NSP and Cas proteins might not only create a very stable link between these molecules, co-localising their cellular functions, but also modulate the function of the NSP GEF domains. Such modulation may explain, at least in part, the controversial results published for NSP GEF function.  相似文献   

16.
Type 1 insulin-like growth factor receptor (IGF1R) is a membrane-spanning glycoprotein of the insulin receptor family that has been implicated in a variety of cancers. The key questions related to molecular mechanisms governing ligand recognition by IGF1R remain unanswered, partly due to the lack of testable structural models of apo or ligand-bound receptor complexes. Using a homology model of the IGF1R ectodomain IGF1RΔβ, we present the first experimentally consistent all-atom structural models of IGF1/IGF1RΔβ and IGF2/IGF1RΔβ complexes. Our explicit-solvent molecular dynamics (MD) simulation of apo-IGF1RΔβ shows that it displays asymmetric flexibility mechanisms that result in one of two binding pockets accessible to growth factors IGF1 and IGF2, as demonstrated via an MD-assisted Monte Carlo docking procedure. Our MD-generated ensemble of structures of apo and IGF1-bound IGF1RΔβ agrees reasonably well with published small-angle X-ray scattering data. We observe simultaneous contacts of each growth factor with sites 1 and 2 of IGF1R, suggesting cross-linking of receptor subunits. Our models provide direct evidence in favor of suggested electrostatic complementarity between the C-domain (IGF1) and the cysteine-rich domain (IGF1R). Our IGF1/IGF1RΔβ model provides structural bases for the observation that a single IGF1 molecule binds to IGF1RΔβ at low concentrations in small-angle X-ray scattering studies. We also suggest new possible structural bases for differences in the affinities of insulin, IGF1, and IGF2 for their noncognate receptors.  相似文献   

17.
Gizachew D  Oswald R 《FEBS letters》2006,580(17):4296-4301
Arf proteins are guanine nucleotide binding proteins that are implicated in endocytotic pathways and vesicle trafficking. The two widely studied isoforms of Arf proteins (Arf1 and Arf6) have different cellular functions and localizations but similar structures. Arf proteins have an N-terminal helix with a covalently bound myristoyl group. Except structural models, there are no three dimensional structures of the myristoylated N-terminal peptide or the intact myristoylated Arf proteins. However, understanding the role of both the myristoyl group and the N-terminal helix based on the details of their molecular structures is of great interest. In the solution structure of myristoylated N-terminal peptide of Arf6 described here, the myristoyl group folds toward the N-terminus to interact with the hydrophobic residues in particular, the phenyl ring. Also, the structure of the dodecylphosphocholine (DPC) micelle-bound of the peptide together with paramagnetic studies showed that the myristoyl group is inserted into the micelle while residues V4-G10 interact with the surface of the micelle. The structural differences between the unbound and micelle-bound myristoylated N-terminal peptide of Arf6 involves the myristoyl group and the side chains of the hydrophobic residues.  相似文献   

18.
《Cell reports》2020,30(4):1141-1151.e3
  1. Download : Download high-res image (210KB)
  2. Download : Download full-size image
  相似文献   

19.
The insulin receptor (IR) and the homologous Type 1 insulin-like growth factor receptor (IGF-1R) are cell-surface tyrosine kinase receptors that effect signaling within the respective pathways of glucose metabolism and normal human growth. While ligand binding to these receptors is assumed to result in a structural transition within the receptor ectodomain that then effects signal transduction across the cell membrane, little is known about the molecular detail of these events. Presented here are small-angle X-ray scattering data obtained from the IR and IGF-1R ectodomains in solution. We show that, in solution, the ectodomains of IR and IGF-1R have a domain disposition that is very similar to that seen in the crystal structure of the ectodomain of IR, despite the constituent domains being in relatively sparse contact and potentially mobile. We also show that the IGF-1R ectodomain is capable of binding up to three molecules of IGF-1 in solution, with surprisingly little apparent change in relative domain disposition compared to the apo form. While the observed 3:1 ligand-binding stoichiometry appears to contradict earlier explanations of the absence of a bell-shaped dose-response curve for IGF-1R in ligand displacement assays, it is readily understood in the context of the harmonic oscillator model of the negative cooperativity of ligand binding to IGF-1R. Taken together, our findings suggest that the structural movements within these receptors upon ligand binding are small and are possibly limited to local rotation of domains.  相似文献   

20.
5-Methylthioribose 1-phosphate isomerase (M1Pi) is a crucial enzyme involved in the universally conserved methionine salvage pathway (MSP) where it is known to catalyze the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P) via a mechanism which remains unspecified till date. Furthermore, although M1Pi has a discrete function, it surprisingly shares high structural similarity with two functionally non-related proteins such as ribose-1,5-bisphosphate isomerase (R15Pi) and the regulatory subunits of eukaryotic translation initiation factor 2B (eIF2B). To identify the distinct structural features that lead to divergent functional obligations of M1Pi as well as to understand the mechanism of enzyme catalysis, the crystal structure of M1Pi from a hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined. A meticulous structural investigation of the dimeric M1Pi revealed the presence of an N-terminal extension and a hydrophobic patch absent in R15Pi and the regulatory α-subunit of eIF2B. Furthermore, unlike R15Pi in which a kink formation is observed in one of the helices, the domain movement of M1Pi is distinguished by a forward shift in a loop covering the active-site pocket. All these structural attributes contribute towards a hydrophobic microenvironment in the vicinity of the active site of the enzyme making it favorable for the reaction mechanism to commence. Thus, a hydrophobic active-site microenvironment in addition to the availability of optimal amino-acid residues surrounding the catalytic residues in M1Pi led us to propose its probable reaction mechanism via a cis-phosphoenolate intermediate formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号