首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have reported that apoptotic β cells undergoing secondary necrosis, called "late apoptotic (LA) β cells," stimulated APCs and induced diabetogenic T cell priming through TLR2, which might be one of the initial events in autoimmune diabetes. Indeed, diabetogenic T cell priming and the development of autoimmune diabetes were significantly inhibited in TLR2-null NOD mice, suggesting the possibility that TLR2 blockade could be used to inhibit autoimmune diabetes. Because prolonged TLR stimulation can induce TLR tolerance, we investigated whether repeated TLR2 administration affects responses to LA β cells and inhibits autoimmune diabetes in NOD mice by inducing TLR2 tolerance. Treatment of primary peritoneal macrophages with a TLR2 agonist, Pam3CSK(4), suppressed cytokine release in response to LA insulinoma cells or further TLR2 stimulation. The expression of signal transducer IRAK-1 and -4 proteins was decreased by repeated TLR2 stimulation, whereas expression of IRAK-M, an inhibitory signal transducer, was enhanced. Chronic Pam3CSK(4) administration inhibited the development of diabetes in NOD mice. Diabetogenic T cell priming by dendritic cells and upregulation of costimulatory molecules on dendritic cells by in vitro stimulation were attenuated by Pam3CSK(4) administration in vivo. Pam3CSK(4) inhibited diabetes after adoptive transfer of diabetogenic T cells or recurrence of diabetes after islet transplantation by pre-existing sensitized T cells. These results showed that TLR2 tolerance can be achieved by prolonged treatment with TLR2 agonists, which could inhibit priming of naive T cells, as well as the activity of sensitized T cells. TLR2 modulation could be used as a novel therapeutic modality against autoimmune diabetes.  相似文献   

2.
Jin MS  Kim SE  Heo JY  Lee ME  Kim HM  Paik SG  Lee H  Lee JO 《Cell》2007,130(6):1071-1082
TLR2 in association with TLR1 or TLR6 plays an important role in the innate immune response by recognizing microbial lipoproteins and lipopeptides. Here we present the crystal structures of the human TLR1-TLR2-lipopeptide complex and of the mouse TLR2-lipopeptide complex. Binding of the tri-acylated lipopeptide, Pam(3)CSK(4), induced the formation of an "m" shaped heterodimer of the TLR1 and TLR2 ectodomains whereas binding of the di-acylated lipopeptide, Pam(2)CSK(4), did not. The three lipid chains of Pam(3)CSK(4) mediate the heterodimerization of the receptor; the two ester-bound lipid chains are inserted into a pocket in TLR2, while the amide-bound lipid chain is inserted into a hydrophobic channel in TLR1. An extensive hydrogen-bonding network, as well as hydrophobic interactions, between TLR1 and TLR2 further stabilize the heterodimer. We propose that formation of the TLR1-TLR2 heterodimer brings the intracellular TIR domains close to each other to promote dimerization and initiate signaling.  相似文献   

3.
RP105 is a member of the toll-like receptor family of proteins that transmits an activation signal in B cells, playing a role in regulation of B cell growth and death; in macrophages and dendritic cells, RP105 is a specific inhibitor of TLR4 signaling. RP105 is uniquely important for regulating TLR4-dependent signaling. It also proved that RP105 is closely related to TLR2 in macrophage activation by Mycobacterium tuberculosis lipoproteins. The aim of our study is to investigate the role of RP105 in mouse macrophages activation of TLR4 and TLR2 signaling by lipopolysaccharides (LPS) and Pam3CysSerLys4 (Pam3CSK4) alone or in combination, and the interaction between TLR2 and TLR4 signaling through RP105. Our results indicate that besides exhibiting negative regulation of TNF-α and IL12-p40 secretion in macrophage activated by LPS, RP105 is also involved in macrophages activation by Pam3CSK4 through TLR2 signaling and exhibited regulation to IL-10 and RANTES production by mouse peritoneal macrophage activated by Pam3CSK4. In macrophages activation by LPS and Pam3CSK4 in combination, TLR2 signaling can overcome RP105-mediated regulation of TLR4 signaling. Thus, our data demonstrate that not only TLR4 signaling, but also RP105 appears to be an essential accessory for immune responses through TLR2 signaling. The function of TLR2 and TLR4 in response to TLR ligands could be associated with each other by RP105. These results can help us understanding the unique role of RP105 in macrophages response to TLR ligands.  相似文献   

4.
5.
A20 functions to terminate Toll-like receptor (TLR)-induced immune response, and play important roles in the induction of lipopolysacchride (LPS)-tolerance. However, the molecular mechanism for Pam3CSK4-tolerance is uncertain. Here we report that TLR1/2 ligand Pam3CSK4 induced tolerance in monocytic THP-1 cells. The pre-treatment of THP-1 cells with Pam3CSK4 down-regulated the induction of pro-inflammatory cytokines induced by Pam3CSK4 re-stimulation. Pam3CSK4 pre-treatment also down-regulated the signaling transduction of JNK, p38 and NF-κB induced by Pam3CSK4 re-stimulation. The activation of TLR1/2 induced a rapid and robust up-regulation of A20, suggesting that A20 may contribute to the induction of Pam3CSK4-tolerance. This hypothesis was proved by the observation that the over-expression of A20 by gene transfer down-regulated Pam3CSK4-induced inflammatory responses, and the down-regulation of A20 by RNA interference inhibited the induction of tolerance. Moreover, LPS induced a significant up-regulation of A20, which contributed to the induction of cross-tolerance between LPS and Pam3CSK4. A20 was also induced by the treatment of THP-1 cells with TNF-α and IL-1β. The pre-treatment with TNF-α and IL-1β partly down-regulated Pam3CSK4-induced activation of MAPKs. Furthermore, pharmacologic inhibition of GSK3 signaling down-regulated Pam3CSK4-induced A20 expression, up-regulated Pam3CSK4-induced inflammatory responses, and partly reversed Pam3CSK4 pre-treatment-induced tolerance, suggesting that GSK3 is involved in TLR1/2-induced tolerance by up-regulation of A20 expression. Taken together, these results indicated that A20 is a critical regulator for TLR1/2-induced pro-inflammatory responses.  相似文献   

6.
Mast cells are pivotal in the pathogenesis of allergy and inflammation. In addition to the classical IgE-dependent mechanism involving crosslinking of the high-affinity receptor for IgE (FcεRI), mast cells are also activated by Toll-like receptors (TLRs) which are at the center of innate immunity. In this study, we demonstrated that the response of LAD2 cells (a human mast cell line) to anti-IgE was altered in the presence of the TLR2 agonists peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4). Pretreatment of PGN and Pam3CSK4 inhibited anti-IgE induced calcium mobilization and degranulation without down-regulation of FcεRI expression. Pam3CSK4 but not PGN acted in synergy with anti-IgE for IL-8 release when the TLR2 agonist was added simultaneously with anti-IgE. Studies with inhibitors of key enzymes implicated in mast cell signaling revealed that the synergistic release of IL-8 induced by Pam3CSK4 and anti-IgE involved ERK and calcineurin signaling cascades. The differential modulations of anti-IgE induced mast cell activation by PGN and Pam3CSK4 suggest that dimerization of TLR2 with TLR1 or TLR6 produced different modulating actions on FcεRI mediated human mast cell activation.  相似文献   

7.
Toll-like receptors (TLRs) recognize evolutionarily-conserved molecular patterns originating from invading microbes. In this study, we were interested in determining if microbial ligands, which use distinct TLR2-containing receptor complexes, represent unique signals to the cell and can thereby stimulate unique cellular responses. Using the TLR2 ligands, R-FSL1, S-FSL1, Pam2CSK4, Pam3CSK4, and lipoteichoic acid (LTA), we demonstrate that these ligands activate NF-κB and MAP Kinase pathways with ligand-specific differential kinetics in murine macrophages. Most strikingly, LTA stimulation of these pathways was substantially delayed when compared with the other TLR2 ligands. These kinetics differences were associated with a delay in the LTA-induced expression of a subset of genes as compared with another TLR2 ligand, R-FSL1. However, this did not translate to overall differences in gene expression patterns four hours following stimulation with different TLR2 ligands. We extended this study to evaluate the in vivo responses to distinct TLR2 ligands using a murine model of acute inflammation, which employs intravital microscopy to monitor leukocyte recruitment into the cremaster muscle. We found that, although R-FSL1, S-FSL1, Pam2CSK4, and Pam3CSK4 were all able to stimulate robust leukocyte recruitment in vivo, LTA remained functionally inert in this in vivo model. Therefore distinct TLR2 ligands elicit unique cellular responses, as evidenced by differences in the kinetic profiles of signaling and gene expression responses in vitro, as well as the physiologically relevant differences in the in vivo responses to these ligands.  相似文献   

8.
Corticosteroids are effective anti-inflammatory therapies widely utilized in chronic respiratory diseases. But these medicines can lose their efficacy during respiratory infection resulting in disease exacerbation. Further in vitro research is required to understand how infection worsens lung function control in order to advance therapeutic options to treat infectious exacerbation in the future. In this study, we utilize a cellular model of bacterial exacerbation where we pretreat A549 lung epithelial cells with the synthetic bacterial lipoprotein Pam3CSK4 (a TLR2 ligand) to mimic bacterial infection and tumor necrosis factor α (TNFα) to simulate inflammation. Under these conditions, Pam3CSK4 induces corticosteroid insensitivity; demonstrated by substantially reduced ability of the corticosteroid dexamethasone to repress TNFα-induced interleukin 6 secretion. We then explored the molecular mechanism responsible and found that corticosteroid insensitivity induced by bacterial mimics was not due to altered translocation of the glucocorticoid receptor into the nucleus, nor an impact on the NF-κB pathway. Moreover, Pam3CSK4 did not affect corticosteroid-induced upregulation of anti-inflammatory MAPK deactivating phosphatase—MKP-1. However, Pam3CSK4 can induce oxidative stress and we show that a proportion of the MKP-1 produced in response to corticosteroid in the context of TLR2 ligation was rendered inactive by oxidation. Thus to combat inflammation in the context of bacterial exacerbation we sought to discover effective strategies that bypassed this road-block. We show for the first time that known (FTY720) and novel (theophylline) activators of the phosphatase PP2A can serve as non-steroidal anti-inflammatory alternatives and/or corticosteroid-sparing approaches in respiratory inflammation where corticosteroid insensitivity exists.  相似文献   

9.
Innate immune responses that operate through Toll-like receptors (TLRs) are actively involved in the development of diseases predominantly mediated by adaptive immune responses. This is true also for allergic disease, as TLRs have been found to be involved in the development of allergic airway inflammation. We investigated whether stimulating TLR2 also abrogates murine allergic conjunctivitis by upregulating Th1 responses. We found that treating mice during the efferent phase with the TLR2 agonist Pam3CSK4 significantly suppressed eosinophil infiltration into the conjunctiva. However, Pam3CSK4 treatment inhibited both the Th1 and Th2 responses in the mice, and also suppressed eosinophil infiltration in IFN-gamma knockout mice. Flow cytometric analysis demonstrated that Pam3CSK4 treatment significantly elevated the numbers of annexin V-positive splenocytes, especially CD4 positive T cells. Thus, the stimulation of TLR2 during the efferent phase of murine allergic conjunctivitis suppresses eosinophil infiltration by inducing CD4 positive T-cell apoptosis rather than upregulating Th1 responses.  相似文献   

10.
Chicken macrophages express several receptors for recognition of pathogens, including Toll-like receptors (TLRs). TLRs bind to pathogen-associated molecular patterns (PAMPs) derived from bacterial or viral pathogens leading to the activation of macrophages. Macrophages play a critical role in immunity against viruses, including influenza viruses. The present study was designed to test the hypothesis that treatment of chicken macrophages with TLR ligands reduces avian influenza replication. Furthermore, we sought to study the expression of some of the key mediators involved in the TLR-mediated antiviral responses of macrophages. Chicken macrophages were treated with the TLR2, 3, 4, 7 and 21 ligands, Pam3CSK4, poly(I:C), LPS, R848 and CpG ODN, respectively, at different doses and time points pre- and post-H4N6 avian influenza virus (AIV) infection. The results revealed that pre-treatment of macrophages with Pam3CSK4, LPS and CpG ODN reduced the replication of AIV in chicken macrophages. In addition, the relative expression of genes involved in inflammatory and antiviral responses were quantified at 3, 8 and 18 hours post-treatment with the TLR2, 4 and 21 ligands. Pam3CSK4, LPS and CpG ODN increased the expression of interleukin (IL)-1β, interferon (IFN)-γ, IFN-β and interferon regulatory factor (IFR) 7. The expression of these genes correlated with the reduction of viral replication in macrophages. These results shed light on the process of immunity to AIV in chickens.  相似文献   

11.
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysaccharide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor-alpha production, IkappaBalpha degradation, p38 MAPK phosphorylation, and NF-kappaB-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I.C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from approximately 30 microm. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.  相似文献   

12.
Kim HS  Shin TH  Yang SR  Seo MS  Kim DJ  Kang SK  Park JH  Kang KS 《PloS one》2010,5(10):e15369
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs), little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs). The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3)CSK(4) for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2) led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3)CSK(4) and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor) restored osteogenic differentiation enhanced by Pam(3)CSK(4). Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3)CSK(4) and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.  相似文献   

13.
Macrophage-activating lipopeptide 2 (MALP-2), a mycoplasmal diacylated lipopeptide with palmitic acid moiety (Pam2), activates Toll-like receptor (TLR) 2 to induce inflammatory cytokines. TLR2 is known to mature myeloid dendritic cells (mDC) to drive mDC contact-mediated natural killer (NK) cell activation. Here we tested if MALP-2 activates NK cells through stimulation of TLR2 on mDC. Although synthetic MALP-2 with 6 or 14 amino acids (a.a.) stretch (designated as s and f) matured mDC to induce IL-6, IL-12p40 and TNF-α to a similar extent, they far less activated NK cells than Pam2CSK4, a positive control of 6 a.a.-containing diacyl lipopeptide. MALP-2s and f were TLR2/6 agonists and activate the MyD88 pathway similar to Pam2CSK4, but MALP-2s having the CGNNDE sequence acted on mDC TLR2 to barely induce external NK activation. Even the s form, with slightly high induction of IL-6 compared to the f form, barely induced in vivo growth retardation of NK-sensitive implant tumor. Pam2CSK4 and MALP-2 have the common lipid moiety but different peptides, which are crucial for NK cell activation. The results infer that MALP-2 is applicable to a cytokine inducer but not to an adjuvant for antitumor NK immunotherapy.  相似文献   

14.
Blockade of excessive Toll-like receptor (TLR) signaling is a therapeutic approach being actively pursued for many inflammatory diseases. Here we report a Chinese herb-derived compound, sparstolonin B (SsnB), which selectively blocks TLR2- and TLR4-mediated inflammatory signaling. SsnB was isolated from a Chinese herb, Spaganium stoloniferum; its structure was determined by NMR spectroscopy and x-ray crystallography. SsnB effectively inhibited inflammatory cytokine expression in mouse macrophages induced by lipopolysaccharide (LPS, a TLR4 ligand), Pam3CSK4 (a TLR1/TLR2 ligand), and Fsl-1 (a TLR2/TLR6 ligand) but not that by poly(I:C) (a TLR3 ligand) or ODN1668 (a TLR9 ligand). It suppressed LPS-induced cytokine secretion from macrophages and diminished phosphorylation of Erk1/2, p38a, IκBα, and JNK in these cells. In THP-1 cells expressing a chimeric receptor CD4-TLR4, which triggers constitutive NF-κB activation, SsnB effectively blunted the NF-κB activity. Co-immunoprecipitation showed that SsnB reduced the association of MyD88 with TLR4 and TLR2, but not that with TLR9, in HEK293T cells and THP-1 cells overexpressing MyD88 and TLRs. Furthermore, administration of SsnB suppressed splenocyte inflammatory cytokine expression in mice challenged with LPS. These results demonstrate that SsnB acts as a selective TLR2 and TLR4 antagonist by blocking the early intracellular events in the TLR2 and TLR4 signaling. Thus, SssB may serve as a promising lead for the development of selective TLR antagonistic agents for inflammatory diseases.  相似文献   

15.
This study examined the effect of TLR2 activation by its specific ligand, Pam3CSK4, on cerebral ischemia/reperfusion (I/R) injury. Mice (n = 8/group) were treated with Pam3CSK4 1 h before cerebral ischemia (60 min), followed by reperfusion (24 h). Pam3CSK4 was also given to the mice (n = 8) 30 min after ischemia. Infarct size was determined by triphenyltetrazolium chloride staining. The morphology of neurons in brain sections was examined by Nissl staining. Pam3CSK4 administration significantly reduced infarct size by 55.9% (p < 0.01) compared with untreated I/R mice. Therapeutic treatment with Pam3CSK4 also significantly reduced infarct size by 55.8%. Morphologic examination showed that there was less neuronal damage in the hippocampus of Pam3CSK4-treated mice compared with untreated cerebral I/R mice. Pam3CSK4 treatment increased the levels of Hsp27, Hsp70, and Bcl2, and decreased Bax levels and NF-κB-binding activity in the brain tissues. Administration of Pam3CSK4 significantly increased the levels of phospho-Akt/Akt and phospho-GSK-3β/GSK-3β compared with untreated I/R mice. More significantly, either TLR2 deficiency or PI3K inhibition with LY29004 abolished the protection by Pam3CSK4. These data demonstrate that activation of TLR2 by its ligand prevents focal cerebral ischemic damage through a TLR2/PI3K/Akt-dependent mechanism. Of greater significance, these data indicate that therapy with a TLR2-specific agonist during cerebral ischemia is effective in reducing injury.  相似文献   

16.

Background

The recognition of microbial molecular patterns via Toll-like receptors (TLRs) is critical for mucosal defenses.

Methods

Using well-differentiated primary cultures of human airway epithelia, we investigated the effects of exposure of the cells to cytokines (TNF-α and IFN-γ) and dexamethasone (dex) on responsiveness to the TLR2/TLR1 ligand Pam3CSK4. Production of IL-8, CCL20, and airway surface liquid antimicrobial activity were used as endpoints.

Results

Microarray expression profiling in human airway epithelia revealed that first response cytokines markedly induced TLR2 expression. Real-time PCR confirmed that cytokines (TNF-α and IFN-γ), dexamethasone (dex), or cytokines + dex increased TLR2 mRNA abundance. A synergistic increase was seen with cytokines + dex. To assess TLR2 function, epithelia pre-treated with cytokines ± dex were exposed to the TLR2/TLR1 ligand Pam3CSK4 for 24 hours. While cells pre-treated with cytokines alone exhibited significantly enhanced IL-8 and CCL20 secretion following Pam3CSK4, mean IL-8 and CCL20 release decreased in Pam3CSK4 stimulated cells following cytokines + dex pre-treatment. This marked increase in inflammatory gene expression seen after treatment with cytokines followed by the TLR2 ligand did not correlate well with NF-κB, Stat1, or p38 MAP kinase pathway activation. Cytokines also enhanced TLR2 agonist-induced beta-defensin 2 mRNA expression and increased the antimicrobial activity of airway surface liquid. Dex blocked these effects.

Conclusion

While dex treatment enhanced TLR2 expression, co-administration of dex with cytokines inhibited airway epithelial cell responsiveness to TLR2/TLR1 ligand over cytokines alone. Enhanced functional TLR2 expression following exposure to TNF-α and IFN-γ may serve as a dynamic means to amplify epithelial innate immune responses during infectious or inflammatory pulmonary diseases.  相似文献   

17.
Prostaglandin E2 (PGE2) is induced in vivo by bacterial products including TLR agonists. To determine whether PGE2 is induced directly or via IL-1β, human monocytes and macrophages were cultured with LPS or with Pam3CSK4 in presence of caspase-1 inhibitor, ZVAD, or IL-1R antagonist, Kineret. TLR agonists induced PGE2 in macrophages exclusively via IL-1β-independent mechanisms. In contrast, ZVAD and Kineret reduced PGE2 production in LPS-treated (but not in Pam3CSK4-treated) monocytes, by 30–60%. Recombinant human IL-1β augmented COX-2 and mPGES-1 mRNA and PGE2 production in LPS-pretreated monocytes but not in un-primed or Pam3CSK4-primed monocytes. This difference was explained by the finding that LPS but not Pam3CSK4 induced phosphorylation of IRF3 in monocytes suggesting activation of the TRIF signaling pathway. Knocking down TRIF, TRAM, or IRF3 genes by siRNA inhibited IL-1β-induced COX-2 and mPGES-1 mRNA. Blocking of TLR4 endocytosis during LPS priming prevented the increase in PGE2 production by exogenous IL-1β. Our data showed that TLR2 agonists induce PGE2 in monocytes independently from IL-1β. In the case of TLR4, IL-1β augments PGE2 production in LPS-primed monocytes (but not in macrophages) through a mechanism that requires TLR4 internalization and activation of the TRIF/IRF3 pathway. These findings suggest a key role for blood monocytes in the rapid onset of fever in animals and humans exposed to bacterial products and some novel adjuvants.  相似文献   

18.
Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume.  相似文献   

19.
Dahiya Y  Pandey RK  Sodhi A 《PloS one》2011,6(11):e27828
Nod2 is a cytosolic pattern recognition receptor. It has been implicated in many inflammatory conditions. Its signaling has been suggested to modulate TLR responses in a variety of ways, yet little is known about the mechanistic details of the process. We show in this study that Nod2 knockdown mouse peritoneal macrophages secrete more IL1β than normal macrophages when stimulated with peptidoglycan (PGN). Muramyl dipeptide (MDP, a Nod2 ligand) + PGN co-stimulated macrophages have lower expression of IL1β than PGN (TLR2/1 ligand) stimulated macrophages. MDP co-stimulation have similar effects on Pam3CSK4 (synthetic TLR2/1 ligand) mediated IL1β expression suggesting that MDP mediated down regulating effects are receptor dependent and ligand independent. MDP mediated down regulation was specific for TLR2/1 signaling as MDP does not affect LPS (TLR4 ligand) or zymosan A (TLR2/6 ligand) mediated IL1β expression. Mechanistically, MDP exerts its down regulating effects by lowering PGN/Pam3CSK4 mediated nuclear cRel levels. Lower nuclear cRel level were observed to be because of enhanced transporting back rather than reduced nuclear translocation of cRel in MDP + PGN stimulated macrophages. These results demonstrate that Nod2 and TLR2/1 signaling pathways are independent and do not interact at the level of MAPK or NF-κB activation.  相似文献   

20.
The spread of methicillin-resistant Staphylococcus aureus (MRSA) is a critical health issue that has drawn greater attention to the potential use of immunotherapy. Toll-like receptor 2 (TLR2), a pattern recognition receptor, is an essential component in host innate defense system against S. aureus infection. However, little is known about the innate immune response, specifically TLR2 activation, against MRSA infection. Here, we evaluate the protective effect and the mechanism of MRSA murine pneumonia after pretreatment with Pam3CSK4, a TLR2 agonist. We found that the MRSA-pneumonia mouse model, pretreated with Pam3CSK4, had reduced bacteria and mortality in comparison to control mice. As well, lower protein and mRNA levels of TNF-α, IL-1β and IL-6 were observed in lungs and bronchus of the Pam3CSK4 pretreatment group. Conversely, expression of anti-inflammatory cytokine IL-10, but not TGF-β, increased in Pam3CSK4-pretreated mice. Our additional studies showed that CXCL-2 and CXCL1, which are necessary for neutrophil recruitment, were less evident in the Pam3CSK4-pretreated group compared to control group, whereas the expression of Fcγ receptors (FcγⅠ/Ⅲ) and complement receptors (CR1/3) increased in murine lungs. Furthermore, we found that increased survival and improved bacterial clearance were not a result of higher levels of neutrophil infiltration, but rather a result of enhanced phagocytosis and bactericidal activity of neutrophils in vitro and in vivo as well as increased robust oxidative activity and release of lactoferrin. Our cumulative findings suggest that Pam3CSK4 could be a novel immunotherapeutic candidate against MRSA pneumonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号