首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As the global need for drugs getting increases, the necessity of novel and effective drugs are the need of the day. Pyrazoles are one of the active molecules in novel drug discovery. The present study deals about the synthesis of precursors 4-(4-fluorophenyl)-6-isopropyl-2-(methylsulfonyl) pyrimidine-5-carbohydrazides (3a-m) from methyl-4-(4-fluorophenyl)-6-isopropyl-2-(methyl sulfonyl) pyrimidine-5-carboxylate (2) by treating with substituted acetophenone. Further, Vilsmeier-Haack reaction of compounds 3a-m at 70 °C for 8–10 hrs gave novel pyrazole carbaldehyde derivatives (4a-m) in good yield. Biological properties like antioxidant, anti-breast cancer and anti-inflammatory of newly synthesized compounds (4a-m) were determined. The enzymes Cyclooxygenase-2 and Phosphoinositide-3-Kinase are most responsible for the corresponding diseases such as inflammation and breast cancer respectively. In order to examine the interaction between these two enzymes and our synthesized compounds 4a-m, molecular docking study was carried out. From the results, few compounds of 4a-m were found to have anti-inflammatory properties by showing excellent COX-2 inhibition and HRBC membrane stabilization properties. ADMET prediction results were also valuable to screen the most effective pyrazole derivatives to establish them as future COX-2 inhibitors or anti-inflammatory drugs.  相似文献   

2.
Reactive oxygen species (ROS) are considered to be chemically reactive with and damaging to biomolecules including DNA, protein, and lipid, and excessive exposure to ROS induces oxidative stress and causes genetic mutations. However, the recently described family of Nox and Duox enzymes generates ROS in a variety of tissues as part of normal physiological functions, which include innate immunity, signal transduction, and biochemical reactions, e.g., to produce thyroid hormone. Nature's "choice" of ROS to carry out these biological functions seems odd indeed, given its predisposition to cause molecular damage. This review describes normal biological roles of Nox enzymes as well as pathological conditions that are associated with ROS production by Nox enzymes. By far the most common conditions associated with Nox-derived ROS are chronic diseases that tend to appear late in life, including atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, Alzheimer's disease, and others. In almost all cases, with the exception of a few rare inherited conditions (e.g., related to innate immunity, gravity perception, and hypothyroidism), diseases are associated with overproduction of ROS by Nox enzymes; this results in oxidative stress that damages tissues over time. I propose that these pathological roles of Nox enzymes can be understood in terms of antagonistic pleiotropy: genes that confer a reproductive advantage early in life can have harmful effects late in life. Such genes are retained during evolution despite their harmful effects, because the force of natural selection declines with advanced age. This review discusses some of the proposed physiologic roles of Nox enzymes, and emphasizes the role of Nox enzymes in disease and the likely beneficial effects of drugs that target Nox enzymes, particularly in chronic diseases associated with an aging population.  相似文献   

3.
Abstract

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), a major source of reactive oxygen species, is a critical mediator of redox signaling. It is well-documented that oxidative stress is associated with the development of glomerular diseases (GN). Hence, the Nox was also thought to be involved in the pathogenesis of GN. However, the expression of Nox in various GN was not consistent, the mechanisms by which the activity of the Nox enzymes in regulating renal cells remains unclear. Signaling pathways might be very important in the pathogenesis of GN. We performed this review to provide a relatively complete signaling pathways flowchart for Nox to the investigators who were interested in the role of Nox in the pathogenesis of GN. Here, we reviewed the signal transduction pathway of Nox and its role in the pathogenesis of GN.  相似文献   

4.
Pulmonary hypertension (PH) is characterized by increased pulmonary vascular remodeling, resistance, and pressures. Reactive oxygen species (ROS) contribute to PH-associated vascular dysfunction. NADPH oxidases (Nox) and mitochondria are major sources of superoxide (O2•−) and hydrogen peroxide (H2O2) in pulmonary vascular cells. Hypoxia, a common stimulus of PH, increases Nox expression and mitochondrial ROS (mtROS) production. The interactions between these two sources of ROS generation continue to be defined. We hypothesized that mitochondria-derived O2•− (mtO2•−) and H2O2 (mtH2O2) increase Nox expression to promote PH pathogenesis and that mitochondria-targeted antioxidants can reduce mtROS, Nox expression, and hypoxia-induced PH. Exposure of human pulmonary artery endothelial cells to hypoxia for 72 h increased mtO2•− and mtH2O2. To assess the contribution of mtO2•− and mtH2O2 to hypoxia-induced PH, mice that overexpress superoxide dismutase 2 (TghSOD2) or mitochondria-targeted catalase (MCAT) were exposed to normoxia (21% O2) or hypoxia (10% O2) for three weeks. Compared with hypoxic control mice, MCAT mice developed smaller hypoxia-induced increases in RVSP, α-SMA staining, extracellular H2O2 (Amplex Red), Nox2 and Nox4 (qRT-PCR and Western blot), or cyclinD1 and PCNA (Western blot). In contrast, TghSOD2 mice experienced exacerbated responses to hypoxia. These studies demonstrate that hypoxia increases mtO2•− and mtH2O2. Targeting mtH2O2 attenuates PH pathogenesis, whereas targeting mtO2•− exacerbates PH. These differences in PH pathogenesis were mirrored by RVSP, vessel muscularization, levels of Nox2 and Nox4, proliferation, and H2O2 release. These studies suggest that targeted reductions in mtH2O2 generation may be particularly effective in preventing hypoxia-induced PH.  相似文献   

5.
Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2   总被引:1,自引:0,他引:1  
In recent years, reactive oxygen species (ROS) derived from the vascular isoforms of NADPH oxidase, Nox1, Nox2, and Nox4, have been implicated in many cardiovascular pathologies. As a result, the selective inhibition of these isoforms is an area of intense current investigation. In this study, we postulated that Nox2ds, a peptidic inhibitor that mimics a sequence in the cytosolic B-loop of Nox2, would inhibit ROS production by the Nox2-, but not the Nox1- and Nox4-oxidase systems. To test our hypothesis, the inhibitory activity of Nox2ds was assessed in cell-free assays using reconstituted systems expressing the Nox2-, canonical or hybrid Nox1-, or Nox4-oxidase. Our findings demonstrate that Nox2ds, but not its scrambled control, potently inhibited superoxide (O2•−) production in the Nox2 cell-free system, as assessed by the cytochrome c assay. Electron paramagnetic resonance confirmed that Nox2ds inhibits O2•− production by Nox2 oxidase. In contrast, Nox2ds did not inhibit ROS production by either Nox1- or Nox4-oxidase. These findings demonstrate that Nox2ds is a selective inhibitor of Nox2-oxidase and support its utility to elucidate the role of Nox2 in organ pathophysiology and its potential as a therapeutic agent.  相似文献   

6.
Regulated generation of reactive oxygen species (ROS) is primarily accomplished by NADPH oxidases (Nox). Nox1 to Nox4 form a membrane-associated heterodimer with p22phox, creating the docking site for assembly of the activated oxidase. Signaling specificity is achieved by interaction with a complex network of cytosolic components. Nox4, an oxidase linked to cardiovascular disease, carcinogenesis, and pulmonary fibrosis, deviates from this model by displaying constitutive H2O2 production without requiring known regulators. Extensive Nox4/Nox2 chimera screening was initiated to pinpoint structural motifs essential for ROS generation and Nox subcellular localization. In summary, a matching B loop was crucial for catalytic activity of both Nox enzymes. Substitution of the carboxyl terminus was sufficient for converting Nox4 into a phorbol myristate acetate (PMA)-inducible phenotype, while Nox2-based chimeras never gained constitutive activity. Changing the Nox2 but not the Nox4 amino terminus abolished ROS generation. The unique heterodimerization of a functional Nox4/p22phox Y121H complex was dependent on the D loop. Nox4, Nox2, and functional Nox chimeras translocated to the plasma membrane. Cell surface localization of Nox4 or PMA-inducible Nox4 did not correlate with O2 generation. In contrast, Nox4 released H2O2 and promoted cell migration. Our work provides insights into Nox structure, regulation, and ROS output that will aid inhibitor design.The family of NADPH oxidases consists of seven members termed Nox/Duox that differ in their tissue expression profiles, modes of activation, reactive oxygen species (ROS) outputs, and physiological functions. Understanding their distinguishing features is a prerequisite for rational inhibitor design and thus targeted intervention in ROS-mediated pathophysiologies (4). The coexpression of different Nox isoforms, each with potentially distinct functional profiles, in the same cell type necessitates a more discriminating approach than application of pan-Nox inhibitors. Detailed structure-function studies are necessary to identify unique regions and their impact with respect to catalytic function or localization of the enzyme. All Nox/Duox enzymes share a Nox backbone with six predicted transmembrane domains and an intracellular carboxyl-terminal domain which harbors FAD and NADPH binding sites. Nox5 and Duox1/2 enzymes contain additional structural elements such as amino terminal EF-hand motifs, a hallmark of their regulation by the intracellular calcium concentration (13, 30).The founding member of the NADPH oxidase family, the phagocyte oxidase, consists of membrane-bound Nox2 in a complex with the smaller subunit p22phox (3). Heterodimerization of these two proteins is required for maturation and translocation of the enzyme complex to the plasma membrane or to intracellular vesicles. The Nox family members Nox1, Nox3, and Nox4 follow this paradigm (1, 14, 21, 25, 31). Heterodimer formation and association of the Nox/p22phox complex at particular cellular membranes is essential for catalytic activity, i.e., for ROS generation. Nox2, and to a lesser degree Nox1 and Nox3, remain dormant under resting conditions and rely on stimulus-dependent translocation and assembly of oxidase components such as p47phox and p67phox, or NoxO1 and NoxA1 in the case of Nox1 and Nox3 (16). These steps, together with activation and translocation of the GTPase Rac, ultimately lead to the assembled, catalytically active oxidase and to ROS generation.Nox4 differs from the usual theme of multimeric assembly of active NADPH oxidases found in Nox1 to Nox3 (21, 22, 28, 32). Constitutive H2O2 production by Nox4 localized at perinuclear vesicles has been reported (1, 21, 28). Since NADPH oxidases catalyze the one-electron reduction of molecular oxygen to superoxide anion, the current dogma suggests that Nox4 generates intracellular superoxide. The superoxide produced will then dismutate rapidly to H2O2, diffusing from the cell into the extracellular milieu. Cytosolic proteins, which regulate the activity of Nox1 to Nox3 by binding to the carboxyl-terminal domains of Nox1 to Nox3, seem to be irrelevant for Nox4 function. The membrane-bound subunit p22phox is to date the only known protein associated with Nox1 to Nox4. Heterodimerization, translocation, and enzymatic function of these oxidases require p22phox. Recent structure-function analyses of complexes between Nox2 or Nox4 and the subunit p22phox documented specific regions and amino acid residues in p22phox necessary for complex formation and oxidase activity (35, 37). Interestingly, a p22phox mutant (p22phox Y121H) is capable of distinguishing between Nox1 to Nox3 and Nox4 by forming a functional complex only with Nox4, further suggesting unique structural features in Nox4 (35).In this study, we expand structure-function analysis of the oxidase complex by comparing Nox4/Nox2 chimeric enzymes with respect to NADPH oxidase activity, type of reactive oxygen species produced, requirement for additional oxidase components, and detailed subcellular localization.  相似文献   

7.
The first synthesis of (E)-4-(3-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (1), (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (2), and (E)-4-(2,3-dibromo-4,5-dihydroxyphenyl)but-3-en-2-one (3) was realized as natural bromophenols. Derivatives with mono OMe of 2 and 3 were obtained from the reactions of their derivatives with di OMe with AlCl3. These novel 4-phenylbutenone derivatives were effective inhibitors of the cytosolic carbonic anhydrase I and II isoenzymes (hCA I and II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with Ki values in the range of 158.07–404.16 pM for hCA I, 107.63–237.40 pM for hCA II, 14.81–33.99 pM for AChE and 5.64–19.30 pM for BChE. The inhibitory effects of the synthesized novel 4-phenylbutenone derivatives were compared to acetazolamide as a clinical hCA I and II isoenzymes inhibitor and tacrine as a clinical AChE and BChE enzymes inhibitor.  相似文献   

8.
NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date seven members of this family have been reported, including Nox1-5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and requires two cytosolic regulators, the organizer subunit NoxO1 and the activator subunit NoxA1, as well as the binding of Rac1 GTPase, for its activity. Recently, we identified the c-Src substrate proteins Tks4 and Tks5 as functional members of a p47phox-related organizer superfamily. As a functional consequence of this interaction, Nox1 localizes to invadopodia, actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior.Here, we report that Tks4 and Tks5 directly bind to NoxA1. Moreover, the integrity of the N-terminal PRR of NoxA1 is essential for this direct interaction with the Tks proteins. When the PRR in NoxA1 is disrupted, Tks proteins cannot bind NoxA1 and lose their ability to support Nox1-dependent ROS generation. Consistent with this, Tks4 and Tks5 are unable to act as organizers for Nox2 because of their inability to interact with p67phox, which lacks the N-terminal PRR, thus conferring a unique specificity to Tks4 and 5.Taken together, these results clarify the molecular basis for the interaction between NoxA1 and the Tks proteins and may provide new insights into the pharmacological design of a more effective anti-metastatic strategy.  相似文献   

9.
We showed that metabolic disorders promote thiol oxidative stress in monocytes, priming monocytes for accelerated chemokine-induced recruitment, and accumulation at sites of vascular injury and the progression of atherosclerosis. The aim of this study was to identify both the source of reactive oxygen species (ROS) responsible for thiol oxidation in primed and dysfunctional monocytes and the molecular mechanisms through which ROS accelerate the migration and recruitment of monocyte-derived macrophages. We found that Nox4, a recently identified NADPH oxidase in monocytes and macrophages, localized to focal adhesions and the actin cytoskeleton, and associated with phospho-FAK, paxillin, and actin, implicating Nox4 in the regulation of monocyte adhesion and migration. We also identified Nox4 as a new, metabolic stress-inducible source of ROS that controls actin S-glutathionylation and turnover in monocytes and macrophages, providing a novel mechanistic link between Nox4-derived H2O2 and monocyte adhesion and migration. Actin associated with Nox4 was S-glutathionylated, and Nox4 association with actin was enhanced in metabolically-stressed monocytes. Metabolic stress induced Nox4 and accelerated monocyte adhesion and chemotaxis in a Nox4-dependent mechanism. In conclusion, our data suggest that monocytic Nox4 is a central regulator of actin dynamics, and induction of Nox4 is the rate-limiting step in metabolic stress-induced monocyte priming and dysfunction associated with accelerated atherosclerosis and the progression of atherosclerotic plaques.  相似文献   

10.
Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN.  相似文献   

11.
Degenerate primers were designed to isolate new homologs of Nox family genes in rat organs and sea urchin eggs. The primers were capable of amplifying Nox1, Nox2, Nox3, Nox4, Duox1 and Duox2 but not Nox5, and failed to isolate novel homologs in rat. However, a novel homolog (named as Nox-U1) was identified in sea urchin eggs. In the most conserved region (amino acid 336--417 in human Nox2) Nox-U1 has the highest identity with Nox2, which appears to be abundant in mouse oocytes. However, phylogenetic analysis of the entire sequence has revealed that Nox-U1 is closer to Nox4 or Nox5 than Nox2 or Nox3. Histidine residues assumed to be responsible for heme ligation, motifs for FAD- and NADPH-binding, and two asparagine-linked glycosylation sites are conserved.  相似文献   

12.
13.
In this study, two novel phthalocyanine complexes were synthesized using their corresponding metal salts and 4-(4-(3-(2,4,5-trimethoxyphenyl)acryloyl)phenoxy)phthalo-nitrile as chalcone ligand (4), which was prepared from the reaction of 4-nitrophthalonitrile with 4-hydroxyphenyl-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (3). These metallophthalocyanines showed good solubility in organic solvents such as CDCl3, DCM, THF, DMF, and DMSO. The novel phthalocyanine compounds 4a (Pc-Zn) and 4b (Pc-Co) were characterized using their UV–vis, FT-IR, 1H NMR, 13C NMR, and MALDI-TOF mass spectra and elemental analysis. Then the DNA-binding and xanthine oxidase and carbonic anhydrase-I inhibition properties of compounds 4a and 4b were investigated. Photochemical properties (such as singlet oxygen generation and photodegradation) of this novel chalcone phthalocyanine (4a) were determined in dimethyl sulfoxide (DMSO).  相似文献   

14.
Excessive vascular and colon epithelial reactive oxygen species production by NADPH oxidase isoform 1 (Nox1) has been implicated in a number of disease states, including hypertension, atherosclerosis, and neoplasia. A peptide that mimics a putative activation domain of the Nox1 activator subunit NOXA1 (NOXA1 docking sequence, also known as NoxA1ds) potently inhibited Nox1-derived superoxide anion (O2) production in a reconstituted Nox1 cell-free system, with no effect on Nox2-, Nox4-, Nox5-, or xanthine oxidase-derived reactive oxygen species production as measured by cytochrome c reduction, Amplex Red fluorescence, and electron paramagnetic resonance. The ability of NoxA1ds to cross the plasma membrane was tested by confocal microscopy in a human colon cancer cell line exclusively expressing Nox1 (HT-29) using FITC-labeled NoxA1ds. NoxA1ds significantly inhibited whole HT-29 carcinoma cell-derived O2 generation. ELISA and fluorescence recovery after photobleaching experiments indicate that NoxA1ds, but not its scrambled control, binds Nox1. FRET experiments conducted using Nox1-YFP and NOXA1-CFP illustrate that NoxA1ds disrupts the binding interaction between Nox1 and NOXA1, whereas a control peptide did not. Moreover, hypoxia-induced human pulmonary artery endothelial cell O2 production was completely inhibited by NoxA1ds. Human pulmonary artery endothelial cell migration under hypoxic conditions was also reduced by pretreatment with NoxA1ds. Our data indicate that a peptide recapitulating a putative activation subdomain of NOXA1 (NoxA1ds) is a highly efficacious and selective inhibitor of Nox1 activity and establishes a critical interaction site for Nox1-NOXA1 binding required for enzyme activation.  相似文献   

15.
Nicotine adenine dinucleotide phosphate (NADPH) oxidase (Nox) complexes are the main sources of reactive oxygen species (ROS) formation in the vessel wall. We have used DNA microarray, real-time PCR and Western blot to demonstrate that the subunit Nox4 is the major Nox isoform in primary human endothelial cells; we also found high levels of NADPH oxidase subunit p22phox expression. Nox4 was localized by laser scanning confocal microscopy within the cytoplasm of endothelial cells. Endothelial Nox4 overexpression enhanced superoxide anion formation and phosphorylation of p38 MAPK. Nox4 down-regulation by shRNA has in contrast to TGF-β no effect on p38 MAPK phosphorylation. We conclude that Nox4 is the major Nox isoform in human endothelial cells, and forms an active complex with p22phox. The Nox4-containing complex mediates formation of reactive oxygen species and p38 MAPK activation. This is a novel mechanism of redox-sensitive signaling in human endothelial cells.  相似文献   

16.
In this study, 1,2,3-triazole substituted metal-free and metallo phthalocyanines (4, 5, 6) and their water soluble derivatives (4a, 5a, 6a) were designed, synthesized for the first time and tested in vitro on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Most phthalocyanines exhibited good inhibitory activities on these enzymes. Among the six phthalocyanines and starting compounds, 4a showed the most interesting profile as a submicromolar selective inhibitor of AChE (IC50 = 0.040 µM) and 5a showed the most effective inhibitor of BChE (IC50 = 0.1198 µM).  相似文献   

17.
Histone deacetylase (HDAC) inhibitors are known to suppress abnormal development of blood vessels. Angiogenic activity in endothelial cells depends upon NADPH oxidase 4 (Nox4)‐dependent redox signalling. We set out to study whether the HDAC inhibitor trichostatin A (TSA) affects Nox4 expression and angiogenesis. Nox4 expression was measured by real time PCR and Western blot analysis in endothelial cells. Hydrogen peroxide (H2O2) was measured by amplex® red assay in endothelial cells. Nox4 was knocked down by Nox4 shRNA. In vitro angiogenic activities such migration and tubulogenesis were assessed using wound healing and Matrigel assays, respectively. In vivo angiogenic activity was assessed using subcutaneous sponge assay in C57Bl/6 and Nox4‐deficient mice. Trichostatin A reduced Nox4 expression in a time‐ and concentration‐dependent manner. Both TSA and Nox4 silencing decreased Nox4 protein and H2O2. Mechanistically, TSA reduced expression of Nox4 via ubiquitination of p300‐ histone acetyltransferase (p300‐HAT). Thus, blocking of the ubiquitination pathway using an inhibitor of ubiquitin‐activating enzyme E1 (PYR‐41) prevented TSA inhibition of Nox4 expression. Trichostatin A also reduced migration and tube formation, and these effects were not observed in Nox4‐deficient endothelial cells. Finally, transforming growth factor beta1 (TGFβ1) enhanced angiogenesis in sponge model in C57BL/6 mice. This response to TGFβ1 was substantially reduced in Nox4‐deficient mice. Similarly intraperitoneal infusion of TSA (1 mg/kg) also suppressed TGFβ1‐induced angiogenesis in C57BL/6 mice. Trichostatin A reduces Nox4 expression and angiogenesis via inhibition of the p300‐HAT‐dependent pathway. This mechanism might be exploited to prevent aberrant angiogenesis in diabetic retinopathy, complicated vascular tumours and malformations.  相似文献   

18.
The function of reactive oxygen species (ROS) as second messengers in cell differentiation has been demonstrated only for a limited number of cell types. Here, we used a well-established protocol for BMP2-induced neuronal differentiation of neural crest stem cells (NCSCs) to examine the function of BMP2-induced ROS during the process. We first show that BMP2 indeed induces ROS generation in NCSCs and that blocking ROS generation by pretreatment of cells with diphenyleneiodonium (DPI) as NADPH oxidase (Nox) inhibitor inhibits neuronal differentiation. Among the ROS-generating Nox isozymes, only Nox4 was expressed at a detectable level in NCSCs. Nox4 appears to be critical for survival of NCSCs at least in vitro as down-regulation by RNA interference led to apoptotic response from NCSCs. Interestingly, development of neural crest-derived peripheral neural structures in Nox4−/− mouse appears to be grossly normal, although Nox4−/− embryos were born at a sub-Mendelian ratio and showed delayed over-all development. Specifically, cranial and dorsal root ganglia, derived from NCSCs, were clearly present in Nox4−/− embryo at embryonic days (E) 9.5 and 10.5. These results suggest that Nox4-mediated ROS generation likely plays important role in fate determination and differentiation of NCSCs, but other Nox isozymes play redundant function during embryogenesis.  相似文献   

19.
Designed multiple ligands (DMLs), developed to modulate simultaneously a number of selected targets involved in etiopathogenetic mechanisms of a multifactorial disease, such as diabetes mellitus (DM), are considered a promising alternative to combinations of drugs, when monotherapy results to be unsatisfactory. In this work, compounds 117 were synthesized and in vitro evaluated as DMLs directed to aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two key enzymes involved in different events which are critical for the onset and progression of type 2 DM and related pathologies. Out of the tested 4-thiazolidinone derivatives, compounds 12 and 16, which exhibited potent AR inhibitory effects along with interesting inhibition of PTP1B, can be assumed as lead compounds to further optimize and balance the dual inhibitory profile. Moreover, several structural portions were identified as features that could be useful to achieve simultaneous inhibition of both human AR and PTP1B through binding to non-catalytic regions of both target enzymes.  相似文献   

20.
To illuminate the origins of NADPH oxidase (Nox), we identified cDNA clones encoding Nox2, Nox4, p22 phagocyte oxidase (phox), p47phox, and p67phox in a chordate phylogenetically distant to the vertebrates, the sea squirt Ciona intestinalis. We also examined the spatiotemporal expression of these genes in embryos and juveniles. The sequences of the Nox2, Nox4, p22phox, p47phox, and p67phox cDNAs contained open reading frames encoding 581, 811, 175, 461, and 515 amino acids, respectively. The level of identities between the deduced Nox2, Nox4, p22phox, p47phox, and p67phox amino acid sequences and their corresponding human components were 54.0, 31.0, 44.4, 36.0, and 26.2%, respectively. Despite these low identities, the functional domains of the C. intestinalis and human NADPH oxidase and Nox4 are highly conserved. The genomic organizations of the components of the NADPH oxidase gene except for p67phox (a single exon gene) and the Nox4 gene in C. intestinalis are highly similar to those of the corresponding human NADPH oxidase genes. Further, the analyzed part of the C. intestinalis genome and EST database do not seem to present p40phox and Nox5. The Nox2, p22phox, p47phox, and p67phox genes were specifically expressed in the blood cells of juveniles. The Nox4 gene was expressed in blood cells and endostyle of juveniles. These results suggest that C. intestinalis NADPH oxidase components possess potential functional activities similar to those of human, but the manner in which cytosolic phox proteins in C. intestinalis interact is different from that in human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号