首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate specific membrane antigen (PSMA) is a promising target for the diagnosis and therapy of prostate cancer. In this report, a NOTA-conjugated precursor, NOTA-PSMA (also named PSMA-BCH), was synthesized by peptide synthesizer with the chemical purity over 95%. 68Ga-PSMA-BCH was obtained by radiolabeling NOTA-PSMA with 68GaCl3 with >99% radiochemical purity and 59–74?GBq/μmol specific activity. In vitro and in vivo study of 68Ga-PSMA-BCH showed high stability, high uptake in PSMA-expressing cells and tumor, fast clearance and low non-target uptake. 22Rv1 tumors were clearly observed in micro-PET images of and showed good retention. Compared with 68Ga-PSMA-617, 68Ga-PSMA-BCH showed comparable tumor uptake and tumor-background ratios. Indicating 68Ga-PSMA-BCH is a promising candidate for prostate cancer imaging and worthy of further clinical investigations.  相似文献   

2.
Urea-based inhibitors of the prostate-specific membrane antigen (PSMA) represent low-molecular-weight pepidomimetics showing the ability to image PSMA-expressing prostate tumors. The highly efficient, acyclic Ga(III) chelator N,N'-bis [2-hydroxy-5-(carboxyethyl)benzyl] ethylenediamine-N,N'- diacetic acid (HBED-CC) was introduced as a lipophilic side chain into the hydrophilic pharmacophore Glu-NH-CO-NH-Lys which was found favorable to interact with the PSMA "active binding site". This report describes the syntheses, in vitro binding analyses, and biodistribution data of the radiogallium labeled PSMA inhibitor Glu-NH-CO-NH-Lys(Ahx)-HBED-CC in comparison to the corresponding DOTA conjugate. The binding properties were analyzed using competitive cell binding and enzyme-based assays followed by internalization experiments. Compared to the DOTA-conjugate, the HBED-CC derivative showed reduced unspecific binding and considerable higher specific internalization in LNCaP cells. The (68)Ga complex of the HBED-CC ligand exhibited higher specificity for PSMA expressing tumor cells resulting in improved in vivo properties. (68)Ga labeled Glu-NH-CO-NH-Lys(Ahx)-HBED-CC showed fast blood and organ clearances, low liver accumulation, and high specific uptake in PSMA expressing organs and tumor. It could be demonstrated that the PET-imaging property of a urea-based PSMA inhibitor could significantly be improved with HBED-CC.  相似文献   

3.
The dual interaction with integrins and neuropilin‐1 receptor is the peculiar feature of iRGD peptide. Hence, in the present study, two iRGD peptide analogs were synthesized with DOTAGA and NODAGA as bifunctional chelator and aminohexanoic acid as a spacer for radiometalation with 68GaCl3. Negatively charged 68Ga‐DOTAGA‐iRGD and neutral 68Ga‐NODAGA‐iRGD radiotracers were investigated through in vitro cell uptake studies and in vivo biodistribution studies. Significant internalization of radiotracers in murine melanoma B16F10 cells was observed during in vitro studies. During in vivo studies, tumor uptake was higher for neutral 68Ga‐NODAGA‐iRGD, but 68Ga‐DOTAGA‐iRGD exhibited better tumor‐to‐blood ratio due to faster blood clearance. High kidney uptake of the two radiotracers was the limitation, which needs to be resolved through modification either in the peptide backbone or spacer/chelator.  相似文献   

4.
BackgroundIn the current study we evaluated 68Ga PSMA PET/ CT to measure local control of bone metastasis in oligometastatic prostate cancer patients treated with SBRT.Materials and methodsAfter the institutional review board approval, a retrospective review of medical records of consecutive prostate cancer patients treated between 2014 and 2018 was conducted. Only medical records of patients that were treated with SBRT for bone metastasis and had pre-and post-SBRT 68Ga PSMA PET/CT scans were included in our study. Data extracted from the medical files included patient-related (age), disease-related (Gleason score, site of metastasis), and treatment-related factors and outcomes.ResultsDuring the study period, a total of 12 patients (15 lesions) were included, with a median age of 73 years. The median follow-up was 26.5 months (range 13–45 months). Median time of 68Ga PSMA PET/ CT follow up was 17.0 months (range 3–39 months). The median pre-treatment PSA was 2 ng/mL (range 0.56–44 ng/mL) vs. post treatment PSA nadir of 0.01 ng/mL (0.01–4.32) with a median time to nadir of 7 months (range, 2–12). Local control was 93% during the follow up period and there was correlation with PS MA avidity on PE T. None patients developed recurrences in the treated bone. None of the patients had grade 3 or more toxicities during follow-up.ConclusionsSBRT is a highly effective and safe method for treatment of prostate cancer bone metastases. More studies are required to determine if SBRT provides greater clinical benefit than standard fractionation for oligometastatic prostate cancer patients. 68Ga PSMA PET/CT should be further investigated for delineation and follow-up.  相似文献   

5.

Purpose

The present study aims at developing and evaluating an urea-based prostate specific membrane antigen (PSMA) inhibitor suitable for labeling with 111In for SPECT and intraoperative applications as well as 68Ga and 64Cu for PET imaging.

Methods

The PSMA-based inhibitor-lysine-urea-glutamate-coupled to the spacer Phe-Phe-D-Lys(suberoyl) and functionalized with the enantiomerically pure prochelator (R)-1-(1-carboxy-3-carbotertbutoxypropyl)-4,7-carbotartbutoxymethyl)-1,4,7-triazacyclononane ((R)-NODAGA(tBu)3), to obtain (R)-NODAGA-Phe-Phe-D-Lys(suberoyl)-Lys-urea-Glu (CC34). CC34 was labeled with 111In, 68Ga and 64Cu. The radioconjugates were further evaluated in vitro and in vivo in LNCaP xenografts by biodistribution and PET studies. Biodistribution studies were also performed with 68Ga-HBED-CC-PSMA (HBED-CC: N,N′-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid) and 111In-PSMA-617 for comparison.

Results

68Ga-CC34, 64Cu-CC34, and 111In-CC34 were prepared in radiochemical purity >95%. 68/natGa-CC34, 64/natCu-CC34, 111/natIn-CC34, 68/natGa-HBED-CC-PSMA, and 111/natIn-PSMA-617 exhibited high affinity for the LNCaP cells, with Kd values of 19.3±2.5 nM, 27.5±2.7 nM, 5.5±0.9 nM, 2.9±0.6 nM and 5.4±0.8 nM, respectively. They revealed comparable internalization profiles with approximately 75% of the total cell associated activity internalized after 3 h of incubation. 68Ga-CC34 showed very high stability after its administration in mice. Tumor uptake of 68Ga-CC34 (14.5±2.9% IA/g) in LNCaP xenografts at 1 h p.i. was comparable to 68Ga-HBED-CC-PSMA (15.8±1.4% IA/g) (P = 0.67). The tumor-to-normal tissue ratios at 1 and 2 h p.i of 68Ga-CC34 were also comparable to 68Ga-HBED-CC-PSMA (P>0.05). Tumor uptake of 111In-CC34 (28.5±2.6% IA/g) at 1 h p.i. was lower than 111In-PSMA-617 (52.1±6.5% IA/g) (P = 0.02). The acquisition of PET-images with 64Cu-CC34 at later time points showed wash-out from the kidneys, while tumor uptake still remained relatively high. This resulted in an increased tumor-to-kidney ratio over time.

Conclusions

68Ga-CC34 is comparable to 68Ga-HBED-CC-PSMA in terms of tumor uptake and tumor to normal tissue ratios. 64Cu-CC34 could enable high contrast imaging of PSMA positive tissues characterized by elevated expression of PSMA or when delayed imaging is required. 64Cu-CC34 is currently being prepared for clinical translation.  相似文献   

6.
Affibody molecules are a class of small (7 kDa) non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET) would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide 68Ga (T1/2 = 67.6 min). Earlier studies have demonstrated that the chemical nature of chelators has a substantial influence on the biodistribution properties of Affibody molecules. To determine an optimal labeling approach, the macrocyclic chelators 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA) and 1-(1,3-carboxypropyl)-1,4,7- triazacyclononane-4,7-diacetic acid (NODAGA) were conjugated to the N-terminus of the synthetic Affibody molecule ZHER2:S1 targeting HER2. Affibody molecules were labeled with 68Ga, and their binding specificity and cellular processing were evaluated. The biodistribution of 68Ga-DOTA-ZHER2:S1, 68Ga-NOTA-ZHER2:S1 and 68Ga-NODAGA-ZHER2:S1, as well as that of their 111In-labeled counterparts, was evaluated in BALB/C nu/nu mice bearing HER2-expressing SKOV3 xenografts. The tumor uptake for 68Ga-DOTA-ZHER2:S1 (17.9±0.7%IA/g) was significantly higher than for both 68Ga-NODAGA-ZHER2:S1 (16.13±0.67%IA/g) and 68Ga-NOTA-ZHER2:S1 (13±3%IA/g) at 2 h after injection. 68Ga-NODAGA-ZHER2:S1 had the highest tumor-to-blood ratio (60±10) in comparison with both 68Ga-DOTA-ZHER2:S1 (28±4) and 68Ga-NOTA-ZHER2:S1 (42±11). The tumor-to-liver ratio was also higher for 68Ga-NODAGA-ZHER2:S1 (7±2) than the DOTA and NOTA conjugates (5.5±0.6 vs.3.3±0.6). The influence of chelator on the biodistribution and targeting properties was less pronounced for 68Ga than for 111In. The results of this study demonstrate that macrocyclic chelators conjugated to the N-terminus have a substantial influence on the biodistribution of HER2-targeting Affibody molecules labeled with 68Ga.This can be utilized to enhance the imaging contrast of PET imaging using Affibody molecules and improve the sensitivity of molecular imaging. The study demonstrated an appreciable difference of chelator influence for 68Ga and 111In.  相似文献   

7.
Since the imaging of β-amyloid (Aβ) plaques in the brain is believed to be a useful tool for the early diagnosis of Alzheimer’s disease (AD), a number of imaging probes to detect Aβ plaques have been developed. Because the radionuclide 68Ga (t1/2 = 68 min) for PET imaging could become an attractive alternative to 11C and 18F, we designed and synthesized a benzofuran derivative conjugated with a 68Ga complex (68Ga-DOTA-C3-BF) as a novel Aβ imaging probe. In an in vitro binding assay, Ga-DOTA-C3-BF showed high affinity for Aβ(1-42) aggregates (Ki = 10.8 nM). The Ga-DOTA-C3-BF clearly stained Aβ plaques in a section of Tg2576 mouse, reflecting the affinity for Aβ(1-42) aggregates in vitro. In a biodistribution study in normal mice, 68Ga-DOTA-C3-BF displayed low initial uptake (0.45% ID/g) in the brain at 2 min post-injection. While improvement of the brain uptake of 68Ga complexes appears to be essential, these results suggest that novel PET imaging probes that include 68Ga as the radionuclide for PET may be feasible.  相似文献   

8.
The clinical utility of gallium 68 (68Ga)-PSMA PET for the diagnosis and management of prostate cancer is driven in part by radioisotope availability and production costs. This study evaluates the equivalence between the two manufacturing processes for 68Ga-PSMA: 68Ga-PSMA-cyclotron (from a solid target) and 68Ga-PSMA-generator. A prospective, single-arm, single-institution non-randomized study was conducted where 16 patients with prostate adenocarcinoma underwent PET/CTs consecutively within 12 to 48 hours with each type of manufactured 68Ga-PSMA between December 2020 and June 2021. The intraclass correlation coefficients suggested acceptable reliability in all lesion parameters (ICC > 0.70). Bland-Altman analysis demonstrated acceptable bias levels for all lesion parameters. Thereby 68Ga-cyclotron (solid target) and 68Ga-generator production methods tagged to the same PSMA ligand resulted in scans which were deemed to be equivalent in detecting PSMA+ lesions in our study. As cyclotron-produced, solid- target 68Ga can be made in large (Ci) quantities, it is a promising tool for future application in 68Ga-PSMA PET scans with the potential to decrease radiotracer production costs and increase isotope availability.  相似文献   

9.
《Médecine Nucléaire》2023,47(4):193-199
Aim of the studyIn this study, we aimed to determine the factors affecting increased glucose metabolism, which is one of the dedifferentiation mechanisms, by using [18F]FDG and [68Ga]Ga-PSMA PET/CT in patients with castration-resistant prostate cancer (CRPC).Materials and methodNinety-three patients with CRPC were included in the study. Gleason score (GS), and total PSA and free PSA levels of the patients were recorded. Patient- and organ-based evaluations were performed according to the lesion uptakes as follows: score 0: PSMA (-) FDG (-), score 1: PSMA (+) FDG (-), score 2: PSMA (+) FDG (+) (FDG < PSMA), score 3: PSMA (+) FDG (+) (FDG = PSMA), score 4: PSMA (+) FDG (+) (FDG > PSMA), and score 5: PSMA (-) FDG (+). scores 1 and 2 were classified as group 1, and scores 3 to 5 were classified as group 2.ResultsThe median age of our patients was 70 (51–88) years. Eighty-eight patients (94.6%) were PSMA-positive, 78 patients (83.8%) were FDG-positive, and 89 patients (95.6%) were or PSMA or FDG positive. When the two groups were compared in terms of patient-based parameters, the median age and GS were found to be significantly higher in group 2. ROC analyses revealed that age and GS were significant in predicting group 2.ConclusionSince glucose metabolism can increase in CRPC patients with advanced age and high GS, we recommend combining [18F]FDG PET/CT with [68Ga]Ga-PSMA PET/CT in routine clinical practice in order to identify this patient subset and refer them to additional therapies.  相似文献   

10.
Bombesin (BBN) is a peptide exhibiting high affinity for the gastrin-releasing peptide receptor (GRPR), which is overexpressed on several types of cancers. Various GRPR antagonists and agonists have been labeled with radiometals for positron emission tomography (PET) imaging of GRPR-positive tumors. However, unfavorable hepatobiliary excretion such as high intestinal activity may prohibit their clinical utility for imaging abdominal cancer. In this study, the modified BBN peptide with a new hydrophilic linker was labeled with 68Ga for PET imaging of GRPR-expressing PC-3 prostate cancer xenograft model. GRPR antagonists, MATBBN (Gly-Gly-Gly-Arg-Asp-Asn-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHCH2CH3) and ATBBN (d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHCH2CH3), were conjugated with 1,4,7-triazacyclononanetriacetic acid (NOTA) and labeled with 68Ga. Partition coefficient and in vitro stability were also determined. GRPR binding affinity of both tracers was investigated by competitive radioligand binding assay. The in vivo receptor targeting potential and pharmacokinetic of 68Ga-NOTA-MATBBN were also evaluated in PC-3 prostate tumor model and compared with those of 68Ga-NOTA-ATBBN. NOTA-conjugated BBN analogs were labeled with 68Ga within 20 min with a decay-corrected yield ranging from 90 to 95 % and a radiochemical purity of more than 98 %. The specific activity of 68Ga-NOTA-MATBBN and 68Ga-NOTA-ATBBN was at least 16.5 and 11.9 GBq/μmol, respectively. The radiotracers were stable in phosphate-buffered saline and human serum. 68Ga-NOTA-MATBBN was more hydrophilic than 68Ga-NOTA-ATBBN, as indicated by their log P values (?2.73 ± 0.02 vs. ?1.20 ± 0.03). The IC50 values of NOTA-ATBBN and NOTA-MATBBN were similar (102.7 ± 1.18 and 124.6 ± 1.21 nM). The accumulation of 68Ga-labeled GRPR antagonists in the subcutaneous PC-3 tumors could be visualized via small animal PET. The tumors were clearly visible, and the tumor uptakes of 68Ga-NOTA-MATBBN and 68Ga-NOTA-ATBBN were determined to be 4.19 ± 0.32, 4.00 ± 0.41, 2.93 ± 0.35 and 4.70 ± 0.40, 4.10 ± 0.30, 3.14 ± 0.30 %ID/g at 30, 60, and 120 min, respectively. There was considerable accumulation and retention of 68Ga-NOTA-ATBBN in the liver and intestines. In contrast, the abdominal area does not have much retention of 68Ga-NOTA-MATBBN. Biodistribution data were in accordance with the PET results, showing that 68Ga-NOTA-MATBBN had more favorable pharmacokinetics and higher tumor to background ratios than those of 68Ga-NOTA-ATBBN. At 1 h postinjection, the tumor to liver and intestine of 68Ga-NOTA-MATBBN were 8.05 ± 0.56 and 21.72 ± 3.47 and the corresponding values of unmodified counterpart were 0.85 ± 0.23 and 3.45 ± 0.43, respectively. GRPR binding specificity was demonstrated by reduced tumor uptake of radiolabeled tracers after coinjection of an excess of unlabeled BBN peptides. 68Ga-NOTA-MATBBN exhibited GRPR-targeting properties both in vitro and in vivo. The favorable characterizations of 68Ga-NOTA-MATBBN such as convenient synthesis, specific GRPR targeting, high tumor uptake, and satisfactory pharmacokinetics warrant its further investigation for clinical cancer imaging.  相似文献   

11.
The synthesis, 68Ga-labeling and in vitro study of the novel tyrosine chelate derivative [68Ga]Ga-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid-4,10-di-(O-butyl)-l-tyrosine ([68Ga]Ga-DO2A-(OBu-l-tyr)2) as a potential tracer for imaging tumor metabolism by positron emission tomography (PET) is presented. This approach combines the biological amino acid transporter targeting properties of l-tyrosine with the outstanding availability of 68GaIII via the 68Ge/68Ga generator. In vitro studies utilizing the F98-glioblastoma cell line revealed specific uptake of [68Ga]Ga-DO2A-(OBu-l-tyr)2 that was comparable to that of the reference O-(2-[18F]fluoroethyl)-l-tyrosine (FET). These promising results indicate a high potential of [68Ga]Ga-DO2A-(OBu-l-tyr)2 for molecular imaging of tumor-driven amino acid uptake by PET.  相似文献   

12.
《MABS-AUSTIN》2013,5(1):96-109
Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.  相似文献   

13.
Pancreatic ductal adenocarcinoma (PDAC) is known to be one of the most lethal cancers. Since the majority of patients are diagnosed at an advanced stage, development of a detection method for PDAC at an earlier stage of disease progression is strongly desirable. Integrin αVβ6 is a promising target for early PDAC detection because its expression increases during precancerous changes. The present study aimed to develop an imaging probe for positron emission tomography (PET) which targets αVβ6 integrin-positive PDAC. We selected A20FMDV2 peptide, which binds specifically to αvβ6 integrin, as a probe scaffold, and 68Ga as a radioisotope. A20FMDV2 peptide has not been previously labeled with 68Ga. A cysteine residue was introduced to the N-terminus of the probe at a site-specific conjugation of maleimide-NOTA (mal-NOTA) chelate. Different numbers of glycine residues were also introduced between cysteine and the A20FMDV2 sequence as a spacer in order to reduce the steric hindrance of the mal-NOTA on the binding probe to αVβ6 integrin. In vitro, the competitive binding assay revealed that probes containing a 6-glycine linker ([natGa]CG6 and [natGa]Ac-CG6) showed high affinity to αVβ6 integrin. Both probes could be labeled by 67/68Ga with high radiochemical yield (>50%) and purity (>98%). On biodistribution analysis, [67Ga]Ac-CG6 showed higher tumor accumulation, faster blood clearance, and lower accumulation in the surrounding organs of pancreas than did [67Ga]CG6. The αVβ6 integrin-positive xenografts were clearly visualized by PET imaging with [68Ga]Ac-CG6. The intratumoral distribution of [68Ga]Ac-CG6 coincided with the αVβ6 integrin-positive regions detected by immunohistochemistry. Thus, [68Ga]Ac-CG6 is a useful peptide probe for the imaging of αVβ6 integrin in PDAC.  相似文献   

14.
Radioligand therapy (RLT) using prostate-specific membrane antigen (PSMA) targeting ligands is an attractive option for the treatment of Prostate cancer (PCa) and its metastases. We report herein a series of radioiodinated glutamate-urea-lysine-phenylalanine derivatives as new PSMA ligands in which l-tyrosine and l-glutamic acid moieties were added to increase hydrophilicity concomitant with improvement of in vivo targeting properties. Compounds 8, 15, 19a/19b and 23a/23b were synthesized and radiolabeled with 125I by iododestannylation. All iodinated compounds displayed high binding affinities toward PSMA (IC50 = 1–13 nM). In vitro cell uptake studies demonstrated that compounds containing an l-tyrosine linker moiety (8, 15 and 19a/19b) showed higher internalization than MIP-1095 and 23a/23b, both without the l-tyrosine linker moiety. Biodistribution studies in mice bearing PC3-PIP and PC3 xenografts showed that [125I]8 and [125I]15 with higher lipophilicity exhibited higher nonspecific accumulations in the liver and intestinal tract, whereas [125I]19a/19b and [125I]23a/23b containing additional glutamic acid moieties showed higher accumulations in the kidney and implanted PC3-PIP (PSMA+) tumors. [125I]23b displayed a promising biodistribution profile with favorable tumor retention, fast clearance from the kidney, and 2–3-fold lower uptake in the liver and blood than that observed for [125I]MIP-1095. [125/131I]23b may serve as an optimal PSMA ligand for radiotherapy treatment of prostate cancer over-expressing PSMA.  相似文献   

15.
Molecular imaging using radiolabeled Tyrosine Kinase Inhibitors (TKI) is a promising strategy for detection and staging of EGFR-positive cancers. A novel analogue of one such TKI, Erlotinib has been developed for PET imaging by derivatizing the parent Erlotinib molecule for conjugation with the bifunctional chelator p-SCN-Bn-NOTA towards radiolabeling with 68Ga. NOTA-Erlotinib conjugate was synthesized and characterized by NMR and ESI-MS techniques. The conjugate was radiolabeled with 68Ga in 95 ± 2% yield, as evidenced by HPLC characterization. The log P value of 68Ga-NOTA-Erlotinib was – (0.6 ± 0.1). The 68Ga-NOTA-Erlotinib conjugate was characterized using its natGa-NOTA-Erlotinib surrogate. Cell viability studies showed that the NOTA-Erlotinib conjugate retained the biological efficacy of the parent Erlotinib molecule. Further, 68Ga-NOTA-Erlotinib exhibited an uptake of 9.8 ± 0.4% in A431 cells which was inhibited by 55.1 ± 0.2% on addition of cold Erlotinib (10 µg) confirming the specificity of the radioconjugate for EGFR expressing cells. In the biodistribution studies carried out in tumor bearing SCID mice, 68Ga-NOTA-Erlotinib conjugate showed moderate tumor accumulation (1.5 ± 0.1% ID/g at 30 min p.i.; 0.7 ± 0.2% ID/g at 1 h p.i.). Hepatobiliary clearance of the radioconjugate was observed. The 68Ga-NOTA-Erlotinib conjugate was found to have high in vivo stability as determined by the metabolite analysis study using urine sample of the Swiss mice injected with the preparation. The overall properties of 68Ga-NOTA-Erlotinib are promising and merit further exploration. To the best of our knowledge, this is the first report on the design of a 68Ga labeled Erlotinib for PET imaging of EGFR and opens avenues for the successful development of 68Ga labeled TKI for imaging of EGFR over-expressing tumors.  相似文献   

16.
PurposeMultiple receptors are co-expressed in many types of cancers. Octreotate (TATE) and Arg-Gly-Asp (RGD) peptides target somatostatin receptor 2 (sstr2) and integrin αvβ3, respectively. We developed and synthesized a heterodimer NOTA-3PEG4-TATE-RGD (3PTATE-RGD) and aimed to investigate its characteristics for dual-targeting sstr2 and integrin αvβ3.MethodsTATE and RGD peptides and 1,4,7-triazacylononane-N’,N’’,N’’’-triacetic acid (NOTA) were linked through a glutamate and polyethylene glycol (PEG) linker, then 3PTATE-RGD was labeled with 68Ga ion. Receptor-binding characteristics and tumor-targeting efficacy were tested in vitro and in vivo using H69 and A549 lung cancer cell lines and tumor-bearing mice models.Results[68Ga]-3PTATE-RGD had comparable sstr2 and integrin αvβ3-binding affinity with monomeric TATE and RGD in cell uptake and PET imaging study, respectively. In the competition study, H69 and A549 tumor uptake of [68Ga]-3PTATE-RGD was completed inhibited in the presence of an excess amount of unlabeled TATE or RGD, respectively. The blocked level didn’t grow when both of TATE and RGD mixture was co-injected with [68Ga]-3PTATE-RGD. The pharmacokinetics of [68Ga]-3PTATE-RGD is comparable with [68Ga]-TATE and [68Ga]-RGD, resulting in a larger application.Conclusion[68Ga]-3PTATE-RGD showed improved and wider tumor-targeting efficacy compared with monomeric TATE and RGD peptides, which warrants its further investigation in detection both of sstr2 and integrin αvβ3-related carcinomas.  相似文献   

17.
Prostate-specific membrane antigen (PSMA) is an important biological target for therapy and diagnosis of prostate cancer. In this study, novel multivalent PSMA inhibitors with glutamate-urea-lysine structures were designed to improve inhibition characteristics. Precursors of the novel inhibitors were prepared from glutamic acid with di-tert-butyl ester. A near-infrared molecular dye, sulfo-Cy5.5, was introduced into the precursors to generate the final PSMA fluorescent inhibitors, compounds 1214, to visualize prostate cancer. Biological behaviors of the inhibitors were evaluated using in vitro inhibition assays, in vivo fluorescent imaging, and ex vivo biodistribution assays. Ki values from inhibition studies indicated that dimeric inhibitor 13 with a glutamine linker showed approximately 3-fold more inhibitory activity than monomeric inhibitor 12. According to other biological studies using a mouse model of prostate cancer, dimeric inhibitor compounds 13 and 14 had higher tumor accumulation than the monomer. However, glutamine-based dimeric inhibitor 13 showed lower liver uptake than dimeric inhibitor 14, which had a benzene structure. Thus, these studies suggest that glutamine-based dimeric inhibitor 13 can be a promising optical inhibitor of prostate cancer.  相似文献   

18.
Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.  相似文献   

19.
Survivin, overexpressed in most cancers, is associated with poor prognosis and resistance to radiation therapy and chemotherapy. Herein, we report the synthesis of three 3-phenethyl-2-indolinone derivatives and their application as in vivo imaging agents for survivin. Of these, 3-(2-(benzo[d][1,3]dioxol-5-yl)-2-oxoethyl)-3-hydroxy-5- iodoindolin-2-one (IPI-1) showed the highest binding affinity (Kd?=?68.3?nM) to recombinant human survivin, as determined by quartz crystal microbalance (QCM). In vitro studies demonstrated that the [125I]IPI-1 binding in survivin-positive MDA-MB-231 cells was significantly higher than that in survivin-negative MCF-10A cells. In addition, uptake of [125I]IPI-1 by MDA-MB-231 cells decreased in a dose-dependent manner in the presence of the high-affinity survivin ligand S12; this is indicative of specific binding of [125I]IPI-1 to cellular survivin protein in vitro. Biodistribution studies in MDA-MB-231 tumor-bearing mice demonstrated the moderate uptake of [125I]IPI-1 in the tumor tissue (1.37%?ID/g) at 30?min that decreased to 0.32%?ID/g at 180?min. Co-injection of S12 (2.5?mg/kg) slightly reduced tumor uptake and the tumor/muscle ratio of [125I]IPI-1. Although further structural modifications are necessary to improve pharmacokinetic properties, our results indicate that PI derivatives may be useful as tumor-imaging probes targeting survivin.  相似文献   

20.
68Ga (T 1/2 = 68 min, a generator-produced nuclide) has great potential as a radionuclide for clinical positron emission tomography (PET). Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting 68Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a chelating site and conjugated aspartic acid peptides of varying lengths. Subsequently, we compared Ga complexes, Ga-DOTA-(Asp)n (n = 2, 5, 8, 11, or 14) with easy-to-handle 67Ga, with the previously described 67Ga-DOTA complex conjugated bisphosphonate, 67Ga-DOTA-Bn-SCN-HBP. After synthesizing DOTA-(Asp)n by a Fmoc-based solid-phase method, complexes were formed with 67Ga, resulting in 67Ga-DOTA-(Asp)n with a radiochemical purity of over 95% after HPLC purification. In hydroxyapatite binding assays, the binding rate of 67Ga-DOTA-(Asp)n increased with the increase in the length of the conjugated aspartate peptide. Moreover, in biodistribution experiments, 67Ga-DOTA-(Asp)8, 67Ga-DOTA-(Asp)11, and 67Ga-DOTA-(Asp)14 showed high accumulation in bone (10.5±1.5, 15.1±2.6, and 12.8±1.7% ID/g, respectively) but were barely observed in other tissues at 60 min after injection. Although bone accumulation of 67Ga-DOTA-(Asp)n was lower than that of 67Ga-DOTA-Bn-SCN-HBP, blood clearance of 67Ga-DOTA-(Asp)n was more rapid. Accordingly, the bone/blood ratios of 67Ga-DOTA-(Asp)11 and 67Ga-DOTA-(Asp)14 were comparable with those of 67Ga-DOTA-Bn-SCN-HBP. In conclusion, these data provide useful insights into the drug design of 68Ga-PET tracers for the diagnosis of bone disorders, such as bone metastases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号