首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citric acid fermentations with Aspergillus niger in stirred tank reactors (500 l and 2.6 m3) were carried out using cane juice, cane molasses and a synthetic medium. Highest yields were obtained with the cane juice and synthetic medium. The rate of stirring had a pronounced influence on the morphology of A. niger.  相似文献   

2.
Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome.  相似文献   

3.
We investigated the expression of Phanerochaete flavido-alba laccase gene in Aspergillus niger and the physical and biochemical properties of the recombinant enzyme (rLac-LPFA) in order to test it for synthetic dye biotransformation. A. niger was able to produce high levels of active recombinant enzyme (30 mgL?1), whose identity was further confirmed by immunodetection using Western blot analysis and N-terminal sequencing. Interestingly, rLac-LPFA exhibited an improved stability at pH (2–9) and organic solvents tested. Furthermore, the percentage of decoloration and biotransformation of synthetic textile dyes, Remazol Brilliant Blue R (RBBR) and Acid Red 299 (NY1), was higher than for the native enzyme. Its high production, simple purification, high activity, stability and ability to transform textile dyes make rLac-LPFA a good candidate for industrial applications.  相似文献   

4.
In this paper is presented a novel and simple synthetic pathway for obtaining new protected and unprotected N-glucosyl amino acids from 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl amine and Fmoc-l-amino acids. Three methodologies were evaluated, using the coupling reagents: N,N,N′,N′-Tetramethyl-O-(benzotriazol-1-yl)uronium tetrafluoroborate, diisopropylcarbodiimide and propylphosphonic acid cyclic anhydride. The obtained products using propylphosphonic acid cyclic anhydride showed less undesired species, easy purification and higher yields than the other two methodologies. Deprotection strategies widely used in solid phase peptide synthesis were applied to develop the synthetic pathway reported and achieve the final products. The protected and unprotected N-glucosyl amino acids were purified using solid phase extraction chromatography and characterized by high performance liquid Chromatography and nuclear magnetic resonance spectroscopy. Different amino acids (Fmoc-l-Asp(OtBu)OH, Fmoc-l-Phe(OH) and Fmoc-l-Lys(Boc)-OH) have been employed to demonstrate the simple and reproducible coupling methodology using propylphosphonic acid cyclic anhydride. The results showed that new protected and unprotected N-glucosyl amino acids can be obtained with high purity and the methodology could be used with any Fmoc-amino acid. The methodology developed could be considered as a synthetic tool for obtaining building blocks for glycopeptide synthesis and potential drugs candidates based on glycoconjugates.  相似文献   

5.
The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.  相似文献   

6.
Extraction of Zinc from Industrial Waste by a Penicillium sp   总被引:2,自引:1,他引:1       下载免费PDF全文
Zinc was extracted from a filter residue of a copper works (58.6% zinc) by a Penicillium sp. isolated from a metal-containing location. By isotachophoresis citric acid was identified as the leaching agent. Citrate was only formed when the leaching substrate was present. This production of citrate was different in several ways from that achieved by Aspergillus niger: glucose was utilized before fructose; the initial concentration of zinc was 50 to 500 times higher than usual in citrate fermentations with A. niger; citrate production stopped when 80 to 90% of the zinc was leached, although sufficient sugar for further synthesis was still present; and in synthetic media citrate production by A. niger needs an acidic environment (pH 2), while the formation of citric acid by Penicillium sp. occurred in a pH range of 7 to 4. Tests with different concentrations of waste material (0.5, 2.5, and 5%) showed that the highest yield of solubilized zinc occurred with a 2.5% substrate (93% zinc extracted after 13 days).  相似文献   

7.
Formate can be directly produced from CO2 and renewable electricity, making it a promising microbial feedstock for sustainable bioproduction. Cupriavidus necator is one of the few biotechnologically-relevant hosts that can grow on formate, but it uses the Calvin cycle, the high ATP cost of which limits biomass and product yields. Here, we redesign C. necator metabolism for formate assimilation via the synthetic, highly ATP-efficient reductive glycine pathway. First, we demonstrate that the upper pathway segment supports glycine biosynthesis from formate. Next, we explore the endogenous route for glycine assimilation and discover a wasteful oxidation-dependent pathway. By integrating glycine biosynthesis and assimilation we are able to replace C. necator's Calvin cycle with the synthetic pathway and achieve formatotrophic growth. We then engineer more efficient glycine metabolism and use short-term evolution to optimize pathway activity. The final growth yield we achieve (2.6 gCDW/mole-formate) nearly matches that of the WT strain using the Calvin Cycle (2.9 gCDW/mole-formate). We expect that further rational and evolutionary optimization will result in a superior formatotrophic C. necator strain, paving the way towards realizing the formate bio-economy.  相似文献   

8.
The Aspergillus niger genome contains four genes that encode proteins exhibiting greater than 30% amino acid sequence identity to the confirmed oxaloacetate acetyl hydrolase (OAH), an enzyme that belongs to the phosphoenolpyruvate mutase/isocitrate lyase superfamily. Previous studies have shown that a mutant A. niger strain lacking the OAH gene does not produce oxalate. To identify the function of the protein sharing the highest amino acid sequence identity with the OAH (An07g08390, Swiss-Prot entry Q2L887, 57% identity), we produced the protein in Escherichia coli and purified it for structural and functional studies. A focused substrate screen was used to determine the catalytic function of An07g08390 as (2R,3S)-dimethylmalate lyase (DMML): kcat = 19.2 s− 1 and Km = 220 μM. DMML also possesses significant OAH activity (kcat = 0.5 s− 1 and Km = 220 μM). DNA array analysis showed that unlike the A. niger oah gene, the DMML encoding gene is subject to catabolite repression. DMML is a key enzyme in bacterial nicotinate catabolism, catalyzing the last of nine enzymatic steps. This pathway does not have a known fungal counterpart. BLAST analysis of the A. niger genome for the presence of a similar pathway revealed the presence of homologs to only some of the pathway enzymes. This and the finding that A. niger does not thrive on nicotinamide as a sole carbon source suggest that the fungal DMML functions in a presently unknown metabolic pathway. The crystal structure of A. niger DMML (in complex with Mg2+ and in complex with Mg2+ and a substrate analog: the gem-diol of 3,3-difluoro-oxaloacetate) was determined for the purpose of identifying structural determinants of substrate recognition and catalysis. Structure-guided site-directed mutants were prepared and evaluated to test the contributions made by key active-site residues. In this article, we report the results in the broader context of the lyase branch of the phosphoenolpyruvate mutase/isocitrate lyase superfamily to provide insight into the evolution of functional diversity.  相似文献   

9.
Aspergillus niger is a recognized workhorse used to produce food processing enzymes because of its extraordinarily high protein-producing capacity. We have developed a new cell surface display system de novo in A. niger using expression elements from generally recognized as safe certified microorganisms. Candida antarctica lipase B (CALB), a widely used hydrolase, was fused to an endogenous cell wall mannoprotein, CwpA, and functionally displayed on the cell surface. Localization of CALB was confirmed by enzymatic assay and immunofluorescence analysis using laser scanning confocal microscopy. After induction by maltose for 45 h, the hydrolytic activity and synthesis activity of A. niger mycelium-surface displayed CALB (AN-CALB) reached 400 and 240 U/g dry cell, respectively. AN-CALB was successfully used as a whole-cell catalyst for the enzymatic production of ethyl esters from a series of fatty acids of different chain lengths and ethanol. In a solvent-free system, AN-CALB showed great synthetic activity and afforded high substrate mole conversions, which amounted to 87 % for ethyl hexanoate after 2 h, 89 % for ethyl laurate after 2 h, and 84 % for ethyl stearate after 3 h. These results suggested that CwpA can act as an efficient anchoring motif for displaying enzyme on A. niger, and AN-CALB is a robust, green, and cost-effective alternative food-grade whole-cell catalyst to commercial lipase.  相似文献   

10.
11.
When grown on a synthetic medium containing Zn2+ and Cd2+ in toxic concentrations and a high concentration of Mg2+, the mycelium of Aspergillus niger ATCC 9029 is pigmented yellow. Four pigments have been chromatographically separated. Two are still unknown; the others are asperenone and asperrubrol. Asperrubrol is the methyl ester of a dimethyl 13-phenyl-3-ol-2,4,6,8,10,12-tridecahexaenoic acid. One of the methyl groups is on C2 and the other is probably at C8. Asperrubrol has been obtained as the enol of the all trans molecule; ketoe nolisation can be obtained by action of heat or alkalis. When grown on the same medium, 13 of 17 strains of A. niger produced asperrubrol and asperenone.  相似文献   

12.
Weeds are the most productive limiting factor, especially in organic farming systems where the uses of synthetic herbicides are not allowed due to their negative impacts. Hence, synthetic herbicides need to be replaced with biological herbicides for weed management. Thus, the present study was designed to evaluate the herbicidal activity of conidia suspensions from Aspergillus niger, Trichoderma asperlium, Trichoderma atroviride, Trichoderma hamatum, Trichoderma harzanium, Trichoderma longibrachatum and Trichoderma viride against Bidens pilosa weed via a series of laboratory and lath-house conditions that laid out in a CRD and RCBD, respectively, with three replications for each bioassay. The results revealed that all fungi, except T. longibrachatum, had significantly reduced seed germination as well as early growth of the target weed compared to the untreated control. The inhibitory effects were measured to be varied among the types of conidia suspensions of fungal species and their level of concentration. The highest rate of inhibition was observed for conidia suspension from A. niger which suppressed with the maximum seed germination inhibitory level (65%) over control. Likewise, the plumule and radicle growth length of the target weed also significantly inhibited by the tested fungi (ranging from 10 to 85% and 34 to 97%) compared to the control, respectively. Based on their efficacy in the laboratory bioassay, the herbicidal potential of selected fungi was further evaluated in pot experiments. In contrarily to laboratory observations, the effect of different fungal conidia suspensions on various growth parameters of the targeted weed was insignificant in the lath-house experiments. In conclusion, the application of A. niger displayed some potential green light to be investigated as a biocontrol agent with promising retarding in the germination and early growth of B. pilosa. Hence, we recommend further investigation of those fungi under field conditions on different coffee weed species.  相似文献   

13.
14.
Here we report the first isolation to homogeneous forms of two glucoamylases from the fungus Penicillium verruculosum and their study in comparison with known glucoamylases from Aspergillus awamori and Aspergillus niger. Genes that encode glucoamylases from P. verruculosum were cloned and expressed in the fungus Penicillium canescens, and the recombinant glucoamylases were obtained with subsequent study of their molecular weights, isoelectric points, optimal temperature and pH values, and stability. The catalytic activities of the recombinant glucoamylases were determined in relation to soluble potato starch. Changes in molecular mass distribution and content of low molecular weight products during starch hydrolysis by glucoamylases from P. verruculosum, A. awamori, and A. niger were studied. An exo-depolymerization mechanism was established to be the pathway for destruction of starch by the glucoamylases.  相似文献   

15.
Aspergillus niger var. awamori has transposable elements that we refer to as Vader and Tan1 (transposon A. niger). Vader was identified by screening unstable nitrate reductase (niaD) mutants for insertions. Four of the isolated niaD mutants were shown to contain a small insertion element. This 437?bp insertion element, Vader, is flanked by 44?bp inverted repeats (IR) and is present in approximately 15 copies in the genomes of two A. niger strains examined. A synthetic 44?bp oligomer of the inverted repeat of Vader has now been used to clone, via the polymerase chain reaction, a 2.3?kb Tan1 element. The Tan1 element has also been isolated from a partial genomic library. Tan1 is present as a single copy in A. niger var. awamori. The Tan1 element has a unique organization: IR-ORF-IR-IR-Vader-IR. The single open reading frame (ORF) (1668?bp) encodes a putative transposase homologous to Fusarium oxysporum Fot1 and Magnaporthe grisea Pot2. Immediately 3′ to the second inverted repeat, which bounds the transposase, is a copy of the AT-rich Vader element. We hypothesize that at some stage the independent Vader element, although inactive by itself, arose from Tan1, resulting in current strains with only one copy of Tan1 providing transposase activity and numerous mobile copies of Vader dispersed in the genome.  相似文献   

16.
The effects of different doses of rock phosphate (RP), sucrose, and (NH4)2SO4 on the solubilization of RP from Araxá and Catal?o (Brazil) by Aspergillus niger, Penicillium canescens, Eupenicillium ludwigii, and Penicillium islandicum were evaluated in a solid-state fermentation (SSF) system with sugarcane bagasse. The factors evaluated were combined following a 23?+?1 factorial design to determine their optimum concentrations. The fitted response surfaces showed that higher doses of RP promoted higher phosphorus (P) solubilization. The addition of sucrose did not have effects on P solubilization in most treatments due to the presence of soluble sugars in the bagasse. Except for A. niger, all the fungi required high (NH4)2SO4 doses to achieve the highest level of P solubilization. Inversely, addition of (NH4)2SO4 was inhibitory to P solubilization by A. niger. Among the fungi tested, A. niger stood out, showing the highest solubilization capacity and for not requiring sucrose or (NH4)2SO4 supplementation. An additional experiment with A. niger showed that the content of soluble P can be increased by adding higher RP doses in the medium. However, P yield decreases with increasing RP doses. In this experiment, the maximal P yield (approximately 60?%) was achieved with the lower RP dose (3?g?L?1). Our results show that SSF can be used to obtain a low cost biofertilizer rich in P combining RP, sugarcane bagasse, and A. niger. Moreover, sugarcane bagasse is a suitable substrate for SSF aiming at RP solubilization, since this residue can supply the C and N necessary for the metabolism of A. niger within a range that favors RP solubilization.  相似文献   

17.
Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production.  相似文献   

18.
The yeast Williopsis mrakii produces a mycocin or yeast killer toxin designated HMK; this toxin exhibits high thermal stability, high pH stability, and a broad spectrum of activity against other yeasts. We describe construction of a synthetic gene for mycocin HMK and heterologous expression of this toxin in Aspergillus niger. Mycocin HMK was fused to a glucoamylase protein carrier, which resulted in secretion of biologically active mycocin into the culture media. A partial purification protocol was developed, and a comparison with native W. mrakii mycocin showed that the heterologously expressed mycocin had similar physiological properties and an almost identical spectrum of biological activity against a number of yeasts isolated from silage and yoghurt. Two food and feed production systems prone to yeast spoilage were used as models to assess the ability of mycocin HMK to act as a biocontrol agent. The onset of aerobic spoilage in mature maize silage was delayed by application of A. niger mycocin HMK on opening because the toxin inhibited growth of the indigenous spoilage yeasts. This helped maintain both higher lactic acid levels and a lower pH. In yoghurt spiked with dairy spoilage yeasts, A. niger mycocin HMK was active at all of the storage temperatures tested at which yeast growth occurred, and there was no resurgence of resistant yeasts. The higher the yeast growth rate, the more effective the killing action of the mycocin. Thus, mycocin HMK has potential applications in controlling both silage spoilage and yoghurt spoilage caused by yeasts.  相似文献   

19.
Aspergillus niger is usually regarded as a beneficial species widely used in biotechnological industry. Obtaining the genome sequence of the widely used aconidial A. niger SH2 strain is of great importance to understand its unusual production capability. In this study we assembled a high-quality genome sequence of A. niger SH2 with approximately 11,517 ORFs. Relatively high proportion of genes enriched for protein expression related FunCat items verify its efficient capacity in protein production. Furthermore, genome-wide comparative analysis between A. niger SH2 and CBS513.88 reveals insights into unique properties of A. niger SH2. A. niger SH2 lacks the gene related with the initiation of asexual sporulation (PrpA), leading to its distinct aconidial phenotype. Frame shift mutations and non-synonymous SNPs in genes of cell wall integrity signaling, β-1,3-glucan synthesis and chitin synthesis influence its cell wall development which is important for its hyphal fragmentation during industrial high-efficiency protein production.  相似文献   

20.
Brush rabbits were immunized with injections prepared from the fungi Aspergillus fumigatus, Aspergillus niger, and Aspergillus repens. A library of synthetic biotinylated oligosaccharides containing the key fragments of antigenic polysaccharides of the fungal cell wall—galctomannan, α- and β-glucans, mannan, and chitin—was used to analyze carbohydrate specificity. The anticarbohydrate antibodies obtained from animals immunized with preparations from A. fumigatus and A. repens predominantly recognized epitopes containing galactofuranoside residues, while the majority of the antibodies against A. niger bound the chitooligosaccharide ligand. These results are the basis for the identification of specific markers required for the development of immunoenzyme test systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号