首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antagonists of type 1 cannabinoid receptors (CB1) may be useful in treating diabetes, hepatic disorders, and fibrosis. Otenabant (1) is a potent and selective CB1 inverse agonist that was under investigation as an anti-obesity agent, but its development was halted once adverse effects associated with another marketed inverse agonist rimonabant (2) became known. Non-tissue selective antagonists of CB1 that have high levels of brain penetration produce adverse effects in a small subset of patients including anxiety, depression and suicidal ideation. Currently, efforts are underway to produce compounds that have limited brain penetration. In this report, novel analogs of 1 are explored to develop and test strategies for peripheralization. The piperidine of 1 is studied as a linker, which is functionalized with alkyl, heteroalkyl, aryl and heteroaryl groups using a connector in the form of an amine, amide, sulfonamide, sulfamide, carbamate, oxime, amidine, or guanidine. We also report more polar replacements for the 4-chlorophenyl group in the 9-position of the purine core, which improve calculated physical properties of the molecules. These studies resulted in compounds such as 75 that are potent inverse agonists of hCB1 with exceptional selectivity for hCB1 over hCB2. SAR studies revealed ways to adjust physical properties to limit brain exposure.  相似文献   

2.
Type 1 cannabinoid receptor (CB1) antagonists might be useful for treating obesity, liver disease, metabolic syndrome, and dyslipidemias. Unfortunately, inhibition of CB1 in the central nervous system (CNS) produces adverse effects, including depression, anxiety and suicidal ideation in some patients, which led to withdrawal of the pyrazole inverse agonist rimonabant (SR141716A) from European markets. Efforts are underway to produce peripherally selective CB1 antagonists to circumvent CNS-associated adverse effects. In this study, novel analogs of rimonabant (1) were explored in which the 1-aminopiperidine group was switched to a 4-aminopiperidine, attached at the 4-amino position (5). The piperidine nitrogen was functionalized with carbamates, amides, and sulfonamides, providing compounds that are potent inverse agonists of hCB1 with good selectivity for hCB1 over hCB2. Select compounds were further studied using in vitro models of brain penetration, oral absorption and metabolic stability. Several compounds were identified with predicted minimal brain penetration and good metabolic stability. In vivo pharmacokinetic testing revealed that inverse agonist 8c is orally bioavailable and has vastly reduced brain penetration compared to rimonabant.  相似文献   

3.
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure–activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents.  相似文献   

4.
FAAH inhibitors offer safety advantages by augmenting the anandamide levels “on demand” to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed “precovalent” FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.  相似文献   

5.
Osteoarthritis (OA) and the associated joint pain are highly prevalent and a leading cause of disability. We have previously reported the identification of a series of purines as selective CB2 agonists and the identification of compound 1 as a clinical candidate for the treatment of joint pain. In this article we describe the further SAR development of the purine scaffold leading to the discovery of compound 6 as a potent, CNS penetrating CB2 agonist with high selectivity for CB2 over CB1 and oral efficacy in animal models of chronic OA pain.  相似文献   

6.
Three indole alkaloids, voacamine (1), 3,6-oxidovoacangine (2), and a new alkaloid, 5-hydroxy-3,6-oxidovoacangine (3), isolated from Voacanga africana were found to exhibit potent cannabinoid CB1 receptor antagonistic activity. This is the first example of CB1 antagonists derived from natural alkaloids.  相似文献   

7.
We report an expansion of the structure-activity relationship (SAR) of a novel series of indole-3-heterocyclic CB1 receptor agonists. Starting from the potent but poorly soluble lead, 1, a rational approach was taken in order to balance solubility, hERG activity and potency while retaining the desired long duration of action within the mouse tail flick test. This led to the discovery of compound 38 which successfully progressed into clinical development.  相似文献   

8.
New oximes short-acting CB1 agonists were explored by the introduction of an internal oxime and polar groups at the C3 alkyl tail of Δ8-THC. The scope of the research was to drastically alter two important physicochemical properties hydrophobicity (log P) and topological surface area (tPSA) of the compound, which play a critical role in tissue distribution and sequestration (depot effect). Key synthesized analogs demonstrated sub-nanomolar affinity for CB1, marked reduction in hydrophobicity (ClogP~2.5–3.5 vs 9.09 of Δ8-THC-DMH), and found to function as either agonists (trans-oximes) or neutral antagonists (cis-oximes) in a cAMP functional assay. All oxime analogs showed comparable affinity at the CB2 receptor, but surprisingly they were found to function as inverse agonists for CB2. In behavioral studies (i.e. analgesia, hypothermia) trans-oxime 8a exhibited a predictable fast onset (~20?min) and short duration of pharmacological action (~180?min), in contrast to the very prolonged duration of Δ8-THC-DMH (>24?h), thus limiting the potential for severe psychotropic side-effects associated with persistent activation of the CB1 receptor. We have conducted 100?ns molecular dynamic (MD) simulations of CB1 complexes with AM11542 (CB1 agonist) and both trans-8a and cis-8b isomeric oximes. These studies revealed that the C3 alkyl tail of cis-8b orientated within the CB1 binding pocket in a manner that triggered a conformational change that stabilized the CB1 receptor at its inactive-state (antagonistic functional effect). In contrast, the trans-8a isomer’s conformation was coincided with that of the AM11542 CB1 agonist-bound structure, stabilizing the CB1 receptor at the active-state (agonistic functional effect). We have selected oxime trans-8a based on its potency for CB1, and favorable pharmacodynamic profile, such as fast onset and predictable duration of pharmacological action, for evaluation in pre-clinical models of anorexia nervosa.  相似文献   

9.
Antagonists (inverse agonists) of the cannabinoid-1 (CB1) receptor showed promise as new therapies for controlling obesity and related metabolic function/liver disease. These agents, representing diverse chemical series, shared the property of brain penetration due to the initial belief that therapeutic benefit was mainly based on brain receptor interaction. However, undesirable CNS-based side effects of the only marketed agent in this class, rimonabant, led to its removal, and termination of the development of other clinical candidates soon followed. Re-evaluation of this approach has focused on neutral or peripherally restricted (PR) antagonists. Supporting these strategies, pharmacological evidence indicates most if not all of the properties of globally acting agents may be captured by molecules with little brain presence. Methodology that can be used to eliminate BBB penetration and the means (in vitro assays, tissue distribution and receptor occupancy determinations, behavioral paradigms) to identify potential agents with little brain presence is discussed. Focus will be on the pharmacology supporting the contention that reported agents are truly peripherally restricted. Notable examples of these types of compounds are: TM38837 (structure not disclosed); AM6545 (8); JD5037 (15b); RTI-12 (19).  相似文献   

10.
Cannabinoid CB2 PET tracers are considered as a promising alternative to PBR/TSPO tracers for the in-vivo imaging of neuroinflammation. We describe here the synthesis and characterization of compound 3, a new potent and brain penetrating CB2 ligand based on an original triazine template. The PET tracer [18F]-dideutero-3 was prepared in a three steps radiosynthesis, and demonstrated significant uptake in rhesus macaque and baboon brain with a maximum SUV of about 0.7–0.9 g/mL, followed by a moderate washout over time.  相似文献   

11.
The CB2 receptor has emerged as a potential target for the treatment of pruritus as well as pain without CB1-mediated side effects. We previously identified 2-pyridone derivatives 1 and 2 as potent CB2 agonists; however, this series of compounds was found to have unacceptable pharmacokinetic profiles with no significant effect in vivo. To improve these profiles, we performed further structural optimization of 1 and 2, which led to the discovery of bicyclic 2-pyridone 18e with improved CB2 affinity and selectivity over CB1. In a mouse pruritus model, 18e inhibited compound 48/80 induced scratching behavior at a dose of 100 mg/kg. In addition, the docking model of 18e with an active-state CB2 homology model indicated the structural basis of its high affinity and selectivity over CB1.  相似文献   

12.
Novel 3-(1H-indol-3-yl)-1,2,4-oxadiazoles and -thiadiazoles were synthesized and found to be potent CB1 cannabinoid receptor agonists. The oral bioavailability of these compounds could be dramatically improved by optimization studies of the side chains attached to the indole and oxadiazole cores, leading to identification of a CB1 receptor agonist with good oral activity in a range of preclinical models of antinociception and antihyperalgesia.  相似文献   

13.
Cannabinoid receptor type 1 (CB1) is mainly expressed in the brain, as well as being expressed in functional relevant concentrations in various peripheral tissues. 1-(4-Chlorophenyl)-3-(3-(6-(pyrrolidin-1-yl)pyridin-2-yl)phenyl)urea (PSNCBAM-1, 1) was developed as a potent allosteric antagonist for CB1 and its oral administration led to reductions in the appetite and body weight of rats. Several analogs of 1 (compounds 2 and 3) were recently identified through a series of structure-activity relationship studies. Herein, we report the synthesis of radiolabeled analogs of these compounds using [11C]COCl2 and an evaluation of their potential as PET ligands for CB1 imaging using in vitro and in vivo techniques. [11C]2 and [11C]3 were successfully synthesized in two steps using [11C]COCl2. The radiochemical yields of [11C]2 and [11C]3 were 17 ± 8% and 20 ± 9% (decay-corrected to the end of bombardment, based on [11C]CO2). The specific activities of [11C]2 and [11C]3 were 42 ± 36 and 37 ± 13 GBq/μmol, respectively. The results of an in vitro binding assay using brown adipose tissue (BAT) homogenate showed that the binding affinity of 2 for CB1 (KD = 15.3 µM) was much higher than that of 3 (KD = 26.0 µM). PET studies with [11C]2 showed a high uptake of radioactivity in BAT, which decreased in animals pretreated with AM281 (a selective antagonist for CB1). In conclusion, [11C]2 may be a useful PET ligand for imaging peripheral CB1 in BAT.  相似文献   

14.
To obtain information on the pharmacophoric requirements of the CB1/CB2 partial agonist BAY 59-3074 we have synthesized a series of new conformationally constrained dibenzofuran (4a-d) and dibenzopyran analogs (5). All constrained analogs exhibited reduced binding affinity at both cannabinoid receptor subtypes, suggesting that planar conformations of these ligands are less favored by both receptors. We also found that 4c, 4d, and 5 exhibited 3- to 12-fold selectivity for hCB2 over rCB1 receptors and may serve as new chemotypes for the development of CB2-selective cannabinergics.  相似文献   

15.
Small molecule agonists of TLR7/8, such as imidazoquinolines, are validated agonists for the treatment of cancer and for use in vaccine adjuvants. Imidazoquinolines have been extensively modified to understand the structure-activity relationship (SAR) at the N1- and C2-positions resulting in the clinical drug imiquimod, resiquimod, and several other highly potent analogues. However, the SAR of the aryl ring has not been fully elucidated in the literature. This initial study examines the SAR of C7-substituted imidazoquinolines. These compounds not only demonstrated that TLR7/8 tolerate changes at the C7-position but can increase potency and change their cytokine profiles. The most notable TLR7/8 agonists developed from this study 5, 8, and 14 which are up to 4-fold and 2-fold more active than resiquimod for TLR8 and/or TLR7, respectively, and up to 100-fold more active than the FDA approved imiquimod for TLR7.  相似文献   

16.
Here we report a structure–activity relationship (SAR) study of analogues of 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol. Our SAR is focused on introduction of various substitutions in the piperazine ring of the hybrid template. The goal behind this study is to delineate the nature of the binding pocket for N-aryl substitution in the piperazine ring by observing the effect of various hydrophobic and other heteroaromatic substitutions on binding affinity (Ki), as measured with tritiated spiperone and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed with the GTPγS binding assay. Compound 8d was the most selective for the D3 receptor in the spiperone binding assay. An interesting similarity in binding affinity was observed between isoquinoline derivative D-301 and the 2-substituted pyridine derivative 8d, suggesting the importance of relative spatial relationships between the N-atom of the ligand and the molecular determinants of the binding pocket in D2/D3 receptors. Functional activity assays demonstrated high potency and selectivity of (+)-8a and (?)-28b (D2/D3 (ratio of EC50): 105 and 202, respectively) for the D3 receptor and both compounds were more selective compared to the reference drug ropinirole (D2/D3 (ratio of EC50): 29.5).  相似文献   

17.
Ligand-based virtual screening led to the discovery of a new class of potent inverse agonists of the human cannabinoid receptor 1, hCB(1), which are selective versus hCB(2). These CB(1) ligands present intriguing departures from a classical CB(1) antagonist pharmacophore. Elements of SAR are discussed in this context.  相似文献   

18.
Herein, the design and synthesis of 10 novel N′-arylidene pyrazole-3-carbohydrazides are described. Compounds were pretended to act as dual agents against diabetes and oxidative stress, two correlated pathologies involved in metabolic syndrome development and progression. The antioxidant capacity was evaluated by means of DPPH and FRAP in vitro assays. It was found that compounds bearing a hydroxyl group at 4-position of the hydrazone moiety are potent antioxidant entities, being compound 3g (a syringaldehyde derivative) the most active compound. In addition, the in vivo hypoglycemic effect of the analogues was determined. With regard to the above, the cinnamaldehyde derivatives showed a scarce biological activity, while the 4-hydroxy analogues showed the higher glycemia reduction at 7 h after administration. Interestingly, the most potent antioxidants 3b and 3g also were of the most active compounds in reducing the plasma glucose, reaching 80% of reduction in the case of 3g. Molecular docking binding poses conducted to a plausible interpretation of the biological outcomes and a possible interaction between a hydroxy group and Asn287 of CB1R was proposed as an important feature for enhancing the observed activity.  相似文献   

19.
The CB1 receptor belongs to the G-protein-coupled receptor superfamily. CB1 antagonism has been considered as a new therapeutic target for the treatment of obesity. In this study, we report the synthesis and in vitro binding affinity assay of some 1,5-diarylpyrazole scaffold compounds. The binding results showed that some of the target compounds had an excellent potency toward the CB1 receptor with IC50 values lying at the nanomole level.  相似文献   

20.
The synthesis and pharmacology of 15 1-deoxy-delta8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-delta8-THC (5), 1-deoxy-delta8-THC (6), 1-deoxy-3-butyl-delta8-THC (7), 1-deoxy-3-hexyl-delta8-THC (8) and a series of 3-(1',1'-dimethylalkyl)-1-deoxy-delta8-THC analogues (2, n = 0-4, 6, 7, where n = the number of carbon atoms in the side chain-2). Three derivatives (17-19) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1',1'-dimethylalkyl)-1-deoxy-delta8-THC analogues (2, n = 1-5) have high affinity (Ki = < 20 nM) for the CB2 receptor. Four of them (2, n = 1-4) also have little affinity for the CB1 receptor (Ki = > 295 nM). 3-(1',1'-Dimethylbutyl)-1-deoxy-delta8-THC (2, n = 2) has very high affinity for the CB2 receptor (Ki = 3.4 +/- 1.0 nM) and little affinity for the CB1 receptor (Ki = 677 +/- 132 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号