首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The benzyloxy substituted small molecules are well-known highly potent monoamine oxidase B inhibitors, but their therapeutic potential against Parkinson’s disease have not been investigated in detail. In this paper, a series of representative benzyloxy substituted derivatives were synthesized and evaluated for MAO-A/B inhibition. In addition, their neuroprotective effects were investigated in 6-OHDA- and rotenone-treated PC12 cells. It was observed that most of the compounds exhibited a marked increase in survival of PC12 cells which treated with the neurotoxins. Among them, 13 exhibited remarkable and balanced neuroprotective potency. The protective effects of 13 against neurotoxins-induced apoptosis were confirmed with flow cytometry and staining methods. Furthermore, 13 also showed good BBB permeability and low toxicity according to in vitro BBB prediction and in vivo acute toxicity test. The results indicated that 13 is an effective and promising candidate to be further developed as disease-modifying drug for Parkinson’s disease therapy.  相似文献   

2.
Antibiotic resistance in bacteria has been an emerging public health problem, thus discovery of novel and effective antibiotics is urgent. A series of novel hybrids of N-aryl pyrrothine-base α-pyrone hybrids was designed, synthesized and evaluated as bacterial RNA polymerase (RNAP) inhibitors. Among them, compound 13c exhibited potent antibacterial activity against antibiotic-resistant S. aureus with the minimum inhibitory concentration (MIC) in the range of 1–4 μg/mL. Moreover, compound 13c exhibited strong inhibitory activity against E.coli RNAP with IC50 value of 16.06 μM, and cytotoxicity in HepG2 cells with IC50 value of 7.04 μM. The molecular docking study further suggested that compound 13c binds to the switch region of bacterial RNAP. In summary, compound 13c is a novel bacterial RNAP inhibitor, and a promising lead compound for further optimization.  相似文献   

3.
Due to the complex biological pathways involved in rheumatoid arthritis, discovery of multi-targeting small molecules provides an effective strategy to achieve better efficacy and lower toxicity. Herein the first Syk/PDGFR-α/c-Kit inhibitors were designed and evaluated. Dihydrofuropyrimidine derivative 13 showed potent inhibitory activity against the three targets. Importantly, compound 13 exhibited good cellular efficacy against fibroblast-like synoviocytes (IC50?=?3.21?μM) and mouse bone marrow-derived mast cells (IC50?=?2.03?μM) and significantly decreased the secretion of inflammatory cytokines. Thus, Syk/PDGFR-α/c-Kit triple inhibitor 13 represented a promising lead compound for the treatment of RA.  相似文献   

4.
PI3K pathway has been heavily studied and is one of the most potential targets for various cancer treatment. Herein, we designed and synthesized a series of novel chromeno[4,3-c]pyrazol-4(2H)-one derivates contained piperazine based on our previous research. They were evaluated for their PI3Kα wild-type and H1047R mutant inhibitory activities and anticancer effects in vitro. Most of these compounds displayed the potential antiproliferative activities against four cancer cell lines (HCT-116, A549, Huh7 and HL60). Among them, Compound 4p revealed the remarkable antiproliferative activity and was selected for further biological evaluation. Compound 4p displayed the potent activity against both PI3Kα wild-type and H1047R mutant, and a certain degree of selectivity for PI3Kα over PI3Kβ, γ and δ, and meanwhile it can remarkable down-regulate the phosphorylation of Akt. In addition, compound 4p was found to induce cell apoptosis via upregulation of Bax and cleaved-caspase 3/9, and downregulation of Bcl-2. The above results suggested that compound 4p could be considered as a promising PI3Kα inhibitor.  相似文献   

5.
A new series of ligustrazine-cinnamon acid derivatives had been designed and synthesized as potential neuro-protective agents. Among the derivatives, 3a exhibited the promising neuroprotective activity (EC50 = 3.68 μM). Moreover, with the deep research of the drug pathway, it (the further mechanism researches) suggested compound 3a could inhibit the apoptosis of injured PC12 cells via blocking the mitochondria apoptosis pathway including up-regulation the ratio of Bcl-2/Bax, down-regulation the expression of cytochrome-c (Cyt-c) and inhibition of the activity of caspase-9 and -3. In addition, the structure-activity relationships (SARs) of novel compounds were also discussed.  相似文献   

6.
A series of 2,4-disubstituted phthalazinones were synthesized and their biological activities, including antiproliferation, inhibition against Aurora kinases and cell cycle effects were evaluated. Among them, N-cyclohexyl-4-((4-(1-methyl-1H-pyrazol-4-yl)-1-oxophthalazin-2(1H)-yl) methyl) benzamide (12c) exhibited the most potent antiproliferation against five carcinoma cell lines (HeLa, A549, HepG2, LoVo and HCT116 cells) with IC50 values in range of 2.2–4.6?μM, while the IC50 value of reference compound VX-680 was 8.5–15.3?μM. Moreover, Aurora kinase assays exhibited that compound 12c was potent inhibitor of AurA and AurB kinase with the IC50 values were 118?±?8.1 and 80?±?4.2?nM, respectively. Molecular docking studies indicated that compound 12c forms better interaction with both AurA and AurB. Furthermore, compound 12c induced G2/M cell cycle arrest in HeLa cells by regulating protein levels of cyclinB1 and cdc2. These results suggested that 12c is a promising pan-Aurora kinase inhibitor for the potential treatment of cancer.  相似文献   

7.
A novel series of benzylpyridinium-based benzoheterocycles (benzimidazole, benzoxazole or benzothiazole) were designed as potent acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The title compounds 4a-q were conveniently synthesized via condensation reaction of 1,2-phenylenediamine, 2-aminophenol or 2-aminothiophenol with pyridin-4-carbalehyde, followed by N-benzylation using various benzyl halides. The results of in vitro biological assays revealed that most of them, especially 4c and 4g, had potent anticholinesterase activity comparable or more potent than reference drug, donepezil. The kinetic study demonstrated that the representative compound 4c inhibits AChE in competitive manner. According to the ligand-enzyme docking simulation, compound 4c occupied the active site at the vicinity of catalytic triad. The compounds 4c and 4g were found to be inhibitors of Aβ self-aggregation as well as AChE-induced Aβ aggregation. Meanwhile, these compounds could significantly protect PC12 cells against H2O2-induced injury and showed no toxicity against HepG2 cells. As multi-targeted structures, compounds 4c and 4g could be considered as promising candidate for further lead developments to treat Alzheimer’s disease.  相似文献   

8.
Twenty-two novel indole-vinyl sulfone derivatives were designed, synthesized and evaluated as tubulin polymerization inhibitors. The physicochemical and drug-likeness properties of all target compounds were predicted by Osiris calculations. All compounds were evaluated for their antiproliferative activities, among them, compound 7f exhibited the most potent activity against a panel of cancer cell lines, which was 2–7 folds more potent than our previously reported compound 4. Especially, 7f displayed about 8-fold improvement of selective index as compared with compound 4, indicating that 7f might have lower toxicity. Besides, 7f inhibited the microtubule polymerization by binding to the colchicine site of tubulin. Further investigations showed that compound 7f effectively disrupted microtubule network, caused cell cycle arrest at G2/M phase and induced cell apoptosis in K562 cells. Moreover, 7f reduced the cell migration and disrupted capillary-like tube formation in HUVEC cells. Importantly, the in vivo anti-tumor activity of 7f was validated in H22 liver cancer xenograft mouse model without apparent toxicity, suggesting that 7f is a promising anti-tubulin agent for cancer therapy.  相似文献   

9.
New thiazolylpyrazolyl coumarin derivatives were synthesized and tested for their anticancer potential in vitro against five different human cell lines, including breast MCF-7, lung A549, prostate PC3, liver HepG2 and normal melanocyte HFB4. Breast carcinoma revealed higher sensitivity towards compounds 7a, 8c, 9b, 9c and 9d with IC50 values ranging from 5.41 to 10.75 μM in comparison to the reference drug doxorubicin (IC50 = 6.73 μM). In addition, no noticeable toxicity was exhibited towards normal cells HFB4. Moreover, in vitro studies of the VEGFR-2 inhibition in human breast cancer MCF-7 cell line for the promising cytotoxic compounds showed that compounds 7a, 8c, 9b, 9c and 9d were potent inhibitors at low micromolar concentrations (IC50 = 0.034–0.582 μM) compared to the reference drug, sorafenib (IC50 = 0.019 μM). Several theoretical and experimental studies were done to reveal the molecular mechanisms that control breast carcinoma metastasis. The mechanistic effectiveness in cell cycle progression, apoptotic induction and gene regulation were assessed for the promising compound 9d due to its remarkable cytotoxic activity against MCF-7 and significant VEGFR-2 inhibition. Flow cytometeric analysis showed that compound 9d induced cell growth cessation at G2/M phase and increased the percentage of cells at pre-G1 phase that stimulates the apoptotic death of MCF-7 cells. Furthermore, real time PCR assay illustrated that compound 9d up regulated p53 gene expression and elevated Bax/Bcl-2 ratio which confirmed the mechanistic pathway of compound 9d. Moreover, the apoptotic induction of breast cancer cells MCF-7 was enhanced effectively through activation of caspases-7 and 9 by compound 9d. On the other hand, a set of in silico methods such as molecular docking, molecular dynamics simulation, QSAR analysis as well as ADMET analysis was performed in order to study the protein-ligand interactions and the relationship between the physicochemical properties and the inhibitory activity of the promising compounds 7a, 8c and 9d. Based on the aforementioned findings, compound 9d could be considered as effective apoptosis modulator and promising lead for future development of new anti-breast cancer agents.  相似文献   

10.
A novel library of coumarin tagged 1,3,4 oxadiazole conjugates was synthesized and evaluated for their antiproliferative activities against MDA-MB-231 and MCF-7 breast cancer cell lines. The evaluation studies revealed that compound 9d was the most potent molecule with an IC50 value of <5?µM against the MCF-7 cell line. Interestingly, compounds 10b and 11a showed a similar trend with lower inhibitory concentration (IC50?=?7.07?µM), in Estrogen Negative (ER?) cells than Estrogen Positive (ER+) cells. Structure–activity relationship (SAR) studies revealed that conjugates bearing benzyl moieties (9b, 9c and 9d) had superior activities compared to their alkyl analogues. The most potent compound 9d showed ~1.4?times more potent activity than tamoxifen against MCF-7 cell line; while the introduction of sulfone unit in compounds 11a, 11b and 11c resulted in significant cytotoxicity against both MCF-7 and MDA-MB-231 cell lines. These results were further supported by docking studies, which revealed that the stronger binding affinity of the synthesized conjugates is due to the presence of sulfone unit attached to the substituted benzyl moiety in their pharmacophores.  相似文献   

11.
A series of 4-arylamido-2-arylaminoprimidines bearing acrylamide pharmacophore were synthesized as potent EGFRT790M/L858R inhibitors among which 9c (IC50?=?0.5872?nM), 9d (IC50?=?2.213?nM), or 9h (IC50?=?12.57?nM) showed more potent anti-EGFRT790M/L858R activity compared with AZD–9291 (IC50?=?20.80?nM) and possessed high SI displaying 307.6, 56.5, or 12.5 for EGFRT790M/L858R over the wild-type respectively. 9h also showed pretty good activity against H 1975 cells with an IC50 of 1.664?μM and exhibited low toxicity against the normal HBE cells (IC50?>?20?μΜ). 9h had moderate selectivity for H 1975 over A 431 (SI?=?7.0) and the other selected cell lines. Morphological staining results further indicated that 9h could promote apoptosis. Hence, 9h was a promising compound for further investigation as a potential EGFRT790M/L858R inhibitor for the treatment of NSCLC.  相似文献   

12.
Aminopeptidase N (APN/CD13), as a zinc-containing ectoenzyme, plays a critical role in the process of tumor angiogenesis, invasion and metastasis. Through the docking-based virtual screening of chemical databases and the further activity assay, we discovered that compound 10c exhibits potent and selective inhibitory ability towards APN. In addition, a series of indoline-2,3-dione derivates have been designed and synthesized as APN inhibitors. The results of preliminary activity evaluation showed that compound 12a (IC50 = 0.074 ± 0.0026 μM) exhibited the best inhibitory activity against APN, which could be used for further anticancer agent research.  相似文献   

13.
A novel series of 9-amino-1,2,3,4-tetrahydroacridine derivatives with 2-fluorobenzoic acid or 3-fluorobenzoic acid moiety were designed, synthesized and evaluated as inhibitors of cholinesterases and aggregation of β-amyloid. In the study target compounds were very potent inhibitors of AChE and BChE. The most promising agents had higher inhibitory potency than the reference drugs which was tacrine. Ultimately, the kinetic assay shows the most active target compound 3c against AChE. Almost all of them were more potent against BChE than AChE. Compound 3c in various concentrations was tested by aggregation experiment. Inhibition of β-amyloid aggregation was 77.32% and 80.43% at 50 µM and 100 µM, respectively. Therefore, compound 3c is a promising agent for the treatment of AD.  相似文献   

14.
To improve the anti-inflammatory activity of desloratadine, we designed and synthesized a series of novel desloratadine derivatives. All compounds were evaluated for their anti-inflammatory and H1 antagonistic activities. Among them, compound 2c showed the strongest H1 antagonistic and anti-inflammatory activity. It also exhibited promising pharmacokinetic profiles and low toxicity. All these results suggest that compound 2c as a novel anti-allergic agent is worthy of further investigation.  相似文献   

15.
A new series of novel Podophyllotoxin-like benzo[b]furo[3,4-e][1,4]diazepin-1-ones possessing structural elements of 4-aza-2,3-didehydropodophyllotoxins with central diazepine ring was designed and synthesized as anti-cancer agents. In initial assessment, the cytotoxic activity of the synthesized compounds was evaluated against three cancer cell lines including MCF-7, PC3 and B16-F10 employing the MTT assay. Some of compounds (12h, 13a, 13c and 14b) showed significant cytotoxic activity. So, we investigated the cytotoxicity of compounds 12h, 13a, 13c and 14b, along with podophyllotoxin as the reference drug in different cancer cell lines including A549, A2780, DU145, HeLa, and normal Huvec cell line. Among these four compounds, 13c showed promising antiproliferative activity against all cancer cells stronger than the other compounds and comparable to reference drug podophyllotoxin in some cancer cells. All these four compounds did not show significant cytotoxicity on normal Huvec cell line. The flow cytometry analysis of the MCF-7, PC3 and A2780 human cancer cell lines treated with 13c showed that 13c, induced apoptosis in the MCF-7, PC3 and A2780 human cancer cell lines, which is in good agreement to its cytotoxic activity as well. Compound 13c did not show significant influence on tubulin assembly and exert its cytotoxic effects via induction of apoptosis and has potent and selective cytotoxic effects in cancer cells.  相似文献   

16.
A series of novel chromeno[4,3-c]pyrazol-4(2H)-one derivates contained sulfonamido were designed and synthesized, and their anticancer effects in vitro was evaluated to develop some new PI3Kα inhibitors. Most of desired compounds exhibited the better antiproliferative activities against four cancer cell lines than that of LY294002. Out of them, compound 4o displayed the potent antiproliferative activity and high selectivity against the PI3Kα protein and it can induce apoptosis of HCT116 in a dose-dependent manner. Western blot assay indicated that compound 4o obviously down-regulated expression of p-Akt (S473). Molecular docking was performed to clarify the possible binding mode between compound 4o and PI3Kα. All these results indicated that compound 4o could be a potential inhibitor of PI3Kα.  相似文献   

17.
Sodium taurocholate cotransport polypeptide (NTCP) plays an important role in the development of hepatitis and acts as a switch to allow hepatitis virus to enter hepatic cells. As the entry receptor protein of hepatitis virus, NTCP is also an effective target for the treatment of hepatocellular carcinoma. Herein, twenty-five benzamide analogues were synthesized based on the virtual screening design and their anti-proliferative activities against HepG2 cells were evaluated in vitro. Compound 35 was found to be promising, with an IC50 value of 2.8 μM. The apoptosis induced by 35 was characterized by the regulation of markers, including an increase in Bax, cleaved-caspase 3, and cleaved-PARP proteins, and a decrease in Bcl-2 protein. Molecular docking and molecular dynamics (MD) simulation confirmed that compound 35 can bind tightly to NTCP. Western blot analysis also showed that NTCP was inhibited. Altogether, these results indicate that compound 35 acts as a novel NTCP inhibitor to induce apoptosis in HepG2 cells.  相似文献   

18.
The first series of nitric oxide donating derivatives of evodiamine were designed and prepared. NO releasing ability of all target derivatives was evaluated in BGC-823, Bel-7402 and L-02 cells. The cytotoxicity was evaluated against three human tumor cell lines (Bel-7402, A549 and BGC-823) and normal human liver cells L-02. The nitrate derivatives 11a and 11b only exhibited moderate activity and furoxan-based derivatives 13ac, 14a and 14b showed promising activity. 13c showed good cytotoxic selectivity between tumor and normal liver cells and was further investigated for its apoptotic properties on human hepatocarcinoma Bel-7402 cells. The molecular mode of action revealed that 13c caused cell-cycle arrest at S phase and induced apoptosis in Bel-7402 cells through mitochondria-related caspase-dependent pathways.  相似文献   

19.
One new eudesmane sesquiterpenoid, 11β-hydroxy-13-chloro-eudesm-5-en-12, 8-olide (1), was isolated from the roots of Inula helenium together with nine eudesmanolides (210) and one germacranolide (11). Their structures were elucidated on the basis of detailed spectroscopic analyses. All isolates were evaluated for their antiproliferative activities against human leukemia stem-like cell line KG1a. Compound 10 exhibited the most potent effect with the IC50 value of 3.36 ± 0.18 μM. A further investigation revealed that compound 10 could significantly induce apoptosis of KG1a cells. Additionally, compound 10 had an obvious effect on the levels of apoptosis-related proteins (Bcl-2, Bax, cytochrome c, caspase 9 and caspase 3), indicating that the antiproliferative effect of compound 10 on KG1a cells might be mediated through a mitochondria-dependent apoptotic pathway.  相似文献   

20.
2,3-Indolinedione derivatives have been identified as a novel class of promising agents for cancer treatment. In this study, eighteen 2,3-indolinedione derivatives were designed and synthesized, and their anticancer activities against mantle cell lymphoma (MCL) cells were evaluated. Most of them exhibited significant antiproliferative activity against the tested cell lines, and compound K5 was the most potent (MCL cellular IC50 = 0.4–0.7 μM). Further, compound K5 could induce cell apoptosis and cell cycle arrest in G2/M phase. Additionally, the results of drug-likeness analysis demonstrated that these novel 2,3-indolinedione derivatives could have potential as novel treatment strategies for MCL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号