首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In organ transplantation, T cell-mediated immune responses play a key role in the rejection of allografts. Janus kinase 3 (JAK3) is specifically expressed in hematopoietic cells and associated with regulation of T cell development via interleukin-2 signaling pathway. Here, we designed novel 4,6-diaminonicotinamide derivatives as immunomodulators targeting JAK3 for prevention of transplant rejection. Our optimization of C4- and C6-substituents and docking calculations to JAK3 protein confirmed that the 4,6-diaminonicotinamide scaffold resulted in potent inhibition of JAK3. We also investigated avoidance of human ether-a-go-go related gene (hERG) inhibitory activity. Selected compound 28 in combination with tacrolimus prevented allograft rejection in a rat heterotopic cardiac transplantation model.  相似文献   

2.
We designed a series of anilino-indoylmaleimides based on structural elements from literature JAK3 inhibitors 3 and 4, and our lead 5. These new compounds were tested as inhibitors of JAKs 1, 2 and 3 and TYK2 for therapeutic intervention in rheumatoid arthritis (RA). Our requirements, based on current scientific rationale for optimum efficacy against RA with reduced side effects, was for potent, mixed JAK1 and 3 inhibition, and selectivity over JAK2. Our efforts yielded a potent JAK3 inhibitor 11d and its eutomer 11e. These compounds were highly selective for inhibition of JAK3 over JAK2 and TYK. The compounds displayed only modest JAK1 inhibition.  相似文献   

3.
JAK1 and JAK3 are recurrently mutated in acute lymphoblastic leukemia. These tyrosine kinases associate with heterodimeric cytokine receptors such as IL-7 receptor or IL-9 receptor, in which JAK1 is appended to the specific chain, and JAK3 is appended to the common gamma chain. Here, we studied the role of these receptor complexes in mediating the oncogenic activity of JAK3 mutants. Although JAK3V674A and the majority of other JAK3 mutants needed to bind to a functional cytokine receptor complex to constitutively activate STAT5, JAK3L857P was unexpectedly found to not depend on such receptor complexes for its activity, which was induced without receptor or JAK1 co-expression. Introducing a mutation in the FERM domain that abolished JAK-receptor interaction did not affect JAK3L857P activity, whereas it inhibited the other receptor-dependent mutants. The same cytokine receptor independence as for JAK3L857P was observed for homologous Leu857 mutations of JAK1 and JAK2 and for JAK3L875H. This different cytokine receptor requirement correlated with different functional properties in vivo and with distinct sensitivity to JAK inhibitors. Transduction of murine hematopoietic cells with JAK3V674A led homogenously to lymphoblastic leukemias in BALB/c mice. In contrast, transduction with JAK3L857P induced various types of lymphoid and myeloid leukemias. Moreover, ruxolitinib, which preferentially blocks JAK1 and JAK2, abolished the proliferation of cells transformed by the receptor-dependent JAK3V674A, yet proved much less potent on cells expressing JAK3L857P. These particular cells were, in contrast, more sensitive to JAK3-specific inhibitors. Altogether, our results showed that different JAK3 mutations induce constitutive activation through distinct mechanisms, pointing to specific therapeutic perspectives.  相似文献   

4.
The Janus kinase (JAK) family of tyrosine kinases has been proven to provide targeted immune modulation. Orally available JAK inhibitors have been used for the treatment of immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). Here, we report the design, synthesis and biological evaluation of 4-(4,5,6,7-tetrahydrofuro[3,2-c]pyridin-2-yl) pyrimidin-2-amino derivatives as JAK inhibitors. Systematic structure–activity relationship studies led to the discovery of compound 7j, which strongly inhibited the four isoforms of JAK kinases. Molecular modeling rationalized the importance of cyanoacetyl and phenylmorpholine moieties. The in vivo investigation indicated that compound 7j possessed favorable pharmacokinetic properties and displayed slightly better anti-inflammatory efficacy than tofacitinib at the same dosage. Accordingly, compound 7j was advanced into preclinical development.  相似文献   

5.
We report the discovery of a novel series of ATP-competitive Janus kinase 3 (JAK3) inhibitors based on the 5H-pyrrolo[2,3-b]pyrazine scaffold. The initial leads in this series, compounds 1a and 1h, showed promising potencies, but a lack of selectivity against other isoforms in the JAK family. Computational and crystallographic analysis suggested that the phenyl ether moiety possessed a favorable vector to achieve selectivity. Exploration of this vector resulted in the identification of 12b and 12d, as potent JAK3 inhibitors, demonstrating improved JAK family and kinase selectivity.  相似文献   

6.
A new class of Janus kinase (JAK) inhibitors was discovered using a rationally designed pyrrolo[1,2-b]pyridazine-3-carboxamide scaffold. Preliminary studies identified (R)-(2,2-dimethylcyclopentyl)amine as a preferred C4 substituent on the pyrrolopyridazine core (3b). Incorporation of amino group to 3-position of the cyclopentane ring resulted in a series of JAK3 inhibitors (4g4j) that potently inhibited IFNγ production in an IL2-induced whole blood assay and displayed high functional selectivity for JAK3–JAK1 pathway relative to JAK2. Further modifications led to the discovery of an orally bioavailable (2-fluoro-2-methylcyclopentyl)amino analogue 5g which is a nanomolar inhibitor of both JAK3 and TYK2, functionally selective for the JAK3–JAK1 pathway versus JAK2, and active in a human whole blood assay.  相似文献   

7.
A series of 3(R)-aminopyrrolidine derivatives were designed and synthesized for JAK1-selective inhibitors through the modification of tofacitinib’s core structure, (3R,4R)-3-amino-4-methylpiperidine. From the new core structures, we selected (R)-N-methyl-N-(pyrrolidin-3-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine as a scaffold for further SAR studies. From biochemical enzyme assays and liver microsomal stability tests, (R)-3-(3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)pyrrolidin-1-yl)-3-oxopropanenitrile (6) was chosen for further in vivo test through oral administration. Compound 6 showed improved selectivity for JAK1 compared to that of tofacitinib (IC50 11, 2.4?×?102, 2.8?×?103, and 1.1?×?102?nM for JAK1, JAK2, JAK3, and TYK2, respectively). In CIA and AIA model tests, compound 6 exhibited similar efficacy to tofacitinib citrate.  相似文献   

8.
The discovery of a novel series of pyrrolopyrazines as JAK inhibitors with comparable enzyme and cellular activity to tofacitinib is described. The series was identified using a scaffold hopping approach aided by structure based drug design using principles of intramolecular hydrogen bonding for conformational restriction and targeting specific pockets for modulating kinase activity.  相似文献   

9.
A series of novel 3,6-di-substituted or 3-substituted pyrazolo[1,5-a]pyrimidines were prepared via a microwave-assisted approach that generated a broad array of derivatives in good yields (20–93%, ave. = 59%). The straightforward synthesis involved sequential treatment of commercially-available acetonitrile derivatives with DMF-dimethylacetal (120 °C, 20 min), followed by treatment with NH2NH2·HBr (120 °C, 20 min), and 1,1,3,3-tetramethoxypropane or 2-aryl-substituted malondialdehdyes (120 °C, 20 min). Compounds were screened for antimitotic activities against MCF7 breast cancer and/or A2780 ovarian cancer cell lines in vitro. The most active compounds exhibited EC50 values ranging from 0.5 to 4.3 μM, with the 3-(4-(trifluoromethyl)phenyl)-6-[4-(2-(piperidin-1-yl)ethoxy]phenyl analogue (34e) and the 3-(2-fluorophenyl)-6-[4-(2-(4-methylpiperizin-1-yl)ethoxy]phenyl analogue (35a) being two to three fold more active than Compound C (Dorsomorphin) in A2780 and MCF7 assays, respectively. Importantly, a monosubstituted 3-(benzothiazol-2-yl) derivative (13) was equipotent with the more synthetically challenging 3,6-disubstituted derivatives (34ae and 35ae), and exhibited a promising and unique selectivity profile when screened against a panel consisting of 403 protein kinases (Kinomescan™ selectivity score = 0.005, Kd = 0.55 ± 0.055 μM and 0.410 ± 0.20 μM for JAK1 JH2 pseudokinase and VPS34, respectively).  相似文献   

10.
Synthesis of the novel ligand ferrocenyliminophosphine [(η5-C5H5)Fe{(η5-C5H4)CHN(C6H4-2-PPh2)}] (1, L) and studies on its complexation properties with mercury (II) are reported. Halogen-bridged binuclear mercury (II) complexes [HgX(μ-X)L]2 (X = Cl (2a), Br (2b)) and a mononuclear mercury (II) complex HgCl2L2 (4a) have been obtained under different reaction conditions. In both cases, the ferrocenyliminophosphine acts as a P-monodentate ligand and the imino nitrogen does not participate in coordination to mercury (II). All the new compounds 1, 2a, 2b and 4a were characterized by elemental analysis, 1H NMR, 31P NMR and IR spectra. In addition, structures of 2a and 4a have been determined by X-ray single-crystal analysis.  相似文献   

11.
Members of the Janus kinase (JAK) family are potential therapeutic targets. Abnormal signaling by mutant JAK2 is related to hematological malignancy, such as myeloproliferative neoplasms (MPNs), and tyrosine kinase inhibitor (TKI)-resistance in non-small cell lung cancer (NSCLC). We discovered a potent and highly selective inhibitor of JAK2 over JAK1 and -3 based on the structure of 4-(2,5-triazole)-pyrrolopyrimidine. Among all triazole compounds tested, 2,5-triazole regioisomers more effectively inhibited JAK2 kinase activity than isomers with substitutions of various alkyl groups at the R2 position, except for methyl-substituted 1,5-triazole, which was more potent than the corresponding 1,4- and 2,5-triazoles. None of the synthesized 1,4-isomers inhibited all three JAK family members. Compounds with phenyl or tolyl group substituents at the R1 position were completely inactive compared with the corresponding analogues with a methyl substituted at the R1 position. As a result of this structure–activity relationship, 54, which is substituted with a cyclopropylmethyl moiety, exhibited significant inhibitory activity and selectivity (IC50 = 41.9 nM, fold selectivity JAK1/2 10.6 and JAK3/2 58.1). Compound 54 also exhibited an equivalent inhibition of wild type JAK2 and the V617F mutant. Moreover, 54 inhibited the proliferation of HEL 92.1.7 cells, which carry JAK2 V617F, and gefitinib-resistant HCC827 cells. Compound 54 also suppressed STAT3 phosphorylation at Y705.  相似文献   

12.
JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5′-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications.  相似文献   

13.
Human African trypanosomiasis (HAT) is a lethal, vector-borne disease caused by the parasite Trypanosoma brucei. Therapeutic strategies for this neglected tropical disease suffer from disadvantages such as toxicity, high cost, and emerging resistance. Therefore, new drugs with novel modes of action are needed. We screened cultured T. brucei against a focused kinase inhibitor library to identify promising bioactive compounds. Among the ten hits identified from the phenotypic screen, AZ960 emerged as the most promising compound with potent antiparasitic activity (IC50 = 120 nM) and was shown to be a selective inhibitor of an essential gene product, T. brucei extracellular signal-regulated kinase 8 (TbERK8). We report that AZ960 has a Ki of 1.25 μM for TbERK8 and demonstrate its utility in establishing TbERK8 as a potentially druggable target in T. brucei.  相似文献   

14.
We hereby disclose the discovery of inhibitors of CaMKII (7h and 7i) that are highly potent in rat ventricular myocytes, selective against hERG and other off-target kinases, while possessing good CaMKII tissue isoform selectivity (cardiac γ/δ vs. neuronal α/β). In vitro and in vivo ADME/PK studies demonstrated the suitability of these CaMKII inhibitors for PO (7h rat F?=?73%) and IV pharmacological studies.  相似文献   

15.
The synthesis and SAR studies of a novel N-aryl pyridinone class of p38 kinase inhibitors are described. Systematic structural modifications to the HTS lead, 5, led to the identification of (−)-4a as a clinical candidate for the treatment of inflammatory diseases. Additionally, the chiral synthesis and properties of (−)-4a are described.  相似文献   

16.
A series of substituted 2-(aminoheteroaryl)-thiazole-5-carboxamide analogs have been synthesized as novel, potent inhibitors of the Src-family kinase p56Lck. Among them, compound 2 displayed superior in vitro potency and excellent in vivo efficacy.  相似文献   

17.
Novel acetyl-CoA carboxylase 2 (ACC2) selective inhibitors were identified by the conversion of the alkyne unit of A-908292 to the olefin linker. Modification of the center and left part of the lead compound 1b improved the ACC2 inhibitory activity and CYP450 inhibition profile, and afforded a highly selective ACC2 inhibitor 2e which showed in vivo efficacy in C57BL/6 mice.  相似文献   

18.
Human aldehyde dehydrogenases (ALDHs) comprise a family of 17 homologous enzymes that metabolize different biogenic and exogenic aldehydes. To date, there are relatively few general ALDH inhibitors that can be used to probe the contribution of this class of enzymes to particular metabolic pathways. Here, we report the discovery of a general class of ALDH inhibitors with a common mechanism of action. The combined data from kinetic studies, mass spectrometric measurements, and crystallographic analyses demonstrate that these inhibitors undergo an enzyme-mediated β-elimination reaction generating a vinyl ketone intermediate that covalently modifies the active site cysteine residue present in these enzymes. The studies described here can provide the basis for rational approach to design ALDH isoenzyme-specific inhibitors as research tools and perhaps as drugs, to address diseases such as cancer where increased ALDH activity is associated with a cellular phenotype.  相似文献   

19.
The clinical efficacy of multiple kinase inhibitors has caught the interest of Pharmaceutical and Biotech researchers to develop potential drugs with multi-kinase inhibitory activity for complex diseases. In the present work, we attempted to identify dual inhibitors of spleen tyrosine kinase (Syk) and janus kinase 3 (JAK3), keys players in immune signaling, by developing ideal pharmacophores integrating Ligand-based pharmacophore models (LBPMs) and Structure-based pharmacophore models (SBPMs), thereby projecting the optimum pharmacophoric required for inhibition of both the kinases. The four point LBPM; ADPR.14 suggested the presence of one hydrogen bond acceptor, one hydrogen bond donor, one positive ionizable, and one ring aromatic feature for Syk inhibitory activity and AADH.54 proposed the necessity of two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature for JAK3 inhibitory activity. To our interest, SBPMs identified additional ring aromatic features required for inhibition of both the kinases. For Syk inhibitory activity, the hydrogen bond acceptor feature indicated by LBPM was devoid of forming hydrogen bonding interaction with the hinge region amino acid residue (Ala451). Thus merging the information revealed by both LBPMs and SBPMs, ideal pharmacophore models i.e. ADPRR.14 (Syk) and AADHR.54 (JAK3) were generated. These models after rigorous statistical validation were used for screening of Asinex database. The systematic virtual screening protocol, including pharmacophore and docking-based screening, ADME property, and MM-GBSA energy calculations, retrieved final 10 hits as dual inhibitors of Syk and JAK3. Final 10 hits thus obtained can aid in the development of potential therapeutic agents for autoimmune disorders. Also the top two hits were evaluated against both the enzymes.  相似文献   

20.
The reaction between CuX2 (X=ClO4, NO3, Cl, Br and CH3COO) and excess of tris(pyrazol-1-yl)methane ligands L (L=CH(pz)3, CH(4-Mepz)3, CH(3,5-Me2pz)3, CH(3,4,5-Me3pz)3 or CH(3-Mepz)2(5-Mepz)) yields [CuX2(L)], [{CuX2}3(L2)2] or [Cu(L2)]X2-type complexes. The ligand to metal ratio is dependent on the number and disposition of the Me substituents on the azole-type ligand and mainly on the nature of the counter-ion X. All complexes have been characterized in the solid state as well as in solution (IR and UV spectra, and conductivity determinations). The solid-state structures of [Cu{(3,5-Me2pz)3CH}2](NO3)2, [Cu{(3,5-Me2pz)3CH}2](ClO4)2·0.5H2O, [Cu{(3,4,5-Me3pz)3CH}2](NO3)2·H2O, [Cu{(4-Mepz)3CH}2]Br2·3H2O have been determined by single crystal X-ray studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号