首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bromodomains (BRDs) recognize acetyl-lysine modified histone tails mediating epigenetic processes. BRD4, a protein containing two bromodomains, has emerged as an attractive therapeutic target for several types of cancer as well as inflammatory diseases. Using a fragment-based in silico screening approach, we identified two small molecules that bind to the first bromodomain of BRD4 with low-micromolar affinity and favorable ligand efficiency (0.37 kcal/mol per non-hydrogen atom), selectively over other families of bromodomains. Notably, the hit rate of the fragment-based in silico approach is about 10% as only 24 putative inhibitors, from an initial library of about 9 million molecules, were tested in vitro.  相似文献   

2.
A novel approach was conducted for fragment-based lead discovery and applied to renin inhibitors. The biochemical screening of a fragment library against renin provided the hit fragment which showed a characteristic interaction pattern with the target protein. The hit fragment bound only to the S1, S3, and S3SP (S3 subpocket) sites without any interactions with the catalytic aspartate residues (Asp32 and Asp215 (pepsin numbering)). Prior to making chemical modifications to the hit fragment, we first identified its essential binding sites by utilizing the hit fragment’s substructures. Second, we created a new and smaller scaffold, which better occupied the identified essential S3 and S3SP sites, by utilizing library synthesis with high-throughput chemistry. We then revisited the S1 site and efficiently explored a good building block attaching to the scaffold with library synthesis. In the library syntheses, the binding modes of each pivotal compound were determined and confirmed by X-ray crystallography and the library was strategically designed by structure-based computational approach not only to obtain a more active compound but also to obtain informative Structure Activity Relationship (SAR). As a result, we obtained a lead compound offering synthetic accessibility as well as the improved in vitro ADMET profiles. The fragments and compounds possessing a characteristic interaction pattern provided new structural insights into renin’s active site and the potential to create a new generation of renin inhibitors. In addition, we demonstrated our FBDD strategy integrating highly sensitive biochemical assay, X-ray crystallography, and high-throughput synthesis and in silico library design aimed at fragment morphing at the initial stage was effective to elucidate a pocket profile and a promising lead compound.  相似文献   

3.
The fluorescence-based thermal shift assay is a general method for identification of inhibitors of target proteins from compound libraries. Using an environmentally sensitive fluorescent dye to monitor protein thermal unfolding, the ligand-binding affinity can be assessed from the shift of the unfolding temperature (Delta Tm) obtained in the presence of ligands relative to that obtained in the absence of ligands. In this article, we report that the thermal shift assay can be conducted in an inexpensive, commercially available device for temperature control and fluorescence detection. The binding affinities obtained from thermal shift assays are compared with the binding affinities measured by isothermal titration calorimetry and with the IC(50) values from enzymatic assays. The potential pitfalls in the data analysis of thermal shift assays are also discussed.  相似文献   

4.
With the goal of discovering more selective anti-inflammatory drugs, than COX inhibitors, to attenuate prostaglandin signaling, a fragment-based screen of hematopoietic prostaglandin D synthase was performed. The 76 crystallographic hits were sorted into similar groups, with the 3-cyano-quinoline 1a (FP IC50?=?220,000?nM, LE?=?0.43) being a potent member of the 6,6-fused heterocyclic cluster. Employing SAR insights gained from structural comparisons of other H-PGDS fragment binding mode clusters, the initial hit 1a was converted into the 70-fold more potent quinoline 1d (IC50?=?3,100?nM, LE?=?0.49). A systematic substitution of the amine moiety of 1d, utilizing structural information and array chemistry, with modifications to improve inhibitor stability, resulted in the identification of the 300-fold more active H-PGDS inhibitor tool compound 1bv (IC50?=?9.9?nM, LE?=?0.42). This selective inhibitor exhibited good murine pharmacokinetics, dose-dependently attenuated PGD2 production in a mast cell degranulation assay and should be suitable to further explore H-PGDS biology.  相似文献   

5.
【目的】细胞热漂移测定(cell thermal shift assay, CETSA)技术是一种检测细胞内药物(配体)和蛋白质(靶标)相互作用的技术,原理是当蛋白质结合药物后,其热稳定性会发生变化,通过测定这种变化去鉴定药物和蛋白之间的相互作用。本研究以治疗多发性骨髓瘤的靶向药帕比司他(panobinostat)为例,建立基于蛋白印迹杂交(Western blotting)和CETSA技术的药物靶蛋白鉴定的标准操作流程。【方法】首先用药物panobinostat处理培养的K562细胞,然后加热处理细胞、裂解细胞及提取可溶性蛋白,以及用抗靶蛋白的抗体经Western blotting定量可溶性蛋白。【结果】经Western blotting定量及曲线拟合,成功得到3个蛋白——组蛋白去乙酰化酶(histone deacetylase,HDAC1)、人突触蛋白(humansyntaxin-4,STX4)以及四三肽重复结构域(tetratricopeptiderepeat domain38,TTC38)随温度变化的热熔解曲线和恒定温度条件下的药物剂量反应曲线。【结论】HDAC1、STX4及T...  相似文献   

6.
Glyoxalase I (GLO1) is a homodimeric Zn2+-metalloenzyme that catalyses the transformation of methylglyoxal (MG) to d-lacate through the intermediate S-d-lactoylglutathione. Growing evidence indicates that GLO1 has been identified as a potential target for the treatment cancer and other diseases. Various inhibitors of GLO1 have been discovered or developed over the past several decades including natural or natural product-based inhibitors, GSH-based inhibitors, non-GSH-based inhibitors, etc. The aim of this review is to summarize recent achievements of concerning discovery, design strategies, as well as pharmacological aspects of GLO1 inhibitors with the target of promoting their development toward clinical application.  相似文献   

7.
We propose a novel strategy for selective targeting of essential pathogen proteins that contain sizable indels (insertions/deletions) in their sequences compared with their host orthologues. This approach has been tested on elongation factor-1alpha (EF-1alpha) from the protozoan pathogen Leishmania donovani. Leishmania EF-1alpha is 82% identical to the corresponding human orthologue, but possesses a 12 aminoacid sequence deletion compared with human EF-1alpha. We used this indel-differentiated region to design small molecules that selectively bind to leishmania EF-1alpha and not to the human protein. Three unrelated molecules were identified with the capacity to inhibit protein synthesis in leishmania by up to 75% while exhibiting no effect on human protein translation. These candidates may serve as prototypes for future development of antiprotozoan therapeutics. More generally, these findings provide a basis for a novel drug design platform. This platform targets essential pathogen proteins that are highly conserved across species, and consequently would not typically be considered to be conventional drug targets. We anticipate that such indel-directed targeting of essential proteins in microbial pathogens may help address the growing problem of antibiotic resistance.  相似文献   

8.
It is generally recognized that drug discovery and development are very time and resources consuming processes. There is an ever growing effort to apply computational power to the combined chemical and biological space in order to streamline drug discovery, design, development and optimization. In biomedical arena, computer-aided or in silico design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, optimize the absorption, distribution, metabolism, excretion and toxicity profile and avoid safety issues. Commonly used computational approaches include ligand-based drug design (pharmacophore, a 3D spatial arrangement of chemical features essential for biological activity), structure-based drug design (drug-target docking), and quantitative structure-activity and quantitative structure-property relationships. Regulatory agencies as well as pharmaceutical industry are actively involved in development of computational tools that will improve effectiveness and efficiency of drug discovery and development process, decrease use of animals, and increase predictability. It is expected that the power of CADDD will grow as the technology continues to evolve.  相似文献   

9.
Genetic alteration of one or more components of the p16(INK4A)-CDK4,6/cyclin D-retinoblastoma pathway is found in more than half of all human cancers. Therefore, CDK4 is an attractive target for the development of a novel anticancer agent. However, it is difficult to make CDK4-specific inhibitors that do not possess activity for other kinases, especially CDK2, because the CDK family has high structural homology. The three-dimensional structure of CDK2, particularly that bound with the inhibitor, has provided useful information for the synthesis of CDK2-specific inhibitors. The same approach used to make CDK4-specific inhibitors was hindered by the failure to obtain a crystal structure of CDK4. To overcome this problem, we synthesized a CDK4 mimic CDK2 protein in which the ATP binding pocket of CDK2 was replaced with that of CDK4. This CDK4 mimic CDK2 was crystallized both in the free and inhibitor-bound form. The structural information thus obtained was found to be useful for synthesis of a CDK4-specific inhibitor that does not have substantial CDK2 activity. Namely, the data suggest that CDK4 has additional space that will accommodate a large substituent such as the CDK4 selective inhibitor. Inhibitors designed to bind into this large cavity should be selective for CDK4 without having substantial CDK2 activity. This design principle was confirmed in the x-ray crystal structure of the CDK4 mimic CDK2 with a new CDK4 selective inhibitor bound.  相似文献   

10.
Herein we describe the design of a novel series of ATP competitive B-Raf inhibitors via structure-based methods. These 3-N-methylquinazoline-4(3H)-one based inhibitors exhibit both excellent cellular potency and striking B-Raf selectivity. Optimization led to the identification of compound 16, a potent, selective and orally available agent with excellent pharmacokinetic properties and robust tumor growth inhibition in xenograft studies. Our work also demonstrates that by replacing an aryl amide with an aryl sulfonamide, a multikinase inhibitor such as AZ-628, can be converted to a selective B-Raf inhibitor, a finding that should have broad application in kinase drug discovery.  相似文献   

11.
Aberrant activation of NLRP3 inflammasome is present in a subset of acute and chronic inflammatory diseases. The NLRP3 inflammasome has been recognized as an attractive therapeutic target for developing novel and specific anti-inflammatory inhibitors. Cellular structure-activity relationship-guided optimization resulted in the identification of 4-oxo-2-thioxo-thiazolidinone derivative 9 as a selective and direct small-molecule inhibitor of NLRP3 with IC50 of 2.4 μM, possessing favorable ex vivo and in vivo pharmacokinetic properties. Compound 9 may represent a lead for the development of anti-inflammatory therapeutics for treating NLRP3-driven diseases.  相似文献   

12.
Microtubule affinity-regulating kinase 4 (MARK4) has recently been identified as a potential drug target for several complex diseases including cancer, diabetes and neurodegenerative disorders. Inhibition of MARK4 activity is an appealing therapeutic option to treat such diseases. Here, we have performed structure-based virtual high-throughput screening of 100,000 naturally occurring compounds from ZINC database against MARK4 to find its potential inhibitors. The resulted hits were selected, based on the binding affinities, docking scores and selectivity. Further, binding energy calculation, Lipinski filtration and ADMET prediction were carried out to find safe and better hits against MARK4. Best 10 compounds bearing high specificity and binding efficiency were selected, and their binding pattern to MARK4 was analyzed in detail. Finally, 100 ns molecular dynamics simulation was performed to evaluate; the dynamics stability of MARK4-compound complex. In conclusion, these selected natural compounds from ZINC database might be potential leads against MARK4, and can further be exploited in drug design and development for associated diseases.  相似文献   

13.
14.
Lymphocyte-specific protein tyrosine kinase (Lck), a non-receptor Src family kinase, has a vital role in various cellular processes such as cell cycle control, cell adhesion, motility, proliferation, and differentiation. Lck is reported as a key factor regulating the functions of T-cell including the initiation of TCR signalling, T-cell development, in addition to T-cell homeostasis. Alteration in expression and activity of Lck results in numerous disorders such as cancer, asthma, diabetes, rheumatoid arthritis, atherosclerosis, and neuronal diseases. Accordingly, Lck has emerged as a novel target against different diseases. Herein, we amass the research efforts in literature and pharmaceutical patents during the last decade to develop new Lck inhibitors. Additionally, structure-activity relationship studies (SAR) and docking models of these new inhibitors within the active site of Lck were demonstrated offering deep insights into their different binding modes in a step towards the identification of more potent, selective, and safe Lck inhibitors.  相似文献   

15.
16.
We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of PDE4 inhibitors, while simultaneously minimizing PDE4 activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like mode in contrast to the cAMP-like binding mode found in PDE4. Structure activity relationship studies coupled with an inhibitor bound crystal structure in the active site of the catalytic domain of PDE2 identified structural features required to minimize PDE4 inhibition while simultaneously maximizing PDE2 inhibition.  相似文献   

17.
Use of the tools of SBDD including crystallography led to the discovery of novel and potent 6,5 heterobicyclic MEKi’s [J. Med. Chem. 2012, 55, 4594]. The core change from a 5,6 heterobicycle to a 6,5 heterobicycle was driven by the desire for increased structural diversity and aided by the co-crystal structure of G-925 [J. Med. Chem. 2012, 55, 4594]. The key design feature was the shift of the attachment of the five-membered heterocyclic ring towards the B ring while maintaining the key hydroxamate and anilino pharamcophoric elements in a remarkably similar position as in G-925. From modelling, changing the connection point of the five membered ring heterocycle placed the H-bond accepting nitrogen within a good distance and angle to the Ser212 [J. Med. Chem. 2012, 55, 4594]. The resulting novel 6,5 benzoisothiazole MEKi G-155 exhibited improved potency versus aza-benzofurans G-925 and G-963 but was a potent inhibitor of cytochrome P450’s 2C9 and 2C19. Lowering the log D by switching to the more polar imidazo[1,5-a] pyridine core significantly diminished 2C9/2C19 inhibition while retaining potency. The imidazo[1,5-a] pyridine G-868 exhibited increased potency versus the starting point for this work (aza-benzofuran G-925) leading to deprioritization of the azabenzofurans. The 6,5-imidazo[1,5-a] pyridine scaffold was further diversified by incorporating a nitrogen at the 7 position to give the imidazo[1,5-a] pyrazine scaffold. The introduction of the C7 nitrogen was driven by the desire to improve metabolic stability by blocking metabolism at the C7 and C8 positions (particularly the HLM stability). It was found that improving on G-868 (later renamed GDC-0623) required combining C7 nitrogen with a diol hydroxamate to give G-479. G-479 with polarity distributed throughout the molecule was improved over G-868 in many aspects.  相似文献   

18.
Fibroblast growth factor receptor 1 (FGFR1) plays an important role in tumorigenesis and is therefore an attractive target for anticancer therapy. Using molecular docking approach we have identified inhibitor of FGFR1 belonging to 5-amino-4-(1H-benzoimidazol-2-yl)-phenyl-1,2-dihydro-pyrrol-3-ones with IC50 value of 3.5 μM. A series of derivatives of this chemical scaffold has been synthesized and evaluated for inhibition of FGFR1 kinase activity. It was revealed that the most promising compounds 5-amino-1-(3-hydroxy-phenyl)-4-(6-methyl-1H-benzoimidazol-2-yl)-1,2-dihydro-pyrrol-3-one and 5-amino-4-(1H-benzoimidazol-2-yl)-1-(3-hydroxy-phenyl)-1,2-dihydro-pyrrol-3-one inhibit FGFR1 with IC50 values of 0.63 and 0.32 μM, respectively, and posses antiproliferative activity against KG1 myeloma cell line with IC50 values of 5.6 and 9.3 μM. Structure–activity relationships have been studied and binding mode of this chemical class has been proposed.  相似文献   

19.
The pyrazolo[1,5-a]pyrimidine LDN-193189 is a potent inhibitor of activin receptor-like kinase 2 (ALK2) but is nonselective for highly homologous ALK3 and shows only modest kinome selectivity. Herein, we describe the discovery of a novel series of potent and selective ALK2 inhibitors by replacing the quinolinyl with a 4-(sulfamoyl)naphthyl, yielding ALK2 inhibitors that exhibit not only excellent discrimination versus ALK3 but also high kinome selectivity. In addition, the optimized compound 23 demonstrates good ADME and in vivo pharmacokinetic properties.  相似文献   

20.
High level of hematopoietic cell kinase (Hck) is associated with drug resistance in chronic myeloid leukemia. Additionally, Hck activity has also been connected with the pathogenesis of HIV-1 and chronic obstructive pulmonary disease. In this study, three-dimensional (3D) QSAR pharmacophore models were generated for Hck based on experimentally known inhibitors. A best pharmacophore model, Hypo1, was developed with high correlation coefficient (0.975), Low RMS deviation (0.60) and large cost difference (49.31), containing three ring aromatic and one hydrophobic aliphatic feature. It was further validated by the test set (r?=?0.96) and Fisher’s randomization method (95%). Hypo 1 was used as a 3D query for screening the chemical databases, and the hits were further screened by applying Lipinski’s rule of five and ADMET properties. Selected hit compounds were subjected to molecular docking to identify binding conformations in the active site. Finally, the appropriate binding modes of final hit compounds were revealed by molecular dynamics (MD) simulations and free energy calculation studies. Hence, we propose the final three hit compounds as virtual candidates for Hck inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号