首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorin e(6) and its derivatives are promising sensitizers for photodynamic therapy (PDT). In order to compare the photodynamic effects of 8 novel derivatives of chlorin e(6) and to explore some mechanisms of their effects at the cellular level, we studied PDT-induced changes in bioelectric activity of crayfish mechanoreceptor neuron that was used as a sensitive experimental model. Neurons were insensitive to red laser irradiation (632.8 nm; 0.3 W/cm(2)) or to photosensitizers alone, but changed firing rate and died under the photodynamic effect of nanomolar concentrations of sensitizers. The dynamics of neuron responses depended on photosensitizer type and concentration. The dependence of neuron lifetime on photosensitizer concentration allowed comparing efficiencies of different photosensitizers. Radachlorin was the most potent photosensitizer comparable with mTHPC. High photodynamic efficiency of some chlorin e(6) derivatives was related to weak dependence of neuron lifetime on sensitizer concentration, indicating to the initiation of 2-3 secondary processes such as free radical membrane damage by one absorbed photon. Photodynamic efficiency of sensitizers depended on amphiphilicity influencing their intracellular localization.  相似文献   

2.
An amphiphilic porphyrin appended with a Ru(II)-polypyridyl complex (Ru-P) showing a moderate two-photon absorption cross-section (178.0 ± 26.8 GM), high singlet oxygen quantum yield and rapid cellular uptake was synthesized. In vitro study using human nasopharyngeal carcinoma cells showed that Ru-P exhibited a strong two-photon induced fluorescence upon uptake, lysosomal localization and potent two-photon induced cytotoxicity. These results show that Ru-P, which was designed to enhance its cellular uptake, can potentially be used as an efficacious bifunctional two-photon tumor-imaging and photodynamic therapeutic agent despite its moderate two-photon absorption cross-section.  相似文献   

3.
Phthalocyanines (Pc) and their metallated derivatives are strongly considered for photodynamic therapy (PDT) possessing unique properties as possible new photosensitizers (PS). We have used toxicological assessments, real‐time monitoring of cellular impedance, and imagistic measurements for assessing the in vitro dark toxicity and PDT efficacy of Ga(III)‐Pc in SHSy5Y neuroblastoma cells. We have established the non‐toxic concentration range of Ga(III)‐Pc, a compound which shows a high intracellular accumulation, with perinuclear distribution in confocal microscopy. By choosing Ga(III)Pc non‐toxic dose, we performed in vitro experimental PDT hampering cellular proliferation. Our proposed Ga(III)‐Pc could complete a future PS panel for neuroblastoma alternate therapy.  相似文献   

4.
NIR-light-absorbing photosensitizers with the capability of selective localization and activation in tumor regions are of great importance for practical photodynamic therapy (PDT). Here, selenophenol substituted BODIPYs were designed and synthesized as new photosensitizers for PDT. One of these obtained BODIPYs, IBSeOV, possesses an intense and low energy absorption with a high singlet oxygen quantum yield (ΦΔ = 60%). Considering manganese dioxide (MnO2) nanosheets as versatile nanocarriers in cancer theranostics, nanosystem IBSeOV/MnO2 was then fabricated to furnish tumor environment selective activation. Such designed nanoplatform allowed for GSH-controllable 1O2 production and exhibited low cytotoxicity in dark but good photocytotoxicity to cancer cells. The in vivo antitumor outcome suggested the high treatment efficiency of IBSeOV/MnO2 for tumor therapy.  相似文献   

5.
光敏剂能否被肿瘤细胞高效吸收是影响光动力治疗效率的重要因素。亲脂性光敏剂易于被肿瘤组织摄取,但会使光敏剂发生自猝灭;亲水性光敏剂则有利于光敏剂在体内的转运,但肿瘤细胞摄取率会下降。本工作通过亲酯性的乙二醇缩合支链和亲水性季膦基团与卟啉相连接,成功制备一种新型两亲性卟啉锌化合物(ZnTP-TP),实验表明该化合物具有较高的单线态氧量子产率和良好的两亲性,可被细胞快速摄取,并表现出较低的细胞毒性和良好的肿瘤光动力治疗效应。  相似文献   

6.
Photodynamic therapy (PDT), a new treatment modality for localized cancers involving the selective interaction of visible light with photosensitizers, such as hematoporphyrin derivatives (HpD) or dihematoporphyrin ether/ester (DHE) (Photofrin II). Photodynamic therapy of malignant tumors includes biological, photochemical and photophysical processes. These processes involve: (i) absorption of photosensitizing agent; (ii) selective retention of photosensitizer in tumors and (iii) irradiation of sensitized tumor by laser irradiation. This paper provides a review of photosensitizers, photochemistry, subcellular targets, side effects and lasers involved in photodynamic therapy. In addition, gradual increase in knowledge related to in vivo and in vitro mechanisms of action of PDT, as well as some clinical applications of photodynamic therapy are presented.  相似文献   

7.
We report the synthesis of bioconjugated zinc porphyrin dimers 1ae designed as photosensitizers for one-photon and two-photon excited photodynamic therapy. These macrocycles are substituted with carbohydrate units (glucose, mannose, lactose) in order to target tumor cells over-expressing lectin membrane receptors. Polarity, singlet oxygen production and in vitro photocytotoxicity are studied to determine their photodynamic therapy potentiality.  相似文献   

8.
Phthalocyanine-nanoparticle conjugates have been designed and synthesised for the delivery of hydrophobic photosensitizers for photodynamic therapy (PDT) of cancer. The phthalocyanine photosensitizer stabilized gold nanoparticles have an average diameter of 2-4 nm. The synthetic strategy interdigitates a phase transfer reagent between phthalocyanine molecules on the particle surface that solubilises the hydrophobic photosensitizer in polar solvents enabling delivery of the nanoparticle conjugates to cells. The phthalocyanine is present in the monomeric form on the nanoparticle surface, absorbs radiation maximally at 695 nm and catalytically produces the cytotoxic species singlet oxygen with high efficiency. These properties suggest that the phthalocyanine-nanoparticle conjugates are ideally suited for PDT. In a process that can be considered as cancer therapy using a 'Trojan horse', when the nanoparticle conjugates are incubated with HeLa cells (a cervical cancer cell line), they are taken up thus delivering the phthalocyanine photosensitizer directly into the cell interior. Irradiation of the nanoparticle conjugates within the HeLa cells induced substantial cell mortality through the photodynamic production of singlet oxygen. The PDT efficiency of the nanoparticle conjugates, determined using colorimetric assay, was twice that obtained using the free phthalocyanine derivative. Following PDT with the nanoparticle conjugates, morphological changes to the HeLa cellular structure were indicative of cell mortality via apoptosis. Further evidence of apoptosis was provided through the bioluminescent assay detection of caspase 3/7. Our results suggest that gold nanoparticle conjugates are an excellent vehicle for the delivery of surface bound hydrophobic photosensitizers for efficacious photodynamic therapy of cultured tumour cells.  相似文献   

9.
The effect of electron-accepting substituents in position 3 of the chlorine p6 macrocycle in neutral and carboxyl-containing negatively charged cycloimide derivatives of chlorin p6 (CIC) on the photochemical and biological properties of these photosensitizers was studied. A relationship between the structure and properties of CICs was analyzed on the basis of information on their photoinduced cytotoxicity, efficiency of the generation of reactive oxygen species, photostability, intracellular localization, quantitative parameters of accumulation in cells, and cellular pharmacokinetics. It was shown that these compounds can be used for the development of photosensitizers with intense light absorption at 740 nm, controlled intracellular localization, and a high photodynamic activity toward tumor cells.  相似文献   

10.
Using stereoselective aldol-like condensation as a key methodology, a series of chlorophyll a-based long wavelength cationic chlorins were synthesized using methyl pyropheophorbide a (MPPa) and purpurin-18-N-methoxylimide methyl ester as starting materials. Such long wavelength cationic chlorins possess covalently linked cationic moieties (pyridinium or quinolinium) on the peripheral of their tetrapyrrole macrocycles. It was found that all long wavelength cationic chlorins showed their longest absorption maxima in the range of 712-763nm, making them potential photosensitizers in photodynamic therapy. The results of preliminary experiments probing in vitro photodynamic effects showed that the purpurinimide derivatives exhibit relatively high phototoxicity in HeLa cells as compared to MPPa derivatives.  相似文献   

11.

Background  

In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+) and Gram (-) bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+) bacterium (Enterococcus faecalis) and of a Gram (-) bacterium (Escherichia coli). The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms.  相似文献   

12.
The effect of electron-accepting substituents in position 3 of the chlorine p6 macrocycle in neutral and carboxyl-containing negatively charged cycloimide derivatives of chlorin p6 (CIC) on the photochemical and biological properties of these photosensitizers was studied. The relationship between the structure and properties of CICs was analyzed on the basis of information on their photoinduced cytotoxicity, efficiency of generation of reactive oxygen species, photostability, intracellular localization, quantitative parameters of accumulation in cells, and cellular pharmakinetics. It was shown that these compounds can be used for the development of photosensitizers with intense light absorption at 740 nm, controlled intracellular localization, and a high photodynamic activity toward tumor cells.  相似文献   

13.
2-Butylamino-2-demethoxy-hypocrellin A (BAHA) and B (BAHB) are new photosensitizers synthesized by a mild reaction of hypocrellins and butylamine. In BAHA and BAHB, the peri-hydroxylated perylenequinone structure of the parent hypocrellins is preserved and the red absorption is enhanced distinctly. Electron paramagnetic resonance spin trapping measurements and 9,10-diphenylanthracene bleaching studies were used to investigate the photodynamic action of BAHA and BAHB in the presence of oxygen. Singlet oxygen (1O2) and superoxide anion radical (O2(*-)) produced by illuminating BAHA and BAHB in aerobic solution have been observed. Compared with hypocrellin A and B, BAHA and BAHB primarily remained able to generate 1O2 and enhanced distinctly the O2(*-)-generating abilities. The photodynamic action of BAHA and BAHB in the therapy of cancer was investigated in vitro and in vivo. Both in vitro and in vivo results revealed a significant decrease in cancer cell growth. Laser or dye alone had no effect, indicating that intratumor BAHA and laser therapy may prove useful in unresectable cancer.  相似文献   

14.
An amorphous formulation of hypocrellin A for photodynamic therapy is reported which can provide stable aqueous dispersion of such hydrophobic photosensitizers. In vitro studies have demonstrated the active uptake of amorphous formulation of hypocrellin A into the mitochondria of tumor cells. Compared with Tween-80 micelle embedded hypocrellin A, low dark-toxicity but similar light-toxicity of the amorphous one to drug impregnated tumor cells was observed. Thus, the potential of using amorphous formulation of hypocrellin A as drug delivery system for photodynamic therapy has been demonstrated.  相似文献   

15.
光动力治疗创伤小,在恶性肿瘤治疗方面的应用已经得到了临床认可。治疗过程中需要给予光敏剂,在光照下产生分子氧对肿瘤细胞产生杀伤作用。但是,大多数光敏剂缺乏对肿瘤细胞的特异性,其在肿瘤中的富集主要与细胞高代谢有关,并且在水相媒介中溶解度比较差。纳米技术应用于光动力治疗提供了一种有效地体内运输光敏剂的方式。目前,聚合物纳米粒与光动力药物传递的研究越来越多,光敏剂通过纳米粒的运输为弥补光动力治疗的不足提供了可能,这是因为纳米载体可以将治疗浓度的光敏剂运送到肿瘤细胞而不造成非靶向组织的副损伤。本文将介绍对肿瘤光动力治疗中具有特异性的聚合物纳米粒的种类及在临床中的应用情况,为肿瘤靶向治疗提供新思路。  相似文献   

16.
Mitochondria are attractive targets in photodynamic therapy. Two conjugates: TPP–Rh (a porphyrin–rhodamine B conjugate) and TPP–AO (a porphyrin–acridine orange conjugate), each possessing a single delocalized lipophilic cation, were designed and synthesized as photosensitizers. Their ability to target the mitochondria for photodynamic therapy was evaluated. The conjugates were synthesized by conjugating a monohydroxy porphyrin (TPP-OH) to rhodamine B (Rh B) and acridine orange base (AO), respectively, via a saturated hydrocarbon linker. To evaluate the efficiency of the conjugates as photosensitizers, their photophysical properties and in vitro photodynamic activities were studied in comparison to those of TPP-OH. Although fluorescence energy transfer (FRET) was observed in the conjugates, they were capable of generating singlet oxygen at rates comparable to TPP-OH. Biologically, exciting results were observed with TPP–Rh, which showed a much higher phototoxicity [IC50, 3.95 μM: irradiation of 400–850 nm light (3 mW cm−2) for 1 h] than either TPP-OH or Rh B (both, IC50, >20 μM) without significant dark toxicity at 20 μM. This improved photodynamic activity might be due to a greater cellular uptake and preferential localization in mitochondria. The cellular uptake of TPP–Rh was 8 and 14 times greater than TPP-OH and Rh B, respectively. In addition, fluorescence imaging studies suggest that TPP–Rh localized more in mitochondria than TPP-OH. On the other hand, TPP–AO showed some dark toxicity at 10 μM and stained both mitochondria and nucleus. Our study suggests that conjugation of photosensitizers to Rh might provide two benefits, higher cellular uptake and mitochondrial localization, which are two important subjects in photodynamic therapy.  相似文献   

17.
Photodynamic antimicrobial therapy   总被引:1,自引:0,他引:1  
Photodynamic antimicrobial therapy (PACT) involves the utilisation of photosensitizers activated by exposure to visible light in order to eradicate microbes (this method has already been applied in photodynamic therapy of tumours). Photodynamic effect of the particular photosensitive substance (PS) is attributed to its ability to penetrate susceptible microorganisms, to absorb the light of certain wavelength, and to generate reactive cytotoxic oxygen products. The target microorganisms for photoinactivation are bacteria, fungi, viruses and protozoa. Photodynamic antimicrobial therapy is proposed as a potentially topical, non-invasive approach suitable for treatment of locally occurring infection. The fact that bacteria are becoming increasingly resistant to antibiotics and antiseptics has lead to an increased interest in the development of new alternative eradication methods, such as PACT. Research and development of photosensitive substances are aimed at finding effective antimicrobial substances, which would have a broad-spectrum potency.  相似文献   

18.
Photodynamic therapy (PDT) is a targeted treatment modality where photosensitizers accumulate into cells and are selectively activated by light leading to the production of toxic species and cell death. Focusing the action of photosensitizers to a unique intracellular target may enhance their cytotoxicity. In this study, we demonstrate that the routing of the porphyrin-based photosensitizer chlorin e(6), to the nucleus of cells can significantly alter its toxicity profile. The cellular localization of chlorin e(6) was achieved by coupling the chromophore during solid-phase synthesis to a nucleus-directed linear peptide (Ce6-peptide) or a branched peptide (Ce6-loligomer) composed of eight identical arms displaying the sequence of the Ce6-peptide. These constructs incorporated signals guiding their cytoplasmic uptake and nuclear localization. Ce6-peptide and Ce6-loligomer displayed an enhanced photodynamic activity compared to unconjugated chlorin e(6), lowering the observed CD(50) values for CHO and RIF-1 cells by 1 or more orders of magnitude. The intracellular accumulation of Ce6-peptide and Ce6-loligomer was assessed by electron and confocal microscopy as well as by flow cytometry. Constructs were internalized by cells within an hour and by 6 h, the release of active oxygen species could be observed within the nucleus of cells pretreated with Ce6-loligomer. These results highlight the utility of designing peptides as vehicles for regulating the intracellular distribution of photosensitizers such as chlorin e(6) in order to maximize their efficacy in PDT.  相似文献   

19.
The main physicochemical properties of photosensitizers used in the photodynamic therapy of cancer and their subcellular distribution after in vitro and in vivo administration were analyzed. It was shown that the effect of photosensitizers is realized at very short distances from the sites of their intracellular localization, and the sensitivities of different cellular compartments to the photocytotoxic action of photosensitizers are different. The necessity of intranuclear delivery of photosensitizers into the nuclei of target cells in order to enhance their efficacy and cell specificity was shown and the available approaches to the targeted delivery of photosensitizers were analyzed. The mechanisms of nucleocytoplasmic transport through the nuclear pore complex, which can be used for the delivery of photosensitizers inward the nucleus, are reviewed. Different modular transporters for photosensitizers comprising (i) a ligand module, which binds to an internalizable receptor overexpressed on the target cells, (ii) an intracellular localization signal, (iii) a carrier module, and (iv) an endosomolytic module were characterized. All these modules were shown to be fully functional within the chimeric polypeptide and the polypeptide as a whole. A significant enhancement of photocytotoxicity and cell specificity of photosensitizers delivered by these transporters were demonstrated. The transporters described represent a new generation of pharmaceuticals which can be widely used for targeted drug delivery.  相似文献   

20.
Photodynamic therapy (PDT) is a novel treatment, used mainly for anticancer therapy, that depends on the retention of photosensitizers (PS) in tumour cells and irradiation of the tumour with appropriate wavelength light. Photosensitizers are molecules such as porphyrins and chlorins that, on photoactivation, effect strongly localized oxidative damage within target cells. The PS used for PDT localize in various cytoplasmic membranous structures, but are not found in the most vulnerable intracellular sites for reactive oxygen species, such as the cell nucleus. The experimental approaches discussed in the present paper indicate that it is possible to design highly efficient molecular constructs, PS carriers, with specific modules conferring cell-specific targeting, internalization, escape from intracellular vesicles and targeting to the most vulnerable intracellular compartments, such as the nucleus. Nuclear targeting of these PS-carrying constructs results in enhanced photodynamic activity, maximally about 2500-fold that of free PS. Future work is intended to optimize this approach to the point at which tumour cells can be killed rapidly and efficiently, while minimizing normal cell and tissue damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号