首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this work, we describe the preparation of some new Tacrine analogues modified with a pyranopyrazole moiety. A one-pot multicomponent reaction of 3-methyl-1H-pyrazol-5(4H)-one, aryl(or hetero)aldehydes, malononitrile and cyclohexanone involving a Friedländer condensation led to the title compounds. The synthesized heterocyclic analogues of this molecule were evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 0.044 to 5.80?µM, wherein compounds 5e and 5j were found to be most active inhibitors against AChE with IC50 values of 0.058 and 0.044?µM respectively. Molecular modeling simulation on AChE and BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes.  相似文献   

3.
A series of novel naproxen analogues containing 3-aryl-1,2,4-oxadiazoles moiety (4b-g) and their reaction intermediates aryl carboximidamides moiety (3b-g) was synthesized and evaluated in vitro as dual COXs/15-LOX inhibitors. Compounds 3b-g exhibited superior inhibitory activity than celecoxib as COX-2 inhibitors. Compounds 3b-d and 3g were the most potent COX-2 inhibitors with IC50 range of 6.4 – 8.13 nM and higher selectivity indexes (3b, SI = 26.19; 3c, SI = 13.73; 3d, SI = 29.27; 3g, SI = 18.00) comparing to celecoxib (IC50 = 42.60 nM, SI = 8.05). Regarding 15-LOX inhibitory activity, compounds belonging to aryl carboximidamide backbone 3b-e and 3g were the most potent with IC50 range of 1.77–4.91 nM comparing to meclofenamate sodium (IC50 = 5.64 µM). Data revealed that The levels of NO released by aryl carboximidamides 3b-g were more higher than 3-aryl-1,2,4-oxadiazole derivatives 4b-g, which correlated well with their COX-2 inhibitory activities.  相似文献   

4.
Cratoxylum cochinchinense displayed significant inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase, both of which are key target enzymes to attenuate diabetes and obesity. The compounds responsible for both enzymes inhibition were identified as twelve xanthones (112) among which compounds 1 and 2 were found to be new ones. All of them simultaneously inhibited PTP1B with IC50s of (2.4–52.5?µM), and α-glucosidase with IC50 values of (1.7–72.7?µM), respectively. Cratoxanthone A (3) and γ-mangostin (7) were estimated to be most active inhibitors against both PTP1B (IC50?=?2.4?µM for 3, 2.8?µM for 7) and α-glucosidase (IC50?=?4.8?µM for 3, 1.7?µM for 7). In kinetic studies, all isolated xanthones emerged to be mixed inhibitors of α-glucosidase, whereas they behaved as competitive inhibitors of PTP1B. In time dependent experiments, compound 3 showed isomerization inhibitory behavior with following kinetic parameters: Kiapp?=?2.4?µM; k5?=?0.05001?µM?1?S?1 and k6?=?0.02076?µM?1?S?1.  相似文献   

5.
Silber MV  Meimberg H  Ebel J 《Phytochemistry》2008,69(13):2449-2456
Since the early evolution of land plants from primitive green algae, phenylpropanoid compounds have played an important role. In the biosynthesis of phenylpropanoids, 4-coumarate:CoA ligase (4CL; EC 6.2.1.12) has a pivotal role at the divergence point from general phenylpropanoid metabolism to several major branch pathways. Although higher plant 4CLs have been extensively studied, little information is available on the enzymes from bryophytes. In Physcomitrella patens, we have identified a 4CL gene family consisting of four members, taking advantage of the available EST sequences and a draft sequence of the P. patens genome. The encoded proteins of three of the genes display similar substrate utilization profiles with highest catalytic efficiency towards 4-coumarate. Interestingly, the efficiency with cinnamate as substrate is in the same range as with caffeate and ferulate. The deduced proteins of the four genes share sequence identities between 78% and 86%. The intron/exon structures are pair wise similar. Pp4CL2 and Pp4CL3 each consists of four exons and three introns, whereas Pp4CL1 and Pp4CL4 are characterized each by five exons and four introns. Pp4CL1, Pp4CL2 and Pp4CL3 are expressed in both gametophore and protonema tissue of P. patens, unlike Pp4CL4 whose expression could not be demonstrated under the conditions employed. Phylogenetic analysis suggests an early evolutionary divergence of Pp4CL gene family members. Using Streptomyces coelicolor cinnamate:CoA ligase (ScCCL) as an outgroup, the P. patens 4CLs are clearly separated from the spermatophyte proteins, but are intercalated between the angiosperm 4CL class I and class II. A comparison of three P. patens subspecies from diverse geographical locations shows high sequence identities for the four 4CL isoforms.  相似文献   

6.
Current study deals with the evaluation of indane-1,3-dione based compounds as new class of urease inhibitors. For that purpose, benzylidine indane-1,3-diones (130) were synthesized and fully characterized by different spectroscopic techniques including EI-MS, HREI-MS, 1H, and 13C NMR. All synthetic molecules 130 were evaluated for urease inhibitory activity and showed good to moderate inhibitory potential within the range of (IC50 = 11.60 ± 0.3–257.05 ± 0.7 µM) as compared to the standard acetohydroxamic acid (IC50 = 27.0 ± 0.5 µM). Compound 1 (IC50 = 11.60 ± 0.3 µM) was found to be most potent inhibitor amongst all derivatives. The key binding interactions of most active compounds within the enzyme pocket were evaluated through in silico studies.  相似文献   

7.
We investigated twelve benzyl phenyl ketone derivatives which are synthetic precursors of isoflavonoids that are shown be good 5-hLOX inhibitors, especially those that have the catechol group, but these precursors never have been assayed as 5-hLOX inhibitors being a novelty as inhibitors of the enzyme, due to sharing important structural characteristics. Screening assays, half maximal inhibitory concentration (IC50) and kinetic assays of all the studied molecules (5 µg/ml in media assay) showed that 1-(2,4-dihydroxy-3-methylphenyl)-2-(3-chlorophenyl)-ethanone (K205; IC50 = 3.5 µM; Ki = 4.8 µM) and 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-nitrophenyl)-ethanone (K206; IC50 = 2.3 µM; Ki = 0.7 µM) were potent, selective, competitive and nonredox inhibitors of 5-hLOX. Antioxidant behavior was also assayed by DPPH, FRAP, and assessing ROS production, and those with antibacterial and antiproliferative properties relating to 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-chlorophenyl)-ethanone (K208) established it as the most interesting and relevant compound studied, as it showed nearly 100% inhibition of bacterial growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Finally, docking studies were done that helped to characterize how the inhibitor structures correlated to decreased 5-hLOX activity.  相似文献   

8.
Malaria, particularly in endemic countries remains a threat to the human health and is the leading the cause of mortality in the tropical and sub-tropical areas. Herein, we explored new C2 symmetric hydroxyethylamine analogs as the potential inhibitors of Plasmodium falciparum (P. falciparum; 3D7) in in-vitro cultures. All the listed compounds were also evaluated against crucial drug targets, plasmepsin II (Plm II) and IV (Plm IV), enzymes found in the digestive vacuole of the P. falciparum. Analog 10f showed inhibitory activities against both the enzymes Plm II and Plm IV (Ki, 1.93?±?0.29?µM for Plm II; Ki, 1.99?±?0.05?µM for Plm IV). Among all these analogs, compounds 10g selectively inhibited the activity of Plm IV (Ki, 0.84?±?0.08?µM). In the in vitro screening assay, the growth inhibition of P. falciparum by both the analogs (IC50, 2.27?±?0.95?µM for 10f; IC50, 3.11?±?0.65?µM for 10g) displayed marked killing effect. A significant growth inhibition of the P. falciparum was displayed by analog 12c with IC50 value of 1.35?±?0.85?µM, however, it did not show inhibitory activity against either Plms. The hemolytic assay suggested that the active compounds selectively inhibit the growth of the parasite. Further, potent analogs (10f and 12c) were evaluated for their cytotoxicity towards mammalian HepG2 and vero cells. The selectivity index (SI) values were noticed greater than 10 for both the analogs that suggested their poor toxicity. The present study indicates these analogs as putative lead structures and could serve as crucial for the development of new drug molecules.  相似文献   

9.
Following our research for human dihydroorotate dehydrogenase (hDHODH) inhibitors as anticancer agents, herein we describe 3D QSAR-based design, synthesis and in vitro screening of 2-,4,-6-, and/or 7-substituted quinoline derivatives as hDHODH inhibitors and anticancer agents. We have designed 2-,4,-6-, and/or 7-substituted quinoline derivatives and predicted their hDHODH inhibitory activity based on 3D QSAR study on 45 substituted quinoline derivatives as hDHODH inhibitors, and also predicted toxicity. Designed compounds were docked into the binding site of hDHODH. Designed compounds which showed good predictive activity, no toxicity, and good docking score were selected for the synthesis, and in vitro screening as hDHODH inhibitors in an enzyme inhibition assay, and anticancer agents in MTT assay against cancer cell lines (HT-29 and MDA-MB-231). Synthesized compounds 7 and 14 demonstrated IC50 value of 1.56?µM and 1.22?µM, against hDHODH, respectively, and these are our lead compounds for the development of new hDHODH inhibitors and anticancer agents.  相似文献   

10.
This study deals with the synthesis of benzophenone sulfonamides hybrids (131) and screening against urease enzyme in vitro. Studies showed that several synthetic compounds were found to have good urease enzyme inhibitory activity. Compounds 1 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-4′′-nitrobenzenesulfonohydrazide), 2 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-3′′-nitrobenzenesulfonohydrazide), 3 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-4′′-methoxybenzenesulfonohydrazide), 4 (3′′,5′′-dichloro-2′′-hydroxy-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 6 (2′′,4′′-dichloro-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 8 (5-(dimethylamino)-N′-((4-hydroxyphenyl)(phenyl)methylene)naphthalene-1-sulfono hydrazide), 10 (2′′-chloro-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 12 (N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide) have found to be potently active having an IC50 value in the range of 3.90–17.99?µM. These compounds showed superior activity than standard acetohydroxamic acid (IC50?=?29.20?±?1.01?µM). Moreover, in silico studies on most active compounds were also performed to understand the binding interaction of most active compounds with active sites of urease enzyme. Structures of all the synthetic compounds were elucidated by 1H NMR, 13C NMR, EI-MS and FAB-MS spectroscopic techniques.  相似文献   

11.
Novel candidates of thiazolo[4,5-d]pyrimidines (9a-l) were synthesized and their structures were elucidated by spectral and elemental analyses. All the novel derivatives were screened for their cyclooxygenase inhibitory effect, anti-inflammatory activity and ulcerogenic liability. All the new compounds exhibited anti-inflammatory activity, especially 1-(4-[7-(4-nitrophenyl)-5-thioxo-5,6-dihydro-3H-thiazolo[4,5-d]pyrimidin-2-ylideneamino]phenyl)ethanone (9g) was the most active derivative with 57%, 88% and 88% inhibition of inflammation after 1, 3 and 5h, respectively. Furthermore, this derivative 9g recorded higher anti-inflammatory activity than celecoxib which showed 43%, 43% and 54% inhibition after 1, 3 and 5h, sequentially. Moreover, the target derivatives 9a-l demonstrated moderate to high potent inhibitory action towards COX-2 (IC50 = 0.87–3.78 µM), in particular, the derivatives 9e (IC50 = 0.92 µM), 9g (IC50 = 0.87 µM) and 9k (IC50 = 1.02 µM) recorded higher COX-2 inhibitory effect than the selective COX-2 inhibitor drug celecoxib (IC50 = 1.11 µM). The in vivo potent compounds (9e, 9g and 9k) caused variable ulceration effect (ulcer index = 5–12.25) in comparison to that of celecoxib (ulcer index = 3). Molecular docking was performed to the most potent COX-2 inhibitors (9e, 9g and 9k) to explore the binding mode of these derivatives with Cyclooxygenase-2 enzyme.  相似文献   

12.
Thirty-three 4-amino-1,2,4-triazole derivatives 133 were synthesized by reacting 4-amino-1,2,4-triazole with a variety of benzaldehydes. The synthetic molecules were characterized via 1H NMR and EI-MS spectroscopic techniques and evaluated for their anti-hyperglycemic potential. Compounds 133 exhibited good to moderate in vitro α-amylase and α-glucosidase inhibitory activities in the range of IC50 values 2.01 ± 0.03–6.44 ± 0.16 and 2.09 ± 0.08–6.54 ± 0.10 µM as compared to the standard acarbose (IC50 = 1.92 ± 0.17 µM) and (IC50 = 1.99 ± 0.07 µM), respectively. The limited structure-activity relationship suggested that different substitutions on aryl part of the synthetic compounds are responsible for variable activity. Kinetic study predicted that compounds 133 followed mixed and non-competitive type of inhibitions against α-amylase and α-glucosidase enzymes, respectively. In silico studies revealed that both triazole and aryl ring along with different substitutions were playing an important role in the binding interactions of inhibitors within the enzyme pocket. The synthetic molecules were found to have dual inhibitory potential against both enzymes thus they may serve as lead candidates for the drug development and research in the future studies.  相似文献   

13.
Chelerythrine, an isoquinoline alkaloid isolated from the herbaceous perennial Chelidonium majus, was found to potently and selectively inhibit an isoform of recombinant human monoamine oxidase-A (MAO-A) with an IC50 value of 0.55?µM. Chelerythrine was a reversible competitive MAO-A inhibitor (Ki?=?0.22?µM) with a potency much greater than toloxatone (IC50?=?1.10?µM), a marketed drug. Other isoquinoline alkaloids tested did not effectively inhibit MAO-A or MAO-B. A structural comparison with corynoline suggested the 1- and/or 2-methoxy groups of chelerythrine increase its inhibitory activity against MAO-A. Molecular docking simulations revealed that the binding affinity of chelerythrine for MAO-A (?9.7?kcal/mol) was greater than that for MAO-B (?4.6?kcal/mol). Docking simulation implied that Cys323 and Tyr444 of MAO-A are key residues for hydrogen-bond interaction with chelerythrine. Our findings suggest chelerythrine is one of the most reversible selective and potent natural inhibitor of MAO-A, and that it be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.  相似文献   

14.
Indoleamine 2,3-dioxygenase plays a crucial role in immune tolerance and has emerged as an attractive target for cancer immunotherapy. In this study, the Passerini and Ugi multicomponent reactions have been employed to assemble a small library of imidazothiazoles that target IDO1. While the p-bromophenyl and the imidazothiazole moieties have been kept fixed, a full SAR study has been performed on the side-chain, leading to the discovery of nine compounds with sub-micromolar IC50 values in the enzyme-based assay. Compound 7d, displaying a α-acyloxyamide substructure, is the most potent compound, with an IC50 value of 0.20?µM, but a low activity in a cell-based assay. Compound 6o, containing a α-acylaminoamide moiety, shows an IC50 value of 0.81?µM in the IDO1-based assay, a full biocompatibility at 10?µM, together with a modest inhibitory activity in A375 cells. Molecular docking studies show that both 7d and 6o display a unique binding mode in the IDO1 active site, with the side-chain protruding in an additional pocket C, where a crucial hydrogen bond is formed with Lys238. Overall, this work describes an isocyanide based-multicomponent approach as a straightforward and versatile tool to rapidly access IDO1 inhibitors, providing a new direction for their future design and development.  相似文献   

15.
Osthenol (6), a prenylated coumarin isolated from the dried roots of Angelica pubescens, potently and selectively inhibited recombinant human monoamine oxidase-A (hMAO-A) with an IC50 value of 0.74?µM and showed a high selectivity index (SI?>?81.1) for hMAO-A versus hMAO-B. Compound 6 was a reversible competitive hMAO-A inhibitor (Ki?=?0.26?µM) with a potency greater than toloxatone (IC50?=?0.93?µM), a marketed drug. Isopsoralen (3) and bakuchicin (1), furanocoumarin derivatives isolated from Psoralea corylifolia L., showed slightly higher IC50 values (0.88 and 1.78?µM, respectively) for hMAO-A than 6, but had low SI values (3.1 for both). Other coumarins tested did not effectively inhibit hMAO-A or hMAO-B. A structural comparison suggested that the 8-(3,3-dimethylallyl) group of 6 increased its inhibitory activity against hMAO-A compared with the 6-methoxy group of scopoletin (4). Molecular docking simulations revealed that the binding affinity of 6 for hMAO-A (?8.5?kcal/mol) was greater than that for hMAO-B (?5.6?kcal/mol) and that of 4 for hMAO-A (?7.3?kcal/mol). Docking simulations also implied that 6 interacted with hMAO-A at Phe208 and with hMAO-B at Ile199 by carbon hydrogen bondings. Our findings suggest that osthenol, derived from natural products, is a selective and potent reversible inhibitor of MAO-A, and can be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.  相似文献   

16.
Coumarins of synthetic or natural origins are an important chemical class exerting diverse pharmacological activities. In the present study, 26 novel O-alkylcoumarin derivatives were synthesized and have been tested at 100 µM for their in vitro inhibitory potential against acetylcholinesterase (AChE) and butyrlcholinesterase (BChE) targets which are the key enzymes playing role in the pathogenesis of Alzheimer’s disease. Among the tested coumarins, none of them could inhibit AChE, whereas 12 of them exerted a marked and selective inhibition against BChE as compared to the reference (galanthamine, IC50 = 46.58 ± 0.91 µM). In fact, 10 of the active coumarins showed higher inhibition (IC50 = 7.01 ± 0.28 µM – 43.31 ± 3.63 µM) than that of galanthamine. The most active ones were revealed to be 7-styryloxycoumarin (IC50 = 7.01 ± 0.28 µM) and 7-isopentenyloxy-4-methylcoumarin (IC50 = 8.18 ± 0.74 µM). In addition to the in vitro tests, MetaCore/MetaDrug binary QSAR models and docking simulations were applied to evaluate the active compounds by ligand-based and target-driven approaches. The predicted pharmacokinetic profiles of the compounds suggested that the compounds reveal lipophilic character and permeate blood brain barrier (BBB) and the ADME models predict higher human serum protein binding percentages (>50%) for the compounds. The calculated docking scores indicated that the coumarins showing remarkable BChE inhibition possessed favorable free binding energies in interacting with the ligand-binding domain of the target. Therefore, our results disclose that O-alkylcoumarins are promising selective inhibitors of cholinesterase enzymes, particularly BChE in our case, which definitely deserve further studies.  相似文献   

17.
Lignin and related metabolites have diverse and important functions for plant growth and development. 4-Coumarate: CoA ligase (4CL, EC 6.2.1.12) is one of the key enzymes in phenylpropanoid metabolism and lignin biosynthesis. In a previous study, maize (Zea maize L. cv. Yellowcorn) growth was suppressed to a greater extent by root-applied chalcone than rice (Oryza sativa L. cv. Nipponbare). The objective of this study is to clarify the relationship between the growth suppression and 4CL properties. In crude extracts, total 4CL activity and total protein content of rice were higher 1.8- and 2.7-fold than that of maize, respectively. After a gel-filtration chromatography, a single peak of 4CL activity from maize and rice was evident coincidently for both species. After anion-exchange chromatography, a single peak of 4CL activity was also apparent for both species; however, the peak of maize did not coincide with that of rice. The enzyme activity of maize and rice exhibited similar order of substrate specificities when using p-coumaric, cinnamic, caffeic, ferulic and sinapic acids substrates. Chalcone inhibited 4CL activity in maize more strongly than in rice, and 4CL kinetic data in the presence and absence of chalcone exhibited uncompetitive inhibition in both maize and rice. These results suggest that total activity and the inhibitory property of 4CL contributes to differences in growth suppression by chalcone between maize and rice, although further efforts are needed to clarify the potential of 4CL as a novel action site of the growth suppression.  相似文献   

18.
A series of thirty-three alkynyl and β-ketophosphonates were evaluated for their in vitro acetyl- and butyryl-cholinesterase (AChE and BChE) inhibitory activities using Ellman’s spectrophotometric method. None of the examined compounds inhibited AChE activity at tested concentrations while twenty-nine of them showed significant and selective inhibition of BChE with IC50 values between 38.60 µM and 0.04 µM. In addition, structure-activity relationships were discussed. The most effective inhibitors were the dibutyl o-methoxyphenyl alkynylphosphonate 3dc and dibutyl o-methoxyphenyl β-ketophosphonate 4dc. Activities of most potent compounds were also compared with a commercial organophosphorus compound. These results could inspire the design of new inhibitors with stronger activity against BChE.  相似文献   

19.
Twenty five newly synthesized coumarin scaffold based derivatives were assayed for their in vitro anticancer activity against MCF-7 breast and PC-3 prostate cancer cell lines and were further assessed for their in vitro VEGFR-2 kinase inhibitory activity. The in vitro cytotoxic studies revealed that most of the synthesized compounds possessed very promising cytotoxicity against MCF-7, particularly; compounds 4a (IC50 = 1.24 µM) and 3d (IC50 = 1.65 µM) exhibited exceptional activities superior to the positive control staurosporine (IC50 = 8.81 µM). Similarly, the majority of the compounds exhibited higher antiproliferative activities compared to the reference standard with IC50 values ranging from 2.07 to 8.68 µM. The two cytotoxic derivatives 4a and 3d were selected to evaluate their inhibitory potencies against VEGFR-2 kinase. Remarkably, compound 4a, exhibited significant IC50 of 0.36 µM comparable to staurosporine (IC50; 0.33 µM). Moreover, it was capable of inducing preG1 apoptosis, cell growth arrest at G2/M phase and activating caspase-9. On the other hand, insignificant cytotoxic activity was observed for all compounds towards PC-3 cell line. Molecular docking study was carried out for the most active anti-VEGFR-2 derivative 4a, which demonstrated the ability of the tested compound to interact with the key amino acids in the target VEGFR-2 kinase binding site. Additionally, the ADME parameters and physicochemical properties of compound 4a were examined in silico.  相似文献   

20.
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50 = 5.25 µM) and remarkable cytotoxic activity at 0.09 µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22 µM of IC50 against MCF-7 and 0.72 µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37 µM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号