首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, a new class of compounds containing pyrido[3,4-d]pyrimidine scaffold with an acrylamide moiety was designed as irreversible EGFR-TKIs to overcome acquired EGFR-T790M resistance. The most promising compound 25h inhibited HCC827 and H1975 cells growth with the IC50 values of 0.025?μM and 0.49?μM, respectively. Meanwhile, 25h displayed potent inhibitory activity against the EGFRL858R (IC50?=?1.7?nM) and EGFRL858R/T790M (IC50?=?23.3?nM). 25h could suppress EGFR phosphorylation in HCC827 and H1975 cell lines and significantly induce the apoptosis of HCC827 cells. Additionally, compound 25h could remarkably inhibit cancer growth in established HCC827 xenograft mouse model at 50?mg/kg in vivo. These results indicated that the 2,4-disubstituted 6-(5-substituted pyridin-2-amino)pyrido[3,4-d]pyrimidine derivatives can serve as effective EGFR inhibitors and potent anticancer agents.  相似文献   

2.
A novel series of 2,3-dihydro-[1,4]dioxino[2,3-f]quinazoline derivatives were designed, synthesized and evaluated as reversible and noncovalent epidermal growth factor receptor (EGFR) inhibitors. Most of the compounds exhibited good potency against EGFRwt and some showed moderate to excellent potency against EGFRT790M/L858R mutant. The half-maximal inhibitory concentration (IC50) values of twenty-one compounds against EGFRwt were less than 50 nM, and those of six compounds were less than 10 nM. The IC50 values of eleven compounds against EGFRT790M/L858R were less than 100 nM. Among these, compound b1 displayed the most potent inhibitory activity against EGFRwt (IC50 = 2.0 nM) and EGFRT790M/L858R (IC50 = 6.9 nM). Compounds with excellent inhibitory activities against EGFRwt and EGFRT790M/L858R kinase inhibitory activities showed good antiproliferative activities against H358 and A549 cells. Docking study was performed to position compound b1 into the EGFR active pocket to determine the probable binding conformation.  相似文献   

3.
A series of 4-arylamido-2-arylaminoprimidines bearing acrylamide pharmacophore were synthesized as potent EGFRT790M/L858R inhibitors among which 9c (IC50?=?0.5872?nM), 9d (IC50?=?2.213?nM), or 9h (IC50?=?12.57?nM) showed more potent anti-EGFRT790M/L858R activity compared with AZD–9291 (IC50?=?20.80?nM) and possessed high SI displaying 307.6, 56.5, or 12.5 for EGFRT790M/L858R over the wild-type respectively. 9h also showed pretty good activity against H 1975 cells with an IC50 of 1.664?μM and exhibited low toxicity against the normal HBE cells (IC50?>?20?μΜ). 9h had moderate selectivity for H 1975 over A 431 (SI?=?7.0) and the other selected cell lines. Morphological staining results further indicated that 9h could promote apoptosis. Hence, 9h was a promising compound for further investigation as a potential EGFRT790M/L858R inhibitor for the treatment of NSCLC.  相似文献   

4.
The efficacy of EGFR inhibitors is frequently affected by acquired resistance. EGFR19D/T790M/C797S mutation is one of the primary reasons for the emergence of resistance after treatment with the third-generation EGFR inhibitors such as AZD9291, CO1686 and Olmutinib. To overcome the resistance mutation 19D/T790M/C797S, we designed and prepared a series of indole derivatives with the terminal hydroxyl of alkyl chain to increase extra interaction with the Asp855 in the conservative DFG site. Activity evaluation, structure-activity relationship and docking analysis were also carried out. Among them, compound 12e displayed significant inhibitory activity against EGFR19D/T790M/C797S (IC50 = 15.3 nM) and good selectivity over EGFR WT (IC50 > 1000 nM), L858R/T790M (IC50, 156.6 nM) and L858R/T790M/C797S (IC50, 218.3 nM) respectively. Furthermore, 12e exhibited good growth inhibition activity, induced G1 phase cell cycle arrest and apoptosis in BaF3/EGFR19D/T790M/C797S cells by suppressing EGFR phosphorylation signaling pathway. In all, our study might provide a novel structural design method and lay the solid foundation for the development of the 4th generation EGFR19D/T790M/C797S inhibitors.  相似文献   

5.
A novel series of N-aryl-N′-pyrimidin-4-yl ureas has been optimized to afford potent and selective inhibitors of the EGFR L858R/T790M. The most representative compound 28 showed high activity against EGFR L858R/T790M kinase (IC50?=?4?nM) and 22-fold selectivity against wild type EGFR. Moreover, compound 28 potently inhibited EGFR L858R/T790M phosphorylation (IC50?=?41?nM) and cellular proliferation (IC50?=?37?nM) in the H1975 cell line, while being significantly less toxic to A431 cells. Further, compound 28 exhibited a great selectivity in a mini-panel of kinases.  相似文献   

6.
A series of novel quinazoline derivatives bearing various C-6 benzamide substituents were synthesized and evaluated as EGFR inhibitors, and most showed significant inhibitory potency against EGFR kinase. In particular, compound 6g possessed potent inhibitory activity against EGFR wild-type (IC50?=?5?nM), and strong antiproliferative activity against HCC827 and Ba/F3 (L858R) cell lines. Kinase profiling against a panel of 365 kinases showed that 6g was highly selective for EGFR. Furthermore, 6g showed desirable properties in assays of liver microsome metabolic stability and cytochromes P450 inhibition and preliminary pharmacokinetic study. The overall attractive profile of 6g made it an interesting compound for further development.  相似文献   

7.
A new class of 2(1H)-pyrimidinone derivatives was identified as potential EGFR T790M inhibitors against TKI-resistant NSCLC. These novel compounds inhibited the EGFR T790M kinase activity at concentrations in the range of 85.3 to 519.9 nM. In particular, compound 7e exhibited the strongest activity against both EGFRWT (IC50 = 96.9 nM) and EGFRT790M (IC50 = 85.3 nM) kinases in the cells. Compared with inhibitor 7e, compound 7b displayed enhanced antiproliferative activity against gefitinib-resistant H1975 cells harboring the EGFR T790M mutation. In addition, compound 7b also has low toxicity against the normal human liver cells LO2, with an IC50 of 11.1 µM. Moreover, both the AO/EB and DAPI staining assays also demonstrated the inhibitory efficacy of 7b against the resistant H1975 cells. This contribution provides a new scaffold 2(1H)-pyrimidinone as potential EGFR T790M inhibitor against drug-resistant NSCLC.  相似文献   

8.
Based upon the modeling binding mode of marketed AZD9291 with T790M, a series of N-9-Diphenyl-9H-purin-2-amine derivatives were designed and synthesized with the purpose to overcome the drug resistance resulted from T790M/L858R double mutations. The most potent compound 23a showed excellent enzyme inhibitory activities and selectivity with nanomolar IC50 values for both the single T790M and double T790M/L858R mutant EGFRs, and was more than 8-fold selective for wild type EGFR. Compound 23a displayed strong antiproliferative activity against the H1975 non-small cell lung cancer (NSCLC) cells bearing T790M/L858R. And it was less potent against A549 (WT EGFR and k-Ras mutation) and HT-29 (non-special gene type) cells, showing a high safety index.  相似文献   

9.
To overcome the drug-resistance of first generation EGFR inhibitors and the nonselective toxicities of second generation inhibitors among NSCLC patients, a series of 5-(methylthio)pyrimidine derivatives were discovered as novel EGFR inhibitors, which harbored not only potent enzymatic and antiproliferative activities against EGFRL858R/T790M mutants, but good selectivity over wide-type form of the receptor. This goal was achieved by employing structure-based drug design and traditional optimization strategies, based on WZ4002 and CO1686. These derivatives inhibited the enzymatic activity of EGFRL858R/T790M mutants with IC50 values in subnanomolar ranges, while exhibiting hundreds of fold less potency on EGFRWT. These compounds also strongly inhibited the proliferation of H1975 non-small cell lung cancer cells bearing EGFRL858R/T790M, while being significantly less toxic to A431 human epithelial carcinoma cells with overexpressed EGFRWT. The EGFR kinase inhibitory and antiproliferative activities were further validated by Western blot analysis for activation of EGFR and the downstream signaling in cancer cells.  相似文献   

10.
A series of novel azole-diphenylpyrimidine derivatives (AzDPPYs) were synthesized and biologically evaluated as potent EGFRT790M inhibitors. Among these analogues, the most active inhibitor 6e not only displayed high activity against EGFRT790M/L858R kinase (IC50 = 3.3 nM), but also was able to repress the replication of H1975 cells harboring EGFRT790M mutation at a concentration of 0.118 μmol/L. In contrast to the lead compound rociletinib, 6e slightly reduces the key EGFRT790M-minduced drug resistance. Significantly, inhibitor 6e demonstrates high selectivity (SI = 299.3) for T790M-containing EGFR mutants over wild type EGFR, hinting that it will cause less side effects.  相似文献   

11.
The covalent binding nature of irreversible kinase inhibitors potentially increases the severity of “off-target” toxicity. Based on our continual strategy of chemically tuning the Michael addition acceptors, herein, we further explore the relationship among the electronic nature of Michael addition acceptors and EGFRT790M mutation selectivity as well as “off-target” toxicity balance. By perturbing the electronic nature of acrylamide moiety, compound 8a with a chloro-group at the α-position of the Michael addition acceptor was identified. It was found that 8a retained the excellent EGFR L858R/T790M potency (IC50 = 3.9 nM) and exhibited good anti-proliferative activities against the gefitinib-resistant NCI-H1975 cells (IC50 = 0.75 μM). Moreover, 8a displayed a significant EGFRWT selectivity and much weaker inhibitory activity against non-EGFR dependent SW620 cell and COS7. Preliminary study showed that 8a could arrest NCI-H1975 cells in G0/G1 phase. This work provides a promising chemical tuned strategy for balancing the mutant-EGFR potency and selectivity as well as “off-target” toxicity.  相似文献   

12.
A novel series of 6-alkenylamides of 4-anilinothieno[2,3-d]pyrimidine derivatives was designed, synthesized and evaluated as irreversible inhibitors of the epidermal growth factor receptor (EGFR). Most of the compounds exhibited good potency against EGFR wild type (EGFR wt) and EGFR T790M/L858R. Among these, the half-maximal inhibitory concentration (IC50) values of 17 compounds against EGFR wt were less than 0.020 μM, and those of 12 compounds were less than 0.010 μM. The IC50 values of 10 compounds against EGFR T790M/L858R were less than 0.005 μM. Compounds 8l, 9n, 9o, 9q and 9v almost completely blocked the phosphorylation of EGFR in the A431 cell line at 1 μM. Compounds 8l, 9n, 9o, 9q and 9v blocked the autophosphorylation of EGFR in NCI-H1975 cells at high concentration (1 μM), and compound 8l was confirmed to be an irreversible inhibitor through the dilution method.  相似文献   

13.
In our attempt to develop effective EGFR-TKIs, two series of 1H-pyrazolo[3,4-d]pyrimidine derivatives were designed and synthesized. All the newly synthesized compounds were evaluated in vitro for their inhibitory activities against EGFRWT. Compounds 15b, 15j, and 18d potently inhibited EGFRWT at sub-micro molar IC50 values comparable to that of erlotinib. Moreover, thirteen compounds that showed promising IC50 values against EGFRWT were tested in vitro for their inhibitory activities against mutant EGFRT790M. Compounds 17d and 17f exhibited potent inhibitory activities towards EGFRT790M comparable to osimertinib. Compounds that showed promising IC50 values against EGFRWT were further tested for their anti-proliferative activities against three cancer cell lines bearing EGFRWT (MCF-7, HepG2, A549), and two cancer cell lines bearing EGFRT790M (H1975 and HCC827). Compounds 15g, 15j, 15n, 18d and 18e were the most potent anticancer agents against the EGFRWT containing cells, while compounds 15e, 17d and 17f showed promising anti-proliferative activities against EGFRT790M containing cells. Furthermore, the most active compound 18d was selected for further studies regarding to its effects on cell cycle progression and induction of apoptosis in the HepG2 cell line. The results indicated that this compound is good apoptotic agent and arrests G0/G1and G2/M phases of cell cycle. Finally, molecular docking studies were performed to investigate binding pattern of the synthesized compounds with the prospective targets, EGFRWT (PDB: 4HJO) and EGFRT790M (PDB: 3W2O).  相似文献   

14.
Modifications at C6 and C7 positions of 3-cyanoquinolines 6 and 7 led to potent inhibitors of the ErbB family of kinases particularly against EGFRWT and Her4 enzymes in the radioisotope filter binding assay. The lead (4, SAB402) displayed potent dual biochemical activities with EGFRWT/Her4 IC50 ratio of 80 due to its potent inhibition of Her4 activity (IC50 0.03 nM), however, the selectivity towards activating mutations (EGFRL858R, EGFRex19del) was decreased. Inhibitor 4 also exhibited excellent growth inhibition in seven different cancer types and reduced cell viability in female NMRI nude mice in the intraperitoneally implanted hollow fibers which have been loaded with MOLT-4 (leukemia) and NCI-H460 (NSCLC) cells in a statistically significant manner.  相似文献   

15.
In order to discovery autotaxin (ATX) and EGFR dual inhibitors with potential therapeutic effect on IPF-LC, a series of novel tetrahydropyrido[4,3-d]pyrimidine derivatives possessing semicarbazones moiety were designed and synthesized. The preliminary investigation at the cellular level indicated six compounds (7h, 8a, 8c, 8d, 9a and 9d) displayed preferable anti-tumor activities against A549, H1975, MKN-45 and SGC cancer cells. Further enzymatic assay against EGFR kinase identified 8a and 9a as promising hits with IC50 values of 18.0?nM and 24.2?nM. Meanwhile, anti-inflammatory assessment against cardiac fibroblasts (CFs) cell and RAW264.7 macrophages led to the discovery of candidate 9a, which exhibited considerable potency both on inhibition rate of 77% towards CFs and on reducing NO production to 1.05?μM at 10?μg/mL. Simultaneously, 9a indicated preferable potency towards ATX with IC50 value of 29.1?nM. Significantly, a RT-PCR study revealed the function of 9a to down-regulate the mRNA expression of TGF-β and TNF-α in a dose-dependent manner. The molecular docking analysis together with the pharmacological studies validated 9a as a potential ATX and EGFR dual inhibitor for IPF-LC treatments.  相似文献   

16.
Recent studies have shown that monocarbonyl analogues of curcumin (MACs) and 1H-pyrazole heterocycle both demonstrated promising anticancer activities, in which several compounds containing these scaffolds could target EGFR. In this research, 24 curcumin analogues containing 1H-pyrazole (a1-f4) were synthesized and characterized by using modern spectroscopic techniques. Firstly, synthetic MACs were screened for cytotoxicity against human cancer cell lines such as SW480, MDA-MB-231 and A549, from which the 10 most potential cytotoxic compounds were identified and selected. Subsequently, the selected MACs were further screened for their inhibition against tyrosine kinases, which showed that a4 demonstrated the most significant inhibitory effects on EGFRWT and EGFRL858R. Based on the results, a4 further demonstrated its ability to cause morphological changes, to increase the percentage of apoptotic cells, and to increase caspase-3 activity, suggesting its apoptosis-inducing activity on SW480 cells. In addition, the effect of a4 on the SW480 cell cycle revealed its ability to arrest SW480 cells at G2/M phase. In subsequent computer-based assessments, a4 was predicted to possess several promising physicochemical, pharmacokinetic, and toxicological properties. Via molecular docking and molecular dynamics simulation, a reversible binding mode between a4 and EGFRWT, EGFRL858R, or EGFRG719S, remained stable within the 100-ns simulation due to effective interactions especially the hydrogen bonding with M793. Finally, free binding energy calculations suggested that a4 could inhibit the activity of EGFRG719S more effectively than other EGFR forms. In conclusion, our work would provide the basis for the future design of promising synthetic compounds as anticancer agents targeting EGFR tyrosine kinase.  相似文献   

17.
This Letter describes the lead discovery, optimization, and biological characterization of a series of substituted 4-amino-1H-pyrazolo[3,4-d]pyrimidines as potent inhibitors of IGF1R, EGFR, and ErbB2. The leading compound 11 showed an IGF1R IC50 of 12 nM, an EGFR (L858R) IC50 of 31 nM, and an ErbB2 IC50 of 11 nM, potent activity in cellular functional and anti-proliferation assays, as well as activity in an in vivo pharmacodynamic assay.  相似文献   

18.
Despite the remarkable benefits of gefitinib, the clinical efficacy is eventually diminished due to the acquired point mutations in the EGFR (T790M). To address this unmet medical need, we demonstrated a strategy to prepare a hybrid analogue consisting of the oxooxazolidine ring and the quinazoline scaffold and provided alternative noncovalent inhibitors targeting mutant forms of EGFR. Most of the derivatives displayed moderate to good anti-proliferative activity against gefitinib-resistant NCI-H1975. Some of them exhibited potent EGFR kinase inhibitory activities, especially on EGFRT790M and EGFRL858R kinases. SAR studies led to the identification of a hit 9a that can target both of the most common EGFR mutants: L858R and T790M. Also, 9a displayed weaker inhibitory against cancer cell lines with low level of EGFR expression and good chemical stability under different pH conditions. The work presented herein showed the potential for developing noncovalent inhibitors targeting EGFR mutants.  相似文献   

19.
Four series of N-methylpicolinamide moiety and thienopyrimidine moiety bearing pyridazinone were designed and synthesized and evaluated for the IC50 values against three cancer cell lines (A549, HepG2 and MCF-7) and some selected compounds were further evaluated for the activity against c-Met, Flt-3, VEGFR-2, c-Kit and EGFR kinases. Three compounds (35, 39 and 43) showed more active than positive control Foretinib against A549, HepG2 and MCF-7 cell lines. The most promising compound 43 showed superior activity against A549, HepG2 and MCF-7, with the IC50 values of 0.58?±?0.15?µM, 0.47?±?0.06?µM and 0.74?±?0.12?µM, which were 3.73–5.39-fold more activity than Foretinib, respectively. The experiments of enzyme-based showed that 43 restrain the c-Met selectively, with the IC50 values of 16?nM, which showed equal activity to Foretinib (14?nM) and better than the compound 5 (90?nM). Moreover, AO and Annexin V/PI staining and docking studies were carried out.  相似文献   

20.
With the aim to overcome the drug resistance induced by the EGFR T790M mutation (EGFRT790M), herein, a family of diphenylpyrimidine derivatives (Sty-DPPYs) bearing a C-2 (E)-4-(styryl)aniline functionality were designed and synthesized as potential EGFRT790M inhibitors. Among them, the compound 10e displayed strong potency against the EGFRT790M enzyme, with the IC50 of 11.0 nM. Compound 10e also showed a higher SI value (SI = 49.0) than rociletinib (SI = 21.4), indicating its less side effect. In addition, compound 10e could effectively inhibit the proliferation of H1975 cells harboring the EGFRT790M mutation, within the concentration of 2.91 μM. Significantly, compound 10e has low toxicity against the normal HBE cell (IC50 = 22.48 μM). This work provided new insights into the discovery of potent and selective inhibitor against EGFRT790M over wild-type (EGFRWT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号