首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-one novel alkyl/acyl/sulfonyl substituted fluoroquinolone derivatives were designed, synthesized and evaluated for their anti-tuberculosis and antibacterial activity. The targeted compounds were synthesized by the introduction of alkyl, acyl or sulfonyl moieties to the basic secondary amine moiety of moxifloxacin. Structures of the compounds were enlightened by FT-IR, 1H NMR, 13C NMR and HRMS data besides elemental analysis. Compounds were initially tested in vitro for their anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv using microplate alamar blue assay. Minimal inhibitory concentration (MIC) values of all compounds were found between > 25.00–0.39 µg/mL while compounds 1, 2 and 13 revealed an outstanding activity against M. tuberculosis H37Rv with MIC values of 0.39 µg/mL. Activities of compounds 121 against to a number of Gram-positive and Gram-negative bacteria and fast growing mycobacterium strain were also investigated by agar well diffusion and microdilution methods. According to antimicrobial activity results, compound 13 was found the most potent derivative with a IC50 value of <1.23 μg/mL against Staphylococcus aureus and clinical strain of methicillin-resistant clinical strain of S. aureus.  相似文献   

2.
This study presents the synthesis, spectral analysis and antimicrobial evaluation of a new series of substituted 1,2,4-triazole (5a–i) and 1,3,4-thiadiazole derivatives (9a, c, g, h). New compounds were obtained by cyclization reaction of acyl thiosemicarbazide derivatives in the presence of alkaline and acidic media. All synthesized compounds were screened for their in vitro antimicrobial activities. Nine of the compounds had potential activity against Gram-positive bacteria (MIC?=?3.91–500 µg/mL). Some compounds showed good activity especially against: Micrococcus luteus ATCC 10240 (MIC?=?3.91?31.25 µg/mL), Bacillus subtilis ATCC 6633 (MIC?=?15.63? 62.5 µg/mL), and Staphylococcus aureus ATCC 25923 (MIC?=?15.63?125 µg/mL).  相似文献   

3.
Occurrence of infections due to the drug resistant Staphylococcus aureus is on rise necessitating the need for rapid development of new antibacterial agents. In our present work, a series of new 3-phenylquinazolin-4(3H)-one derivatives were designed, synthesized and evaluated for their antibacterial activity against ESKAP (E. coli, S. aureus, K. pneumoniae, A. baumannii, P. aeroginosa) pathogen panel and pathogenic mycobacterial strains. The study revealed that compounds 4a, 4c, 4e, 4f, 4g, 4i, 4o and 4p exhibited selective and potent inhibitory activity against Staphylococcus aureus with MIC values in the range of 0.125–8 µg/mL. Further, the compounds 4c, 4e and 4g were found to be non toxic to Vero cells (CC50 = >10–>100 µg/mL) and exhibited favourable selectivity index (SI = 40–>200). The compounds 4c, 4e and 4g also showed potent inhibitory activity against various MDR-S. aureus including VRSA. The promising results obtained indicated the potential use of the above series of compounds as promising antibacterial agents for the treatment of multidrug resistant Staphylococcus aureus infections.  相似文献   

4.
The synthesis of a new series of 8-bromo-6-alkyl-1-aryl-6H-isoxazolo[4,3-e]indole derivatives is described. All the newly synthesized compounds were screened for their antibacterial activity against Escherichia coli HB101, Staphylococcus aureus pathogens (methicillin resistant S. aureus and methicillin susceptible S. aureus), Pseudomonas aeruginosa, and Bacillus subtilis; also MIC values of these compounds were determined.  相似文献   

5.
A series of novel biaryloxazolidinone derivatives containing amide and acrylamide structure were designed, synthesized and evaluated for their antibacterial activity. Most compounds generally exhibited potent antibacterial activity with MIC values of 1 μg/mL against S. aureus, MRSA, MSSA, LREF and VRE pathogens, using linezolid and radezolid as positive controls. Compound 17 exhibited good antibacterial activity with MIC values of 0.5 μg/mL against S. aureus, MRSA, MSSA and VRE and 0.25 μg/mL against LREF. The results indicated that compound 17 might serve as a potential hit-compound for further investigation.  相似文献   

6.
1,4-Disubstituted 1,2,3-triazole derivatives of 2H-chromene-3-tetrazoles synthesized regioselectively by copper(I)-catalyzed alkyne–azide cycloaddition (CuAAC) click reaction were characterized by 1HNMR, 13C NMR, IR, and mass spectral data. These derivatives were screened for in vitro antioxidant activity using DPPH radical, H2O2 scavenging, and iron chelating activity methods and also evaluated for in vitro antibacterial activities against E. coli and S. aureus bacterial strains. The MIC and IC50 values for all these compounds were found to match the docking scores and relevant binding energies with the receptor active sites. These results allows one to consider the compounds as leads for a new generation of antioxidant and antibacterial agents.  相似文献   

7.
A series of novel (E)-4-oxo-2-crotonamide derivatives were designed and synthesized to find potent antituberculosis agents. All the target compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv(MTB). Results reveal that 4-phenyl moiety at part A and short methyl group at part C were found to be favorable. Most of the derivatives displayed promising activity against MTB with MIC ranging from 0.125 to 4?µg/mL. Especially, compound IIIa16 was found to have the best activity with MIC of 0.125?μg/mL against MTB and with MIC in the range of 0.05–0.48?µg/mL against drug-resistant clinical MTB isolates.  相似文献   

8.
A series of N-sulfonaminoethyloxime derivatives of dehydroabietic acid were synthesized and investigated for their antibacterial activity against Staphylococcus aureus Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108 and NRS-271). Most of the target compounds having chloro, bromo, trifluoromethyl phenyl moiety exhibited potent in vitro antistaphylococcal activity. The meta-CF3 phenyl derivative T23 showed the highest activity with MIC of 0.39–0.78?μg/mL against S. aureus Newman, while several analogues showed similar potent antibacterial activity with MIC values between 0.78 and 1.56?μg/mL against five multidrug-resistant S. aureus. The stability of T35 in plasma of SD rat and the cellular cytotoxicity were also evaluated.  相似文献   

9.
A series of novel 11-O-carbamoyl-3-O-descladinosyl clarithromycin derivatives bearing the 1,2,3-triazole group were designed, synthesized, and evaluated for their in vitro antibacterial activity. The antibacterial results indicated that most of the target compounds not only increased their activity against resistant bacterial strains, but also partially retained the activity against sensitive bacterial strains compared with clarithromycin. Among them, 13d had the best antibacterial activity against resistant strains, including Streptococcus pneumoniae B1 expressing the ermB gene (16 µg/mL), Streptococcus pneumoniae AB11 expressing the mefA and ermB genes (16 µg/mL) and Streptococcus pyogenes R1 (16 µg/mL), showing >16, 8 and 16-fold higher activity than that of CAM, respectively. Moreover, 13d and 13g exhibited the best antibacterial activity against sensitive bacterial strains, including Staphylococcus aureus ATCC25923 (4 µg/mL) and Bacillus Subtilis ATCC9372 (1 µg/mL). The MBC results showed that the most promising compounds 13d and 13g exhibited antibacterial activity through bacteriostatic mechanism, while the time-kill kinetic experiment revealed bactericidal kinetics of 13g from microscopic point of view. In vitro antibacterial experiments and molecular docking results further confirmed that it was feasible to our initial design strategy by modifying the C-3 and C-11 positions of clarithromycin to increase the activity against resistant bacteria.  相似文献   

10.
A new class of enolphosphates derivatives, the 1-alkenyldiphosphates, was designed and a rapid and efficient synthesis for these compounds was developed. These new molecules showed interesting in vitro antibacterial activities (MIC) against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative pathogens including Pseudomonas aeruginosa and Escherichia coli.  相似文献   

11.
Reflecting the known biological activity of isoniazid-based hydrazones, seventeen hydrazones of 4-(trifluoromethyl)benzohydrazide as their bioisosters were synthesized from various benzaldehydes and aliphatic ketones. The compounds were screened for their in vitro activity against Mycobacterium tuberculosis, nontuberculous mycobacteria (M. avium, M. kansasii), bacterial and fungal strains. The most antimicrobial potent derivatives were also investigated for their cytostatic and cytotoxic properties against three cell lines. Camphor-based molecule, 4-(trifluoromethyl)-N′-(1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)benzohydrazide, exhibited the highest and selective inhibition of M. tuberculosis with the minimum inhibitory concentration (MIC) of 4?µM, while N′-(4-chlorobenzylidene)-4-(trifluoromethyl)benzohydrazide was found to be superior against M. kansasii (MIC?=?16?µM). N′-(5-Chloro-2-hydroxybenzylidene)-4-(trifluoromethyl)benzohydrazide showed the lowest MIC values for gram-positive bacteria including methicillin-resistant Staphylococcus aureus as well as against two fungal strains of Candida glabrata and Trichophyton mentagrophytes within the range of ≤0.49–3.9?µM. The convenient substitution of benzylidene moiety at the position 4 or the presence of 5-chloro-2-hydroxybenzylidene scaffold concomitantly with a sufficient lipophilicity are essential for the noticeable antimicrobial activity. This 5-chlorosalicylidene derivative avoided any cytotoxicity on two mammalian cell cultures (HepG2, BMMΦ) up to the concentration of 100?µM, but it affected the growth of MonoMac6 cells.  相似文献   

12.
In this study, a series of polysubstituted methyl 5,5-diphenyl-1-(thiazol-2-yl)pyrrolidine-2-carboxylate derivatives were designed and synthesized by the cyclization reaction of methyl 1-(benzoylcarbamothioyl)-5,5-diphenylpyrrolidine-2-carboxylates and 2-bromo-1-(4-substituted phenyl)ethanones in 70–96% yield. The starting pyrrolidine derivatives were synthesized via a 1,3-dipolar cycloaddition reaction in 83–88% yield. The stereochemistry of one of these methyl 5,5-diphenyl-1-(thiazol-2-yl)pyrrolidine-2-carboxylate derivatives was characterized by a single crystal X-ray diffraction study and the acid dissociation constants of these compounds were determined. An antimicrobial screening was performed against different bacterial and fungal strains and against the M. tuberculosis H37Rv strain. Interesting antibacterial activity was observed for two compounds against the A. baumannii strain with MIC values of 31.25?µg/mL (Ampicillin: 125?µg/mL) and against the M. tuberculosis H37Rv strain with MIC values of 0.98–1.96?µg/mL (Isoniazid: 0.98?µg/mL, Ethambutol: 1.96?µg/mL). Therefore, these structures can be considered as good starting points for the development of new powerful antimycobacterial agents.  相似文献   

13.
Thiazol and thiazolidinedione derivatives are known in the literature for presenting several biological activities, such as anti-diabetic, anti-inflammatory, antiparasitic, antifungal and antimicrobial activity. With this in mind, this study reports on the synthesis and antibacterial activity of thiazole (NJ) and thiazolidinedione (NW) derivatives, as well as their effects in association with norfloxacin, against NorA efflux pumps in the Staphylococcus aureus 1199B (SA-1199B) strain. Among the 14 compounds evaluated, 9 were found to potentiate norfloxacin activity, with 4 compounds from the NJ series promoting a threefold norfloxacin MIC reduction. Molecular docking assays were used to confirm the binding mode of most active compounds. In the in silico study, the efficiency of the interaction of NJ series compounds with the NorA pump were evaluated. Derivatives from both series did not show considerable intrinsic antibacterial activity (MIC > 1024 μg/mL) against any of the tested strains. However, the NJ16 and NJ17 compounds, when associated with norfloxacin, reduced the MIC of this drug threefold and inhibited NorA pumps in the 1199B strain. Moreover, some NW (05, 10, 18, 19 and 21) and NJ compounds (16, 17, 18 and 20) presented low to moderate cytotoxicity against normal cells. Molecular docking studies supported the potent in vitro inhibitory activity of NJ16 and NJ17, which showed NJ16 and NJ17 possessed more favorable binding energies of −9.03 Kcal/mol and −9.34 Kcal/mol, respectively. In addition, NJ16 showed different types of interactions involved in complex stabilization. In conclusion, NJ16 and NJ17, in combination with norfloxacin, were able to completely restore the antibacterial activity of norfloxacin against S. aureus SA-1199B, the norA-overexpressing strain, with low cytotoxicity in normal cells.  相似文献   

14.
A series of 13 phosphonium salts on the basis of pyridoxine derivatives were synthesized and their antibacterial activity against clinically relevant strains was tested in vitro. All compounds were almost inactive against gram-negative bacteria and exhibited structure-dependent activity against gram-positive bacteria. A crucial role of ketal protection group in phosphonium salts for their antibacterial properties was demonstrated. Among synthesized compounds 5,6-bis[triphenylphosphonio(methyl)]-2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridine dichloride (compound 20) was found to be the most effective towards Staphylococcus aureus and Staphylococcus epidermidis strains (MIC 5 μg/ml). The mechanism of antibacterial activity of this compound probably involves cell penetration and interaction with genomic and plasmid DNA.  相似文献   

15.
Methicillin resistant Staphylococcus aureus (MRSA) is among the major drug resistant bacteria that persist in both the community and clinical settings due to resistance to commonly used antimicrobials. This continues to fuel the need for novel compounds that are active against this organism. For this purpose we have targeted the type IIA bacterial topoisomerase, DNA gyrase, an essential enzyme involved in bacterial replication, through the ATP-dependent supercoiling of DNA. The virtual screening tool Shape Signatures was applied to screen a large database for agents with shape similar to Novobiocin, a known gyrase B inhibitor. The binding energetics of the top hits from this initial screen were further validated by molecular docking. Compounds with the highest score on available crystal structure of homologous DNA gyrase from Thermus thermophilus were selected. From this initial set of compounds, several rhodanine-substituted derivatives had the highest antimicrobial activity against S. aureus, as determined by minimal inhibitory concentration assays, with Novobiocin as the positive control. Further activity validation of the rhodanine compounds through biochemical assays confirmed their inhibition of both the supercoiling and the ATPase activity of DNA gyrase. Subsequent docking and molecular dynamics on the crystal structure of DNA gyrase from S. aureus when it became available, provides further rationalization of the observed biochemical activity and understanding of the receptor–ligand interactions. A regression model for MIC prediction against S. aureus is generated based on the current molecules studied as well as other rhodanines derivatives found in the literature.  相似文献   

16.
In an effort to discover novel inhibitors of M. tuberculosis Caseinolytic proteases (ClpP1P2), a combination strategy of virtual high-throughput screening and in vitro assay was employed and a new pyrrole compound, 1-(2-chloro-6-fluorobenzyl)-2, 5-dimethyl-4-((phenethylamino)methyl)-1H-pyrrole-3-carboxylate was found to display inhibitory effects against H37Ra with an MIC value of 77 µM. In order for discovery of more potent anti-tubercular agents that inhibit ClpP1P2 peptidase in M. tuberculosis, a series of pyrrole derivatives were designed and synthesized based on this hit compound. The synthesized compounds were evaluated for in vitro studies against ClpP1P2 peptidase and anti-tubercular activities were also evaluated. The most promising compounds 2-(4-bromophenyl)-N-((1-(2-chloro-6-fluorophenyl)-2, 5-dimethyl-1H- pyrrolyl)methyl)ethan-1-aminehydrochloride 7d, ethyl 4-(((4-bromophenethyl) amino) methyl)-2,5-dimethyl-1-phenyl-1H-pyrrole-3-carboxylate hydrochloride 13i, ethyl 1-(4-chlorophenyl)-4-(((2-fluorophenethyl)amino)methyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylate hydrochloride 13n exhibited favorable anti-mycobacterial activity with MIC value at 5 µM against Mtb H37Ra, respectively.  相似文献   

17.
Chemical modification of chitosan by introducing quaternary ammonium moieties into the polymer backbone renders excellent antimicrobial activity to the adducts. In the present study, we have synthesized 17 derivatives of chitosan consisting of a variety of N-aryl substituents bearing either electron-donating or electron-withdrawing groups. Selective N-arylation of chitosan was performed via Schiff bases formed by the reaction between the 2-amino groups of the glucosamine residue of chitosan with aromatic aldehydes under acidic conditions, followed by reduction of the Schiff base intermediates with sodium cyanoborohydride. Each of the derivatives was further quaternized using N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride (Quat-188) as the quaternizing agent that reacted with either the primary amino or hydroxyl groups of the glucosamine residue of chitosan. The resulting quaternized materials were water soluble at neutral pH. Minimum inhibitory concentration (MIC) antimicrobial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria in order to explore the impact of the extent of N-substitution (ES) on their biological activities. At ES less than 10%, the presence of the hydrophobic substituent, such as benzyl and thiophenylmethyl, yielded derivatives with lower MIC values than chitosan Quat-188. Derivatives with higher ES exhibited reduced antibacterial activity due to low quaternary ammonium moiety content. At the same degree of quaternization, all quaternized N-aryl chitosan derivatives bearing either electron-donating or electron-withdrawing substituents did not contribute antibacterial activity relative to chitosan Quat-188. Neither the functional group nor its orientation impacted the MIC values significantly.  相似文献   

18.
Worldwide efforts are underway to develop new antimicrobial agents against bacterial resistance. To identify new compounds with a good antimicrobial profile, we designed and synthesized two series of small cationic antimicrobial peptidomimetics (1–8) containing unusual arginine mimetics (to introduce cationic charges) and several aromatic amino acids (bulky moieties to improve lipophilicity). Both series were screened for in vitro antibacterial activity against a representative panel of Gram‐positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram‐negative (Escherichia coli and Klebsiella pneumoniae) bacterial strains, and Candida albicans. The biological screening showed that peptidomimetics containing tryptophan residues are endowed with the best antimicrobial activity against S. aureus and S. epidermidis in respect to the other synthesized derivatives (MIC values range 7.5–50 µg/ml). Moreover, small antimicrobial peptidomimetics derivatives 2 and 5 showed an appreciable activity against the tested Gram‐negative bacteria and C. albicans. The most active compounds (1–2 and 5–6) have been tested against Gram‐positive established biofilm, too. Results showed that the biofilm inhibitory concentration values of these compounds were never up to 200 µg/ml. The replacement of tryptophan with phenylalanine or tyrosine resulted in considerable loss of the antibacterial action (compounds 3–4 and 7–8) against both Gram‐positive and Gram‐negative bacterial strains. Furthermore, by evaluating hemolytic activity, the synthesized compounds did not reveal cytotoxic activities, except for compound 5. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
13‐[(N‐Alkylamino)methyl]‐8‐oxodihydrocoptisines were synthesized to evaluate antibacterial activity against Clostridium difficile and activating x‐box‐binding protein 1 (XBP1) activity, biological properties both associated with ulcerative colitis. Improving structural stability and ameliorating biological activity were major concerns. Different substituents on the structural modification site were involved to explore the influence of diverse structures on the bioactivities. The target compounds exhibited the desired activities with definite structure–activity relationship. In the series of 13‐[(Nn‐alkylamino)methyl]‐8‐oxodihydrocoptisines, the length of n‐alkyl groups has a definite effect on the bioactivity, elongation of the length increasing the antibacterial activity. The synthesized compounds were determined to display strong or weak XBP1‐activating activity in vitro. The preliminary results of this study warrant further medicinal chemistry studies on these synthesized compounds.  相似文献   

20.
The 1,2,4‐triazole and its derivatives were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anti‐inflammatory, antitumoural, cytotoxic, and antioxidant properties. In this study, a series of triazole compounds (M1‐M10) were evaluated for some biological activities. In vitro qualifications of these compounds on acetylcholinesterase (AChE) and human carbonic anhydrase enzyme activities were performed. Also, their antitumoral activities in human colon cancer (HT29) cell line cultures were examined. In addition, colon cancer experimentation was induced in rats by an in vivo method, and the in vivo anticancer effects of triazole derivatives were investigated. Also, the effects of these derivatives in levels of antioxidant vitamin A, vitamin E, and MDA were studied in rat liver and blood samples. Most of the compounds were found to exhibit significant antioxidant and antitumoral activities. All the compounds had cytotoxic activities on HT29 cell lines with their IC50 values lower than 10 µM concentrations. The low IC 50 values of the compounds are M1 (3.88 µM), M2 (2.18 µM), M3 (4.2 µM), M4 (2.58 µM), M5 (2.88 µM), M6 (2.37 µM), M7 (3.49 µM), M8 (4.01 µM), M9 (8.90 µM), and M10 (3.12 µM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号