共查询到20条相似文献,搜索用时 15 毫秒
1.
Meng FC Mao F Shan WJ Qin F Huang L Li XS 《Bioorganic & medicinal chemistry letters》2012,22(13):4462-4466
A series of novel indanone derivatives was designed, synthesised and evaluated as potential agents for Alzheimer's disease. Among them, compound 6a, with a piperidine group linked to indone by a two-carbon spacer, exhibited the most potent inhibitor activity, with an IC(50) of 0.0018 μM for AChE; the inhibitory activity of this compound was 14-fold more potent than that of donepezil. Furthermore, these compounds also exhibited good metal-chelating ability. 相似文献
2.
The cure for Alzheimer''s disease (AD) is still unknown. According to Cholinergic hypothesis, Alzheimer''s disease is caused by the
reduced synthesis of the neurotransmitter, Acetylcholine. Regional cerebral blood flow can be increased in patients with
Alzheimer''s disease by Acetylcholinesterase (AChE) inhibitors. In this regard, Tetraphenylporphinesulfonate (TPPS), 5,10,15,20-
Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) Chloride (FeTPPS) and 5,10,15,20-Tetrakis (4-sulfonatophenyl)
porphyrinatoIron(III) nitrosyl Chloride (FeNOTPPS) were investigated as candidate compounds for inhibition of
Acteylcholinesterase of Drosophila melanogaster (DmAChE) by use of Molecular Docking. The results show that FeNOTPPS forms
the most stable complex with DmAChE. 相似文献
3.
《Bioorganic & medicinal chemistry》2014,22(21):6124-6133
A novel series of chalcone derivatives (4a–8d) were designed, synthesized, and evaluated for the inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The log P values of the compounds were shown to range from 1.49 to 2.19, which suggested that they were possible to pass blood brain barriers in vivo. The most promising compound 4a (IC50: 4.68 μmol/L) was 2-fold more potent than Rivastigmine against AChE (IC50: 10.54 μmol/L) and showed a high selectivity for AChE over BuChE (ratio: 4.35). Enzyme kinetic study suggested that the inhibition mechanism of compound 4a was a mixed-type inhibition. Meanwhile, the result of molecular docking showed its potent inhibition of AChE and high selectivity for AChE over BuChE. 相似文献
4.
《Bioorganic & medicinal chemistry letters》2020,30(6):126985
A series of new 4-arylthiazole-2-amine derivatives as acetylcholinesterase inhibitors (AChEIs) were designed and synthesized, Furthermore, their inhibitory activities against acetylcholinesterase in vitro were tested by Ellman spectrophotometry, and the results of inhibitory activity test showed that most of them had a certain acetylcholinesterase inhibitory activity in vitro. Moreover, the IC50 value of compound 4f was to 0.66 μM, which was higher than that of Rivastigmine and Huperzine-A as reference compounds, and it had a weak inhibitory effect on butyrylcholinesterase. The potential binding mode of compound 4f with AChE was investigated by the molecular docking, and the results showed that 4f was strongly bound up with AChE with the optimal conformation, in addition, their binding energy reached −11.27 Kcal*mol−1. At last, in silico molecular property of the synthesized compounds were predicted by using Molinspiration online servers. It can be concluded that the lead AChEIs compound 4f presented satisfactory drug-like characteristics. 相似文献
5.
《Bioorganic & medicinal chemistry》2020,28(5):115324
Rivastigmine, a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), has been approved by U.S. Food and Drug Administration to treat Alzheimer’s disease (AD) and Parkinson’s disease (PD) dementia. In the current work, a bambuterol derivative lacking one of the carbamoyloxy groups on the benzene ring (BMC-1) and its analogues were synthesized using 1-(3-hydroxyphenyl) ethan-1-one and 1-(4-hydroxyphenyl) ethan-1-one as starting materials. In-vitro cholinesterase assay established that nine compounds were more potent to inhibit both electric eel AChE and equine serum BChE than rivastigmine under the same experimental conditions. Further study confirmed that among the nine carbamates, BMC-3 (IC50(AChE) = 792 nM, IC50(BChE) = 2.2 nM) and BMC-16 (IC50(AChE) = 266 nM, IC50(BChE) = 10.6 nM) were excellent cholinesterase inhibitors with potential of permeating through the blood-brain barrier. These carbamates could be used as potential dual inhibitors of AChE and BChE and to discover novel drugs for the treatment of AD and PD dementia. 相似文献
6.
《Bioorganic & medicinal chemistry》2016,24(19):4587-4599
A series of novel hybrids has been synthesized by linking coumarin moiety through an appropriate spacer to various substituted heterocyclic amines and evaluated as dual binding site acetylcholinesterase inhibitors for the treatment of cognitive dysfunction caused by increased hydrolysis of acetylcholine and scopolamine induced oxidative stress. Anti-amnesic activity of the compounds was evaluated using Morris water maze model at a dose of 1 mg/kg with reference to the standard, donepezil. Biochemical estimation of oxidative stress markers (lipid peroxidation, superoxide dismutase, and plasma nitrite) was carried out to assess the antioxidant potential of the synthesized molecules. Among all the synthesized compounds (15a–i, 16a–d, 17a–b), compound 15a [4-[3-(4-phenylpiperazin-1-yl)propoxy]-2H-chromen-2-one] displayed significant antiamnesic activity, AChE inhibitory activity (IC50 = 2.42 μM) and antioxidant activity in comparison to donepezil (IC50 = 1.82 μM). Molecular docking study of 15a indicated that it interacts with all the crucial amino acids present at the CAS, mid-gorge and PAS of TcAChE resulting in increased inhibition of AChE enzyme. 相似文献
7.
A group of novel chalcone derivatives comprising hydroxamic acid or 2-aminobenzamide group as zinc binding groups (ZBG) were synthesized. The structure of the prepared compounds was fully characterized by IR, NMR and elemental microanalyses. Most of the tested compounds displayed strong to moderate HDAC inhibitory activity. Some of these compounds showed potent anti-proliferative activity against human HepG2, MCF-7 and HCT-116 cell lines. In particular, compounds 4a and 4b exhibited significant anti-proliferative activity against the three cell lines compared to SAHA as reference drug and displayed promising profile as anti-tumor candidates. The results indicated that these chalcone derivatives could serve as a promising lead compounds for further optimization as antitumor agents. 相似文献
8.
A series of substituted pyrazole compounds (1–8 and 9a, b) were synthesized and their structure was characterized by IR, NMR, and Mass analysis. These obtained novel pyrazole derivatives (1–8 and 9a, b) were emerged as effective inhibitors of the cytosolic carbonic anhydrase I and II isoforms (hCA I and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 1.03 ± 0.23–22.65 ± 5.36 µM for hCA I, 1.82 ± 0.30–27.94 ± 4.74 µM for hCA II, and 48.94 ± 9.63–116.05 ± 14.95 µM for AChE, respectively. Docking studies were performed for the most active compounds, 2 and 5, and binding mode between the compounds and the receptors were determined. 相似文献
9.
Elaine da Conceição Petronilho Magdalena do Nascimento Rennó Newton Gonçalves Castro Fernanda Motta R. da Silva Angelo da Cunha Pinto 《Journal of enzyme inhibition and medicinal chemistry》2016,31(6):1069-1078
Analogs of pralidoxime, which is a commercial antidote for intoxication from neurotoxic organophosphorus compounds, were designed, synthesized, characterized, and tested as potential inhibitors or reactivators of acetylcholinesterase (AChE) using the Ellman’s test, nuclear magnetic resonance, and molecular modeling. These analogs include 1-methylpyridine-2-carboxaldehyde hydrazone, 1-methylpyridine-2-carboxaldehyde guanylhydrazone, and six other guanylhydrazones obtained from different benzaldehydes. The results indicate that all compounds are weak AChE reactivators but relatively good AChE inhibitors. The most effective AChE inhibitor discovered was the guanylhydrazone derived from 2,4-dinitrobenzaldehyde and was compared with tacrine, displaying similar activity to this reference material. These results indicate that guanylhydrazones as well as future similar derivatives may function as drugs for the treatment of Alzheimer's disease. 相似文献
10.
Carolan CG Gaynor JM Dillon GP Khan D Ryder SA Reidy S Gilmer JF 《Chemico-biological interactions》2008,175(1-3):293-297
We report herein that a variety of isosorbide di-esters, previously reported to be novel substrates for butyrylcholinesterase (BuChE, EC 3.1.1.8), are in fact inhibitors of the homologous enzyme acetylcholinesterase (AChE), with IC(50) values in the micromolar range. In vitro studies show that they are mixed inhibitors of the enzyme, and thus the ternary enzyme-inhibitor-substrate complex can form in acetylcholinesterase. This is rationalised by molecular modelling which shows that the compounds bind in the mid-gorge area. In this position, simultaneous substrate binding might be possible, but the hydrolysis of this substrate is prevented. The di-esters dock within the butyrylcholinesterase gorge in a very different manner, with the ester sidechain at the 5-position occupying the acyl pocket at residues Leu286 and Val288, and the 2-ester binding to Trp82. The carbonyl group of the 2-ester is susceptible to nucleophilic attack by Ser198 of the catalytic triad. The larger residues of the acyl pocket in acetylcholinesterase prevent binding in this manner. The results complement each other and explain the differing behaviours of the esters in the cholinesterase enzymes. These findings may prove very significant for future work. 相似文献
11.
Pan L Tan JH Hou JQ Huang SL Gu LQ Huang ZS 《Bioorganic & medicinal chemistry letters》2008,18(13):3790-3793
A series of isaindigotone derivatives 5a-d and 6a-d were designed, synthesized and evaluated as acetylcholinesterase and butyrylcholinesterase inhibitors. Results showed that the novel class of isaindigotone derivatives could inhibit both cholinesterases and the selectivity of AChE over BuChE inhibition was related to the aromatic, the species and length of the alkyl amino side chain of compounds. The structure-activity relationships were discussed and their multiple binding modes were further clarified in the molecular docking studies. 相似文献
12.
The novel hybrids bearing 4-aminopyridine (4-AP) tethered with substituted 1,3,4-oxadiazole nucleus were designed, synthesized, and evaluated for their potential AChE inhibitory property along with significant antioxidant potential. The inhibitory potential (IC50) of synthesized analogs was evaluated against human cholinesterases (hAChE and hBChE) using Ellman’s method. Among all the compounds, 9 with 4-hydroxyl substituent showed maximum hAChE inhibition with the non-competitive type of enzyme inhibition (IC50 = 1.098 µM; Ki = 0.960 µM). Further, parallel artificial membrane permeation assay (PAMPA-BBB) showed significant BBB permeability in most of the synthesized compounds. Meanwhile, compound 9 also inhibited AChE-induced Aβ aggregation (38.2–65.9%) by thioflavin T assay. The in vivo behavioral studies showed dose-dependent improvement in learning and memory by compound 9. The ex vivo studies also affirmed the significant AChE inhibition and antioxidant potential of compound 9 in brain homogenates. 相似文献
13.
《Bioorganic & medicinal chemistry》2020,28(8):115400
A series of phthalide alkyl tertiary amine derivatives were designed, synthesized and evaluated as potential multi-target agents against Alzheimer’s disease (AD). The results indicated that almost all the compounds displayed significant AChE inhibitory and selective activities. Besides, most of the derivatives exhibited increased self-induced Aβ1-42 aggregation inhibitory activity compared to the lead compound dl-NBP, and some compounds also exerted good antioxidant activity. Specifically, compound I-8 showed the highest inhibitory potency toward AChE (IC50 = 2.66 nM), which was significantly better than Donepezil (IC50 = 26.4 nM). Moreover, molecular docking studies revealed that compound I-8 could bind to both the catalytic active site and peripheral anionic site of AChE. Furthermore, compound I-8 displayed excellent BBB permeability in vitro. Importantly, the step-down passive avoidance test indicated that I-8 significantly reversed scopolamine-induced memory deficit in mice. Collectively, these results suggested that I-8 might be a potent and selective AChE inhibitor for further anti-AD drug development. 相似文献
14.
Nowadays, the inhibition of acetylcholinesterase is one of the main pharmacological strategies for the treatment of Alzheimer’s disease. Therefore, a set of thirty-four derivatives of the diterpenoid dehydroabietylamine has been synthesized and screened in colorimetric Ellman’s assays to determine their ability to inhibit the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum). A systematic variation of the substitution of dehydroabietylamides enabled an approach to analogs showing a remarkable inhibition potency for AChE. Particularly N-benzoyldehydroabietylamines 11, 12 and 13 were excellent inhibitors for AChE, showing inhibition rates comparable to standard galantamine hydrobromide. 相似文献
15.
Design, synthesis, and evaluation of 2-phenoxy-indan-1-one derivatives as acetylcholinesterase inhibitors 总被引:5,自引:0,他引:5
Sheng R Lin X Li J Jiang Y Shang Z Hu Y 《Bioorganic & medicinal chemistry letters》2005,15(17):3834-3837
A series of 2-phenoxy-indan-1-one derivatives have been designed, synthesized, and tested as acetylcholinesterase inhibitors. The most potent compound exhibited high AChE inhibitory activity (IC50 = 50 nM), and the molecular docking study indicated that it was nicely accommodated by AChE. 相似文献
16.
Cancer is a perplexing and challenging problem for researchers. In this study, a series of 6-aryl-5-cyano-pyrimidine derivatives were designed, synthesized and evaluated for their anticancer activity against HePG-2, MCF-7 and HCT-116 cell lines. Compounds 2, 3d, 4a-c, 5, 8 and 12 displayed high anticancer activity, comparable to that of 5-fluorouracil. Additionally, those compounds with effective anticancer activity were further assessed for their ability to inhibit thymidylate synthase (TS) enzyme. All the tested compounds demonstrated a marked TS inhibitory activity (33.66–74.98%), with IC50 ranging from 3.89 to 15.74 nM. Moreover, apoptosis studies were conducted on the most potent compound 8, to evaluate its proapoptotic potential. Interestingly, compound 8 induced the level of active caspase 3, and elevated the Bax/Bcl2 ratio 44 folds in comparison to the control. Finally, a molecular docking study was conducted to detect the probable interaction between the active compounds and the thymidylate synthase active site. 相似文献
17.
《Bioorganic & medicinal chemistry》2014,22(1):366-373
Herein, we describe the discovery and synthesis of a new series of 1,2,4,7-tetra-substituted indole derivatives as novel AKT inhibitors by optimization of a weak hit methyl 4-(2-aminoethoxy)-1H-indole-2-carboxylate (1). Both representative compounds 6a and 6o exhibited the most potent inhibitory activities against AKT1, with inhibition rates of 72.5% and 78.6%, respectively, at concentrations of 10 nM. In addition, compounds 6a and 6o also potently inhibited the phosphorylation of the downstream GSK3 protein and displayed slightly better anti-proliferative activities in a prostate cancer cell line. 相似文献
18.
Sirtuins (SIRTs), class III HDAC (Histone deacetylase) family proteins, are associated with cancer, diabetes, and other age-related disorders. SIRT1 and SIRT2 are established therapeutic drug targets by regulating its function either by activators or inhibitors. Compounds containing indole moiety are potential lead molecules inhibiting SIRT1 and SIRT2 activity. In the current study, we have successfully synthesized 22 indole derivatives in association with an additional triazole moiety that provide better anchoring of the ligands in the binding cavity of SIRT1 and SIRT2. In-vitro binding and deacetylation assays were carried out to characterize their inhibitory effects against SIRT1 and SIRT2. We found four derivatives, 6l, 6m, 6n, and 6o to be specific for SIRT1 inhibition; three derivatives, 6a, 6d and 6k, specific for SIRT2 inhibition; and two derivatives, 6s and 6t, which inhibit both SIRT1 and SIRT2. In-silico validation for the selected compounds was carried out to study the nature of binding of the ligands with the neighboring residues in the binding site of SIRT1. These derivatives open up newer avenues to explore specific inhibitors of SIRT1 and SIRT2 with therapeutic implications for human diseases. 相似文献
19.
İlhami Gulçin Malahat Abbasova Parham Taslimi Zübeyir Huyut Leyla Safarova Afsun Sujayev 《Journal of enzyme inhibition and medicinal chemistry》2017,32(1):1174-1182
Compounds containing nitrogen and sulfur atoms can be widely used in various fields such as industry, medicine, biotechnology and chemical technology. Therefore, the reactions of aminomethylation and alkoxymethylation of mercaptobenzothiazole, mercaptobenzoxazole and 2-aminothiazole were developed. Additionally, the alkoxymethyl derivatives of mercaptobenzoxazole and 2-aminothiazole were synthesized by a reaction with hemiformals, which are prepared by the reaction of alcohols and formaldehyde. In this study, the inhibitory effects of these molecules were investigated against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) enzymes and carbonic anhydrase I, and II isoenzymes (hCA I and II). Both hCA isoenzymes were significantly inhibited by the recently synthesized molecules, with Ki values in the range of 58–157?nM for hCA I, and 81–215?nM for hCA II. Additionally, the Ki parameters of these molecules for BChE and AChE were calculated in the ranges 23–88 and 18–78?nM, respectively. 相似文献
20.
Daniela De Vita Fabiana Pandolfi Luigi Ornano Marta Feroci Isabella Chiarotto Ilaria Sileno 《Journal of enzyme inhibition and medicinal chemistry》2016,31(6):106-113
AbstractA series of N,N-dimethylcarbamates containing a N,N-dibenzylamino moiety was synthesized and tested to evaluate their ability to inhibit Acetylcholinesterase (AChE). The most active compounds 4 and 8, showed 85 and 69% of inhibition at 50?μM, respectively. Furthermore, some basic SAR rules were outlined: an alkyl linker of six methylene units is the best spacer between the carbamoyl and dibenzylamino moieties; electron-withdrawal substituents on aromatics rings of the dibenzylamino group reduce the inhibitory power. Compound 4 produces a slow onset inhibition of AChE and this is not due to the carbamoylation of the enzyme, as demonstrated by the time-dependent inhibition assay of AChE with compound 4 and by MALDI-TOF MS analysis of trypsinized AChE inhibited by compound 4. Instead, compound 4 could act as a slow-binding inhibitor of AChE, probably because of its high conformational freedom due to the linear alkyl chain. 相似文献